
FMICS 2004 Preliminary Version

Early Verification and Validation
of Mission Critical Systems

C. Ponsard, P. Massonet, A. Rifaut and J.F. Molderez 1

CETIC Research Center, Charleroi, Belgium

A. van Lamsweerde and H. Tran Van 2

Université catholique de Louvain, Department of Computer Science, Belgium

Abstract

Our world is increasingly relying on complex software and systems. In a growing
number of fields such as transportation, finance, telecommunications, medical de-
vices, they come to play a critical role and require high assurance. To achieve this,
it is imperative to produce high quality requirements. The KAOS goal-oriented
requirements engineering methodology provides a rich framework for requirements
elicitation and management of such systems.

This paper demonstrates the practical industrial application of that methodology.
The non-critical parts are modelled semi-formally using a graphical language for
goal-oriented requirements engineering. When and where needed (ie. for critical
parts of a system) the model can be specified at formal level using a real-time
temporal logic. That formal level seamlessly extends the semi-formal level which
can also help hide the formality for the non-specialist.

To ensure at an early stage that the right system is being built and that the
requirements model is right, validation and verification tools are applied on that
model. Early verification checks help to discover missing requirements, overlooked
assumptions or incorrect goal refinements. State machines generation from oper-
ations provides an executable model useful for validation purposes or for deriving
an initial design. Acceptance test cases and runtime behavior monitors can also be
derived from the model.

The process is supported by an integrated toolbox implementing the above tools
by a roundtrip mapping of KAOS requirements level notations to the languages of
formal technology tools such as model-checkers, SAT engines or constraint solvers.
A graphical visualization framework also significantly helps validation using domain-
based representations.

Key words: Requirements Engineering, Goal-orientation, Early
Verification, Validation, Animation, Monitoring, Acceptance Tests

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Early Verification and Validation of Mission Critical Systems

1 Introduction

Complex software and systems are pervasive in today’s world. In a growing
number of areas they come to play a critical role as their incorrect behavior
may lead to catastrophic loss in terms of cost, damage to the environment, or
even human life.

To produce highly reliable systems it is recommended to use formal meth-
ods. They refer to mathematically based languages, techniques and tools for
specifying and verifying such systems. Even though there are some success sto-
ries, formal methods have not yet gained wide industrial adoption - the main
obstacles being the significant investment from learning a difficult technol-
ogy and often a psychological resistance to mathematics. To overcome those
problems, alternative approaches are now being explored such as lightweight
formal methods [4] and invisible formal methods [17]. The former is a tar-
geted application limited in scope and analysis to reach relevant conclusions at
a minimal cost. The latter aims at providing sufficiently convenient, powerful,
and useful technologies for practitioners to adopt them willingly.

To achieve high assurance, a number of studies have also stressed the im-
portance of the requirements phase [5][6]. Several severe failures can in some
way be traced back to a requirements problem [11][12]. At present, most
requirements engineering approaches rely on structured natural language or
semi-formal notations such as UML which lack precise semantics and thus have
poor reasoning capabilities. Formal methods are generally applied to software
specifications, while requirements consider the composite system which con-
sists of the software and its environment. Often the used approach is missing
fundamental requirements engineering issues such as the capture of rationale,
adequate guidance for requirements elaboration and support in the exploration
of alternatives. In [24], it is argued that goals offer the right kind of abstrac-
tion to address such inadequacies, notably in the context of high assurance
systems; that is systems for which compelling evidence is required that the
system delivers its services in a manner that satisfies safety, security, fault-
tolerance and survivability requirements [15].

The key activity in goal-oriented requirements engineering is the construc-
tion of the goal model. Goals are objectives the system under construction
must achieve. Goal formulations thus refer to intended properties to be en-
sured. They are formulated at different levels of abstraction from high-level,
strategic concerns (such as ”serve more passengers” for the train transporta-

1 e-mail: {cp,phm,ari,jfm}@cetic.be
2 e-mail: {avl,tvh}@info.ucl.ac.be
3 This work is financially supported by European Union (ERDF and ESF) and Walloon
Region (DGTRE).

2

Early Verification and Validation of Mission Critical Systems

tion system we will consider throughout this paper) to low-level technical
concern (such as ”acceleration command delivered in time”). Goal models
also allows analysts to capture and explore alternative refinements for a given
goal. The resulting structure of the goal model is a AND-OR graph.

The specific goal-oriented framework considered here is the KAOS method-
ology [2][20] which has a two level language: (1) an outer semi-formal layer
for capturing requirements engineering concepts, structuring and presenting
them; (2) an inner formal assertion layer for their precise definition and for
reasoning about them.

The objective of this paper is to present an overview of the FAUST formal
toolbox, to detail the individual tools and to show how, together, they provide
powerful reasoning capabilities at an early stage of the system development.
Figure 1 shows the main activities supported by the FAUST toolbox. Those
are located at the top-level of the software lifecycle.

• Early verification is about making sure the system is correct, especially with
respect to formal semantics of the goal model.

• Validation is about making sure the system being built is the system the
user is expecting.

• Artefact generation is about automatically generating products used later
in the software lifecycle such as acceptance test cases or run-time monitors.

Fig. 1. Main activities supported by the FAUST toolbox

The FAUST toolbox was designed to make requirements engineering meet
practical formal methods by:

• seamlessly integrating semi-formal and formal descriptions, allowing one
to limit the scope of the latter to the critical parts of the system being
modelled;

• hiding most of the formal aspects, eg. through the generation of animations
based on domain-level representations;

• providing goal-oriented formal tools which encapsulate existing formal tech-
nology such as theorem provers, model-checkers, SAT-engines, constraint-
solvers, etc.

3

Early Verification and Validation of Mission Critical Systems

• reusing standard notations where possible - for example, UML class dia-
grams, sequence diagrams, state machine diagrams.

The rest of this paper is structured as follows. Section 2 gives some back-
ground information on KAOS and its formal semantics. Section 3 gives an
overview of the functionalities supported by the toolbox. Section 4 and 5
respectively detail two mature tools: the early analyzer (mainly about verifi-
cation) and the animator (mainly about validation).

A demo of the tool in action on the train control system used as a running
example in this paper can be downloaded at http://www.cetic.be/∼faust/demo.
The system involves multiple trains moving along a circular single-track set of
blocks with multiple stations, block signals, railroad crossing gates and cars.
Only a subset of this model will be illustrated here.

2 Background on KAOS

A KAOS requirements model is composed of four sub-models: a goal model,
an object model, an agent model and an operation model; these models are
elaborated methodically using a goal-oriented approach, see [21].

A goal is a prescriptive statement of intent about some system (existing
or to-be) whose satisfaction in general requires the cooperation of some of the
agents forming that system. Agents are active components, such as humans,
devices, legacy software or software-to-be components, that play some role
towards goal satisfaction. Some agents thus define the software whereas the
others define its environment. Goals may refer to services to be provided
(functional goals) or to the quality of service (non-functional goals). Unlike
goals, domain properties are descriptive statements about the environment,
such as physical laws, organizational norms or policies, etc.

2.1 Building Goal Models

Goals are organized in AND/OR refinement-abstraction hierarchies where
higher-level goals are in general strategic, coarse-grained and involve multi-
ple agents whereas lower-level goals are in general technical, fine-grained and
involve fewer agents [2][3]. In such structures, AND-refinement links relate a
goal to a set of subgoals (called refinement) possibly conjoined with domain
properties; this means that satisfying all subgoals in the refinement is a suf-
ficient condition in the domain for satisfying the goal. OR-refinement links
may relate a goal to a set of alternative refinements. Goal refinement ends
when every subgoal is realizable by some individual agent assigned to it, that
is, expressible in terms of conditions that are monitorable and controllable by
the agent [9]. A requirement is a terminal goal under responsibility of an agent
in the software-to-be; an expectation is a terminal goal under responsibility of

4

Early Verification and Validation of Mission Critical Systems

an agent in the environment.

Goals prescribe intended behaviors; they are optionally formalized in a
real-time temporal logic [2][8][14]. Keywords such as Achieve, Avoid, Maintain
are used to name goals according to the temporal behavior pattern they pre-
scribe.

Fig. 2. Portion of a goal graph for a train control system

Figure 2 shows a goal model fragment of our train control system. The leaf
goal Maintain[DoorsClosedWhileMoving] may be annotated with the following
temporal logic assertion stating that in every future state the train doors shall
be closed when the train is moving:

(∀tr : Train)tr.moving ⇒ tr.doorsClosed.
Note also the alternative refinement for the goal NoTrainCollision which leads
to totally different designs when refined: block-based design for NoTrainOn-
SameBlock and speed control design (or moving blocks) for WorstCaseStop-
pingDistanceMaintained.

Goals refer to objects which may be incrementally derived from goal spec-
ifications to produce a structural model of the system (similar to UML class
diagrams). Objects have states defined by the values of their attributes and
associations to other objects. They are passive (entities, associations, events)
or active (agents). Agents are related together via their interface made of ob-
ject attributes and associations they monitor and control, respectively [9]. In
the above formalization of the goal DoorsClosedWhileMoving, Moving and
doorsState are attributes of the Train entity declared in the object model.
If the goal DoorsClosedWhileMoving is assigned to the TrainController
agent, the latter must be able to monitor the attribute Moving and control
the attribute doorsState of trains.

A goal specification prescribes a set of intended system behaviors, where
a behavior is defined as a temporal sequence of system states. The formal
semantics of goal refinement is given in [3]:

5

Early Verification and Validation of Mission Critical Systems

Definition 2.1 (Semantics of Goal Refinement) A set of goals G1, . . . , Gn

refines a goal G in a domain theory D if the following conditions holds:

Completeness: G1, G2, . . . , Gn, D |= G

Minimality: ∧j 6=iGj, D 6|= G ∀i ∈ {1, 2, . . . , n}
Consistency: G1, G2, . . . , Gn, D 6|= false

2.2 Operationalizing Goals

Goals are operationalized into specifications of operations to achieve them
[2][10]. An operation is an input-output relation over objects; operation ap-
plications define state transitions along the behaviors prescribed by the goal
model. In the specification of an operation, an important distinction is made
between (descriptive) domain pre/postconditions and (prescriptive) pre-, post-
and trigger conditions required for achieving some underlying goal(s):

• a pair (domain precondition, domain postcondition) captures the elementary
state transitions defined by operation applications in the domain;

• a required precondition for some goal captures a permission to perform the
operation only if the condition is true;

• a required trigger condition for some goal captures an obligation to perform
the operation if the condition becomes true provided the domain precon-
dition is true (to produce consistent operation models, a required trigger
condition on an operation implicitly implies the conjunction of its required
preconditions);

• a required postcondition defines some additional condition that any applica-
tion of the operation must establish in order to achieve the corresponding
goal.

For example, the operation OpenDoor is among the operationalizations of
the goal DoorsClosedWhileMoving; it may be partially specified as follows:

Operation OpenDoors
Input tr : Train
Output tr : Train/doorsState
DomPre tr.doorsClosed
DomPost ¬tr.doorsClosed
ReqPre for DoorsClosedWhileMoving : ¬tr.moving

A goal operationalization is a set of such specifications. For example, the
operationalization of our goal DoorsClosedWhileMoving includes specifica-
tions of all operations impacting on the satisfaction of this goal, that is, the
DomPre, DomPost, ReqPre, ReqTrig and ReqPost conditions for the opera-
tions OpenDoors, CloseDoors, StartTrain and StopTrain; these operations
impact on goal satisfaction as their specification captures changes of values of
the state variables moving and doorsClosed appearing in the goal specifica-

6

Early Verification and Validation of Mission Critical Systems

tion. The exact scope of the inputs and outputs of the operation is specified at
entity/relationship level (eg. tr : Train) or more precisely at attribute level,
using the / notation (eg. tr : train/doorState). We assume in this paper that
operationalizations have been derived from goal specifications. For every goal
specification pattern, inference rules are available for the formal derivation
of a correct and complete set of DomPre, DomPost, ReqPre, ReqTrig and
ReqPost conditions on operations to achieve the corresponding goal [10].

In [10] the semantics of the operation and operationalization are defined
as follows:

Definition 2.2 (Semantics of operations) For every operation op in the
operation model, the predicate [|op|] is defined as follows:
[|op|](arg1, . . . , argn, res1, . . . , resn) ⇐⇒ DomPre(op) and ◦DomPost(op)
where argi denote inputs variables, resi denote outputs and ◦ is the ”next
state” operator in linear temporal logic.

Definition 2.3 (Semantics of pre-,trigger- and postconditions) For ev-
ery required condition R on an operation op in the operation model, the pred-
icate [|R|] is defined as follows

if R ∈ ReqPre(op) then [|R|] =def (∀∗)[|op|] ⇒ R

if R ∈ ReqTrig(op) then [|R|] =def (∀∗)R ∧DomPre(op) ⇒ [|op|]
if R ∈ ReqPost(op) then [|R|] =def (∀∗)[|op|] ⇒ ◦R

where (∀∗)P is the universal closure of P .

Definition 2.4 (Correctness of goal operationalization) A set R1, . . . , Rn

of required conditions on operations in the operation model correctly opera-
tionalize a goal G in the goal model iff the following conditions hold:

Completeness : R1, . . . , Rn |= G

Consistency : R1, . . . , Rn 6|= false

Minimality : G |= R1, . . . , Rn

The semantics of goal refinement and operationalization differ on an im-
portant point. While sub-goals refine their parent goal (ie. a model of the
refined goals is also a model of the parent goal but not all models of the par-
ent are covered), there is a logical equivalence between the operations and the
corresponding requirements. Moreover, that equivalence is independent of any
domain property: it only relies on the requirement enforced on the system.
This means that operations and requirements could interchangeably be given
to the developer. Of course, it is often more indicated to provide them with
both ”views”.

7

Early Verification and Validation of Mission Critical Systems

2.3 Producing Robust Requirements

The correctness of all refinements in a goal model does not ensure that the
specification is consistent: inconsistencies can occur between goals. A con-
flict is a logical inconsistency between those goals. A divergence is a logical
inconsistency under some (feasible) boundary condition. As opposed to goal
refinement, checking inconsistencies is not a process local to a goal.

Another problem is that first-sketch models tend to be overideal and are
likely to be violated from time to time in the running system due to the un-
expected behavior of agents. The lack of anticipation of such behaviors may
lead to unrealistic, unachievable and/or incomplete requirements. Such ex-
ceptional behaviors are captured by formal assertions called obstacles to goal
satisfaction.

Performing conflict and obstacles analysis is crucial for achieving high qual-
ity requirements but will not be detailed further in this paper as the FAUST
toolbox does not yet fully support them. The interested reader may refer to
[23] and [22] for their formal definitions and how to discover and to handle
them.

3 An Overview of the FAUST Toolbox

This section presents the main formal activities supported by the FAUST
toolbox. Those activities and their flow of data are depicted in figure 3:

• the early analyzer checks the correctness about the goal-model. In case
of error, it will produce a counter-example trace which can be replayed in
the animator tool. It can also be used for validation purposes in order to
produce constrained animation traces.

• the FSM compiler generates finite state machines from the operation
model. These can be used later on in the development life-cycle or executed
in the simulator for validation purposes.

• the Simulator is the engine with runs the finite state machine instances. It
takes care of capturing the input commands from the person controlling of
the animation, to trigger the relevant transitions and to notify the impacted
visualization components of the changes which occurred.

• the Animator is a visual tool allowing one or more humans to (possibly
concurrently) interact with a simulation or to replay an existing trace. It
proposes different ways of viewing/controlling the designed system: sym-
bolic FSM representations and graphical domain-based visualizations.

• the Test Data Generator generates acceptance tests which can be played
on the developed system to check if it meets the requirements. They can
also be directly played in the animator.

8

Early Verification and Validation of Mission Critical Systems

• the Monitor Compiler generates a monitor able to detect the violation
of goals, requirements or assumptions. Those monitors can also be deployed
at run-time as well as within the animator.

The toolbox is deployed as a formal extension of the Objectiver require-
ments engineering tool [18]. This integration allows the FAUST formal tools
to rely on a powerful set of services for KAOS modelling, persistency, consis-
tency checks and document generation.

The next section will detail the Early Analyzer and the Animator (includ-
ing the Simulator, the FSM Compiler and the Monitor)

Fig. 3. Formal Activities

4 The Early Analyzer

In the incremental process of building four complementary models in parallel,
errors will often occur in the formalization of the informal statements made by
the stakeholders. The main purpose of the analyzer is to verify their formal
consistency at an early stage of the process. Another use of the tool is to
produce possible system histories for validation purposes.

4.1 Early Verification

All formal analysis is based on the formal semantics of the elements (goals,
conflicts, obstacles, requirements, objects, operations, . . .) contained in the
four models. The analyzer can, most of the time, automatically formally
verify the validity or invalidity of those elements on a given finite domain.

9

Early Verification and Validation of Mission Critical Systems

As a example we will consider the verification of a goal refinement. Given
the semantics of goal refinement (see section 2), the following analysis can be
made to prove the validity of the three required conditions:

• Completeness: Find a trace satisfying G1∧G2∧ . . .∧Gn∧D∧¬G if no trace
is found, the refinement criterion G1 ∧G2 ∧ . . . ∧Gn ∧D ∧ ¬G is ”proved”
(ie. on the considered finite domain).

• Minimality: Give a trace satisfying ¬(G1 ∧G2 ∧ . . . ∧Gn) ∧D ∧G

• Consistency: Give a trace satisfying G1 ∧G2 ∧ . . . ∧Gn ∧D

The verification of the conditions related to operationalization, conflict, or
obstacle is very similar to what has been shown for the goal refinement and
will not be detailed here. Let us simply illustrate the operationalization of
the already stated requirement DoorClosedWhileMoving. Most analysts will
enforce the requirement by strengthening the preconditions of the operations
possibly leading to the unsafe state: the operation to start the train and to
open doors (see figure 4). It is also required to specify a safe initial state.
However while trying to verify the equivalence between the operational model
and the requirements, the early analyzer will produce a counter-example trace
which is the following (considering a single train tr#1)

1. tr#1.doorClosed ∧ ¬tr#1.moving

2. ¬tr#1.doorClosed ∧ tr#1.moving

Loop goes back to state 1.

That counter-example is easy to understand: the operations Start and Open-
Doors where triggered in the same state and a ”race condition” leading to
the unsafe state is allowed by the system. In this case the counter-example
is pretty simple to understand for an analyst but, in a more complex system,
they can become fairly complex to analyze. The animator will greatly help in
that task and is definitely necessary when system behaviors have to be shown
to some stakeholder for validation purposes (see section 5).

Fig. 4. A tentative operationalization for DoorClosedWhileMoving

To fix the synchronization problem, one approach is to explicitly forbid
that behavior for example by stating the following assertion:

10

Early Verification and Validation of Mission Critical Systems

(∀tr : train)tr.moving ⇒ ¬@¬tr.doorClosed
whose responsibility should of course be examined. Another way is to enforce
the postconditions rather that the preconditions. In fact the latter approach is
documented as a well-known operationalization pattern [10] and if the analyst
had looked in that library in the first place, the mistake would not have
occurred. In both cases, the formal analyzer stops returning counter-examples.

4.2 Validation

The analyzer can automatically exhibit examples of behaviors of the system
and its environment satisfying an objective, or showing the occurrence of a
conflicting situation or an obstacle, or satisfying the properties associated to
an object, or showing the occurrence of an operation.

For example, to show a situation where an obstacle O prevents an objective
G, ”train progress with no delay on crossing block”, to be fulfilled, it suffices to
show a trace (sequence of states) of the system and its environment satisfying
the formal definition of the domain properties D, ”trains cannot cross over
cars”, but not satisfying the formal definition of the objective G.

When the trace automatically generated by the analyzer is explained to the
stakeholders (e.g. the trace exhibits a car blocked on the crossing block), they
can confirm that this situation shows the existence of an obstacle (e.g. ”car
crash on crossing block”), or this situation points out a bad formal definition
of the objective that should be modified (e.g. ”train progress with no delay
on crossing block when no car on the crossing block”), or that some domain
property is bad or missing (e.g. ”no crossing block is allowed, only bridges
are”).

4.3 Mapping onto Standard Formal Technology

The analyzer must automatically produce traces and proofs from formulas
expressed in a first-order linear real-time temporal logic when requested by
the user. The formulas used in each analysis are very small compared to what
would have been done in a specification analysis activity. The analyzer takes
advantage of that as follows :

1. For each request, a specific formal tool can be chosen which is most
adapted to the kind of analysis and formulas used. For instance, traces
are easier to find using bounded model checking : if interpreted symbols
(eg. integer arithmetic) are used in the formulas, constraint programming
techniques are preferred, whereas if no interpreted symbols are used, SAT-
based techniques are very efficient.

2. Small formulas allow a simple and under-optimized mapping between the
analyzer and the other tools : this results in a correct code that is easily

11

Early Verification and Validation of Mission Critical Systems

adapted to new tools.

3. The running times are kept very small (often seconds, rarely minutes). If
no answer is obtained, the analyst can ask to use another tool or make
another local analysis.

So, the analyzer mainly helps to use different well-known formal tools, do-
ing the forward and backward translation between the KAOS formalism and
the formalisms of those tools. The difference with others is that the splitting
of analysis and consolidation of their result is naturally integrated into the
goal-oriented methodology.

The tools used are the BDD-based engine and the SAT-based engines of
NuSMV [1] and the CLP engine of Oz [16]. Experiments with Alloy [7] show
that it is better to use tools that provide high level input formalisms which
optimize their mapping into SAT, BDD,... It is planned to use Alloy, some
automatic theorem provers, and well-known theorem provers such as SteP or
PVS (mainly to use their powerful decision procedures).

The different mappings replace infinite domains with finite ones (eg. Al-
loy), and replace the infinite time structure with a bounded one (eg. bounded
model checking). The analyst must interpret the results obtained with cau-
tion. For instance, no bounded trace can be found if a counter constrained to
augment indefinitely is modeled. The analyst will often foresee this because
the analyzed formulas are small.

5 The Requirements Animator

Animation of goal-oriented requirements specifications is intended to help non-
technical stakeholders validate them by interacting with the specification in-
stantiated to examples they are familiar with. The animator tool is based on
the KAOS operational model. It is composed of the following components:

1. a state machine compiler producing finite state machine descriptions from
the KAOS operation descriptions. In this paper, those state machines are
called Goal-Oriented State Machine (GSM) to emphasize their origin.

2. a simulator allowing one or several analysts to instantiate and animate
those GSMs, either interactively or using previoulsy computed traces.

3. an animator interface including a control panel and a rendering engine,
including a generic GSM viewer and a toolbox for designing user-level
visuals.

4. a animation watchdog monitoring for the violation of the goals that are
in the animation scope.

12

Early Verification and Validation of Mission Critical Systems

5.1 GSM Generation from Goal Operationalizations

The requirements animator requires an executable model. Finite state ma-
chines have that property and also a number of other interesting qualities for
animation purposes: they can be traced back to goal/operation specification
language, they are compositional to support parallel behavior and they have
widely accepted statechart-like notations for visualizing them. The generation
algorithm takes as input a goal scope (allowing one to analyze partial models)
and outputs a set of flat finite state machines. The main steps of the algorithm
is depicted in Figure 5. For the full algorithm, the reader may refer to [19].

Fig. 5. State Machine Generation: principle (left) and example (right)

5.2 The Simulator

The simulator is responsible for instantiating the GSMs and managing those
instances. It can be controlled using the following functionalities which are
available from the animator interface.

1. Instance explorer: for viewing the objects involved and create new in-
stances;

2. Operation editor: for triggering GSM transitions by applying enabled
operations;

3. State viewer: for a raw overview of the current GSM instances

4. Replay tool: for going back and forward in the produced animation trace

5.3 The Animator Interface

The role of this component is to provide an adequate interface for a com-
prehensive interaction with the animation. It includes a number of ways for
visualizing and controling the GSM instances. It is also deployed on a client-
server architecture with multiple synchronized interfaces being connected to
the same server. This allows for multiuser validation: each user impersonating
a specific agent of the system which could be misbehaving (possibly intention-
ally such as intruders when designing a security system).

13

Early Verification and Validation of Mission Critical Systems

For a comfortable validation, visualization facilities are provided under two
forms:

1. a symbolic GSM viewer allows the analyst to display the GSM instances
in their classical statechart-like form.

2. domain-level graphical representations can be mapped onto the GSM,
those are currently based on the Scene Beans framework [13].

Figure 6 shows such graphical representation for the counter-example dis-
cussed in section 4.2. The first state is on the left of the picture and the
second on the right. Both pictures show: a symbolic GSM visualization (bot-
tom right), a scene showing train doors (top left), a scene of a train track (top
right, not relevant here) and a big control panel (in the foreground) where the
trace generated by the analyzer is being replayed. The state on the left shows
a stopped train with closed doors and the state on the right shows a moving
train with its doors opened.

Fig. 6. Graphical Representations for the counter-example scenario of section 4.1

While the GSM visualization is generic, developing new domain-level views
requires some work: the graphical scene has to be described by assembling
graphical animation primitives defining of ”sprites”, how they move, which
variables are associated with them. The SceneBeans framework used here
provides a good level of abstraction described in an XML format. It allows
the designer to produce a new view and to interface it with the simulation
engine in a few minutes for simple scenes (such as the train doors) to a few
hours for more complex one (such as the global track view). A mapping tool
helps in this process of connecting the view to the underlying model.

5.4 The Animation Watchdog

As analysts or validating users will generally want to check for goal satisfac-
tion while playing with the system, the simulator also contains an animation
watchdog. This tool monitors all the goals/requirements/assumptions being
in the animation scope and reports any violation. It relies on another kind of
finite state machine capable of accepting finite goal traces. Those are compiled
at the same time the GSM are generated but are running completely indepen-

14

Early Verification and Validation of Mission Critical Systems

dent of them. They are only synchronized on initialization and through the
listening to the state changes occurring in the system.

Back to our example, the second and unsafe state in figure 6 shows a
monitor popup in the bottom left part of the picture. This popup report the
violation that just occurred with respect to the goal DoorClosedWhileMoving.
Such a tool can thus greatly help pointing out defects but, of course, cannot
provide any assurance the model is free from undesired behaviors: that is why
the animator and the early analyzer are complementary tools.

The algorithm used for monitoring is detailed in [19]. As it is designed
to scale up, it is not restricted to animation but can also to be deployed at
runtime in real systems.

6 Discussion and Conclusions

The FAUST toolbox is aimed at achieving formal assurance at an early stage
while avoiding obstacles to the application of formal methods and hiding for-
mal notations as much as possible.

The KAOS methodology has been applied for more than ten years on indus-
trial case in many different domains such as telecommunication, press/publishing,
food industry, steel industry. Typical requirements documents range from a
few dozen to a few hundreds of goal and are successfully managed by Objec-
tiver tool, the KAOS CASE tool [18]. The FAUST toolbox now extends the
tool with key features for the analysis of mission-critical systems. The tight
integration allows the analyst to go formal in an incremental way, only when
and where needed, keeping the formal part small and manageable. The iden-
tification of patterns at semi-formal level can also help as their formalization
can be proved once for all.

The example presented in this paper is an excerpt from a larger railways
signaling specification including a level-crossing model built with the input
of the Belgian railway company in the process of the replacement of a large
number of level-crossings. The initial work document was based on opera-
tional description through state machine diagrams with the safety properties
left in some annex. Our approach showed how to start from such properties
to guide the elaboration of the requirements document and then to produce
state machines satisfying them.

The Early Analyzer has also shown promising results in air traffic control
for reasoning about air conflict detection. The goal model was composed of
more than 200 concepts (goals, requirements, conflicts and obstacles) of which
a subset was formalized in an incremental way, first reasoning without con-

15

Early Verification and Validation of Mission Critical Systems

sidering temporal aspects, then introducing real-time constraints and finally
taking agent loads into account. The discovery of recurring domain-specific
patterns also helped in structuring and formalization processes. It is now
considered to use the Monitor and the Animator in the same domain for clas-
sifying air-traffic data, to detect some incidents and near-misses and visualize
them.

In the future, the early analyzer will be extended to support checks for ob-
stacle and conflict analysis. The Animator Mapping is also being improved and
a new component for designing control panels (such as train/plane/automative
cockpits) is being implemented. Other tools such as the the acceptance tests
generator and the obstacle generator are in the implementation phase or being
planned.

References

[1] A. Cimatti, E. Clarke, E. Giunchiglia, F.Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella, Nusmv version 2: An opensource tool for
symbolic model checking, Int. Conf. on Computer-Aided Verification (CAV02,
LNCS 2404), Denmark, July 2002.

[2] A. Dardenne, A. van Lamsweerde, and Stephen Fickas, Goal-directed
requirements acquisition, Science of Computer Programming 20 (1993), no. 1-2,
3–50.

[3] R. Darimont and A. van Lamsweerde, Formal refinement patterns for goal-
driven requirements elaboration, FSE-4 - 4th ACM Symp. on the Foundations
of Software Engineering, San Francisco, October 1996.

[4] Steve Easterbrook, Robyn R. Lutz, Richard Covington, John Kelly, Yoko
Ampo, and David Hamilton, Experiences using lightweight formal methods for
requirements modeling, Software Engineering 24 (1998), no. 1, 4–14.

[5] The Standish Group, http://www.standishgroup.com/chaos, 1995.

[6] European Software Institute, European user survey analysis, report usv eyr 2.1
espiti project, January 1996.

[7] D. Jackson, Automating first-order relational logic, ACM SIGSOFT in Proc.
Conf. Foundations of Software Engineering, November 2000.

[8] R. Koymans, Specifying message passing and time-critical systems with temporal
logic, lncs 651, Springer-Verlag, 1992.

[9] E. Letier and A. van Lamsweerde, Agent-based tactics for goal-oriented
requirements elaboration, 2001.

[10] E. Letier and A. van Lamsweerde, Deriving operational software specifications
from system goals, FSE’10: 10th ACM SIGSOFT Symp. on the Foundations of
Software Engineering, Charleston, November 2002.

16

Early Verification and Validation of Mission Critical Systems

[11] N.G. Leveson, Safeware, system safety and computers, Addison-Wesley, 1995.

[12] R. R. Lutz, Analyzing software requirements errors in safety-critical, embedded
systems, IEEE International Symposium on Requirements Engineering (San
Diego, CA), IEEE Computer Society Press, 1993, pp. 126–133.

[13] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer, Graphical animation
of behavior models, International Conference on Software Engineering, 2000,
pp. 499–508.

[14] Z. Manna and A. Pnueli, The reactive behavior of reactive and concurrent
system, Springer-Verlag, 1992.

[15] J. McLean and C. Heitmeyer, High assurance computer systems: A research
agenda, America in the Age of Information, National Science and Technology
Council Committee on Information and Communications Forum, Bethesda,
1995.

[16] T. Muller, Promoting constraints to first-class status, First International
Conference on Computational Logic (CL00, LNAI 1861), London UK, July
2000.

[17] J. Rushby, Disappearing formal methods, High-Assurance Systems Engineering
Symposium (Albuquerque, NM), Association for Computing Machinery, nov
2000, pp. 95–96.

[18] The Objectiver Tool, http://wwww.objectiver.com.

[19] H. Tran Van, A. van Lamsweerde, P. Massonet, and C. Ponsard, Goal-oriented
requirements animation, 12th IEEE International Requirements Engineering
Conference, Kyoto (Japan), September 2004, accepted.

[20] A. van Lamsweerde, Requirements engineering in the year 00: a research
perspective, International Conference on Software Engineering, 2000, pp. 5–19.

[21] A. van Lamsweerde, Goal-oriented requirements engineering: A guided tour,
Invited minitutorial, Proc. RE’01 - International Joint Conference on
Requirements Engineering, August 2001.

[22] A. van Lamsweerde, R. Darimont, and E. Letier, Managing conflicts in goal-
driven requirements engineering, IEEE Transactions on Software Engineering,
Special Issue on Managing Inconsistency in Software Development (1998).

[23] A. van Lamsweerde and E. Letier, Handling obstacles in goal-oriented
requirements engineering, IEEE Transactions on Software Engineering, Special
Issue on Exception Handling 26 (2000), no. 10.

[24] A. van Lamsweerde and E. Letier, From object orientation to goal orientation:
A paradigm shift for requirements engineering, Radical Innovations of Software
& System Engineering, Montery’02 Workshop, Venice(Italy), LNCS, 2003.

17

	Introduction
	Background on KAOS
	Building Goal Models
	Operationalizing Goals
	Producing Robust Requirements

	An Overview of the FAUST Toolbox
	The Early Analyzer
	Early Verification
	Validation
	Mapping onto Standard Formal Technology

	The Requirements Animator
	GSM Generation from Goal Operationalizations
	The Simulator
	The Animator Interface
	The Animation Watchdog

	Discussion and Conclusions
	References

