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ABSTRACT 

Getting the right software requirements under the right 
environment assumptions is a critical precondition for developing 
the right software. This task is intrinsically difficult. We need to 
produce a complete, adequate, consistent, and well-structured set 
of measurable requirements and assumptions from incomplete, 
imprecise, and sparse material originating from multiple, often 
conflicting sources. The system we need to consider comprises 
software and environment components including people and 
devices. 
A rich system model may significantly help us in this task. Such 
model must integrate the intentional, structural, functional, and 
behavioral facets of the system being conceived. Rigorous 
techniques are needed for model construction, analysis, 
exploitation, and evolution.  Such techniques should support early 
and incremental reasoning about partial models for a variety of 
purposes including satisfaction arguments, property checks, 
animations, the evaluation of alternative options, the analysis of 
risks, threats, and conflicts, and traceability management. The 
tension between technical precision and practical applicability 
calls for a suitable mix of heuristic, deductive, and inductive 
forms of reasoning on a suitable mix of declarative and 
operational specifications. Formal techniques should be deployed 
only when and where needed, and kept hidden wherever possible. 
The paper provides a retrospective account of our research efforts 
and practical experience along this route. Problem-oriented 
abstractions, analyzable models, and constructive techniques were 
permanent concerns.  
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1. INTRODUCTION 
Requirements engineering (RE) is concerned with the elicitation, 
evaluation, specification, consolidation, and evolution of the 
objectives, functionalities, qualities, and constraints a software-
based system should meet within some organizational or physical 
setting.  

This task has a critical impact on software quality. Requirements-
related errors were widely and recurrently recognized to be the 
most frequent, persistent, expensive, and dangerous types of 
software errors. The most serious error types include incomplete, 
inadequate, inconsistent, unmeasurable, or ambiguous 
requirements or assumptions. Requirements-related errors are the 
major cause of project cost overruns, delivery delays, failure to 
meet expectations, or degradations in the environment controlled 
by the software. 

The RE task is difficult.  

• We need to cooperate with multiple stakeholders having 
different background, interests, and expectations. Their 
concerns are generally partial and often conflicting. 

• There are multiple transitions to handle. The problem world 
we need to investigate is informal whereas the machine 
solution we want to build is formal [12]. We need to move 
from partial, unstructured collections of sometimes 
inconsistent statements to a complete, structured set of 
consistent requirements. Hidden, implicit needs and 
assumptions must be made explicit. Imprecise formulations 
must be converted into precise specifications. 

• The problem world may be unfamiliar. While investigating it 
we need to consider two system versions: the system as it 
exists before the machine is built into it, and the system as it 
should be when the machine will operate in it. 

• A wide spectrum of concerns must be addressed, ranging from 
high-level, strategic objectives to detailed, technical 
requirements and assumptions.  Different levels of concern are 
often intermixed. 

• For system robustness and requirements completeness, we 
need to anticipate the unexpected –including hazardous or 
malicious environment behaviors. The scope of such 
investigation may be hard to delimit. 

• We generally need to evaluate alternative options for decision 
making: alternative ways of satisfying system objectives, 
alternative assignments of responsibilities in the system, 
alternative resolutions of conflicts, and alternative 
countermeasures to threats or hazards. 

In view of such impact and difficulties, the RE process should be 
made more disciplined through the use of systematic methods. 
Such methods should ideally meet the following requirements. 
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• Model-driven: An abstract representation of the system, as-
is or to-be, highlights key features and interrelates them. A 
rich model may provide a comprehensive structure for what 
needs to be elicited, evaluated, specified, consolidated, and 
modified. It can be used for explanation, negotiation with 
stakeholders, and decision making. The requirements 
document can be semi-automatically generated from it.  

• Constructive: For complex systems, models are hard to 
build. A method should provide effectice guidance in 
building adequate models and in exploiting them. 

• Incremental for early analysis: A RE method should 
support stepwise reasoning on acquired fragments of 
information for early detection and fix of errors in 
requirements and assumptions. 

• Rigorous but lightweight: A model-based method and its 
supporting tools must rely on semantically solid grounds to 
produce accurate models, beyond boxes and arrows, and 
enable sound analysis. For wide applicability in practical 
situations and for communicability of results among 
ordinary stakeholders, the method should however be easy 
to use, hiding formal details wherever possible. 

This paper outlines our efforts to develop an integrated set of 
techniques intended to address those requirements [18]. The 
modeling framework is briefly introduced first (Section 2). Model 
construction, incremental analysis, and model exploitation are 
discussed in subsequent sections (Sections 3-5). We briefly report 
on the practical use of our techniques in industrial projects 
(Section 6) before concluding with current challenges. 

2. MODELING THE PROBLEM WORLD 
In order to fully capture the various system facets relevant to the 
RE process, a model should integrate multiple complementary 
views (see Fig. 1).  

• The intentional view captures the system objectives as 
functional and non-functional goals together with their 
mutual contribution links. 

• The structural view captures the conceptual objects referred 
to in the other views, their structure, and their inter-
relationships. 

• The responsibility view captures the agents forming the 
system, their responsibilities with respect to system goals, 
and their interfaces with each other. 

• The functional view captures the services the system should 
provide in order to operationalize its goals. 

• The behavioral view captures the behaviors required for the 
system to satisfy its goals. Interaction scenarios illustrate 
expected interactions among specific agent instances 
whereas state machines prescribe classes of behaviors of any 
agent instance on the objects it controls. 

2.1 Goals as key RE abstractions 
The target system is intended to meet a number of objectives. 
These are to be highlighted as first-class citizens and interrelated. 
A goal is a prescriptive statement of intent the system should 
satisfy through cooperation of its agents [4][18]. An agent is an 
active system component having to play some role in goal 
satisfaction through adequate control of system items. 

Figure 1.  Multi-view modeling for requirements engineering [18]
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Goal satisfaction may involve a variety of system agents defining 
the system scope –people,  devices, existing software, or software 
to be developed. The finer-grained a goal is, the fewer agents are 
required to satisfy it. A requirement is a goal under responsibility 
of a single agent of the software-to-be. An expectation is a goal 
under responsibility of a single agent in the environment of the 
software-to-be. Expectations form one kind of assumption we 
need to make for the system to satisfy its goals.  

To be under the sole responsibility of an agent, a goal must be 
realizable by this agent [10][25]. This roughly means that the 
agent must be able to control the state variables constrained by the 
goal specification and to monitor the state variables to be 
evaluated in this specification.  

While reasoning about goal satisfaction in the RE process, we 
often need to use domain properties. These are descriptive 
statements about the problem world, unlike goals which are 
prescriptive. They are expected to hold invariably regardless of 
how the system will behave. The distinction between descriptive 
and prescriptive statements is important. Goals may need to be 
refined into subgoals, negotiated with stakeholders, assigned to 
agents responsible for them, weakened in case of conflict, or 
strengthened or dropped in case of unacceptable exposure to risks. 
Unlike prescriptive statements, domain properties are not subject 
to such decisions in the RE process. 

A goal is either a behavioral goal or a soft goal. A behavioral goal 
prescribes intended system behaviors declaratively. It implicitly 
defines a maximal set of admissible behaviors. Behavioral goals 
can be Achieve or Maintain/Avoid goals. An Achieve goal 
prescribes some TargetCondition to be established sooner or later 
when some current condition holds. A Maintain goal prescribes 
some GoodCondition to be maintained (similarly, an Avoid goal 
prescribes some BadCondition to be avoided). 

Unlike behavioral goals, a soft goal cannot be established in a 
clear-cut sense. It prescribes preferences among alternative system 
behaviors, being more satisfied along some alternatives and less 
satisfied along others. Behavioral goals are therefore used for 
deriving system operations to satisfy them [4][26] whereas soft 
goals are used for comparing alternative options to select most 
preferred ones [1][27]. 

Those goal types should not be confused with a categorization 
into functional goals, underlying system services, and non-
functional goals, prescribing qualiy of service. For example, a 
confidentiality goal Avoid[SensitiveInformationDisclosed] is 
traditionally considered as non-functional; it is not a soft goal 
though. 

A goal model is basically an annotated AND/OR graph showing 
how higher-level goals are satisfied by lower-level ones (goal 
refinement) and, conversely, how lower-level goals contribute to 
the satisfaction of higher-level ones (goal abstraction) [14]. The 
top goals are the highest-level ones still in the system scope 
whereas the bottom goals are assignable requirements or 
expectations. In such graph, an AND-refinement link relates a 
goal to a set of subgoals called refinement; this means that the 
parent goal can be satisfied by satisfying all subgoals in the 
refinement. A goal node can be OR-refined into multiple AND-
refinements; each of these is called alternative for achieving the 
parent goal. The meaning of multiple alternative refinements is 
that the parent goal can be satisfied by satisfying the conjoined 
subgoals in any of the alternative refinements. 

 

 

Fig. 2 shows a goal model fragment as a goal diagram elaborated 
with our modeling tool [31]. An AND-refinement is denoted by 
an arrow joining subgoals to the parent goal; multiple incoming 
arrows indicate an OR-refinement. The figure also shows agent 
assignments to leaf goals. Home-shaped nodes represent domain 
properties required for refinement correctness. 

Goal nodes in a goal model are annotated with individual features 
such as their name and precise specification in natural language, 
their type, category, priority level, elicitation source, etc. Such 
annotations act as placeholders for dedicated techniques used in 
the RE process. For example, priority levels are used by conflict 
management and requirements prioritization techniques during the 
evaluation phase. 

In particular, behavioral goals may optionally be annotated with 
their formal specification for further analysis. The specification 
formalism is a first-order real-time linear temporal logic (LTL) 
[4][19], possibly extended with epistemic constructs for security 
goals [9]. 

The systems as-is and to-be can both be captured within the same 
model. The two versions share high-level goals and differ along 
refinement branches of common parent goals. We can thereby also 
capture multiple variants in a system family [18]. 

There are numerous reasons why a goal model is so important in 
the RE process. 

• Goal refinement provides a natural mechanism for struc-
turing complex specifications at different levels of concern. 

• A goal model provides a rich structure of satisfaction 

arguments, each taking the form: 

{SubGoals, DomProps} |=  ParentGoal 

By chaining such arguments bottom-up, we may show that a 
set of requirements and expectations together ensure some 
parent goal, the latter ensuring its own parent goal together 
with others, and recursively, until some high-level goal of 
interest is thereby shown to be satisfied. In particular, the 
goal model can be used to show decision makers how the 
system-to-be will be aligned with the organization’s 
strategic objectives –this proves quite helpful in practice. 

 

Figure 2. Goal diagram 



• Goals drive the identification of requirements to support 
them, and provide their rationale. They define a precise 
criterion for requirements completeness and pertinence [36]. 
A set of requirements is complete with respect to a set of 
goals if all the goals can be argued to be satisfied when the 
requirements are satisfied, assuming the environment 
assumptions and domain properties are satisfied. A 
requirement is pertinent with respect to a set of goals if it is 
used in the satisfaction argument of one goal at least. 

• A goal model supports traceability management [18]. As 
chains of satisfaction arguments are available from a goal-
oriented RE process, there is no need to create and maintain 
traceability links for evolution support – we get such links 
for free, from low-level technical requirements on system 
operations to high-level strategic objectives. 

• Goals provide anchors for risk analysis, conflict 
management, and comparison of alternative options (see 
Section 4). 

2.2 Agents, objects, operations, and behaviors 
As introduced before, the intentional view of a system is 
complemented with other views. 

The structural view. Conceptual objects capture domain-specific 
concepts referred to by prescriptive or descriptive statements 
about the system. Depending on their nature, they are defined 
precisely in an associated object model as entities, associations, 
agents, or events. This model is represented by an annotated UML 
class diagram, where annotations capture individual object 
features such as a precise definition of the object in natural 
language, its attributes, relevant domain properties associated with 
it, initial values when an object instance appears in the system, 
etc. [18].  

An object model provides the concept definitions and domain 
properties used in the other models. In particular, the object 
attributes and associations define the system’s state variables in 
terms of which goals, agents, operations, and behaviors are 
specified in the other system views. A tool can easily generate a 
glossary of terms from the object model which all involved parties 
need to agree on and use for unambiguous reference. At design 
time, this model provides a basis for generating a database schema 
(if any) and architectural fragments. 

The responsibility view. Agents were already introduced as active 
system components that are responsible for the leaf goals in a goal 
model. The agent model captures the distribution of 
responsibilities within the system together with the capabilities of 
every agent. The latter are defined in terms of ability to monitor or 
control object attributes and associations from the object model.  

An agent model thus shows the system scope and the boundary 
between the software-to-be and its environment. Agents can be 
decomposed into finer-grained ones with finer-grained goal 
responsibilities [18]. The model may also capture agent wishes on 
goals, for assignment heuristics and conflict management [4]; 
agent beliefs, for threat analysis [16]; and dependencies on other 
agents [1], for vulnerability analysis. An agent model also 
provides a basis for load analysis. It serves as input to the 
architectural design process [15].  

The functional view. An operation model captures the system 
operations in terms of their individual features and their links to 
the goal, object, agent, and behavior models. This model 

specifies, for each operation, its signature, the descriptive pre-and 
postconditions that intrinsically characterize the state transitions 
produced by the operation in the problem world, and an additional 
set of prescriptive pre, trigger, and post conditions that must 
further constrain any application of the operation for each 
underlying goal to be satisfied [4][26]. An operation model is 
represented by operationalization diagrams. 

The model part covering software-to-be operations yields software 
specifications for input to the development process. We can use 
them in particular for deriving external specifications of 
functional components in the software architecture [15]. The 
model part covering environment operations provides descriptions 
of tasks and procedures to be jointly performed in the 
environment for satisfaction of system goals. There are other 
products we can derive such as black box test data and executable 
specifications for system animation [35] or software prototyping. 
The explicit linking of operational specifications to the underlying 
system goals provides a rich basis for satisfaction arguments, 
traceability management, and evolution support [18]. 

The behavioral view. A behavior model captures current 
behaviors in the system-as-is or desired ones in the system-to-be. 
Global system behaviors are obtained by parallel composition of 
agent behaviors. The latter are made explicit through scenarios 
and state machines. A scenario shows sequences of interactions 
among specific agent instances. It is represented by a UML 
sequence diagram. A state machine shows sequences of state 
transitions for the variables controlled by any agent instance 
within some class. Such transitions are caused by operation 
applications or by external events. A state machine is represented 
by a UML state diagram or by a labelled transition system (LTS) 
[29] depending on the type of analysis we want to perform on it. 

Intance-level scenarios provide partial, narrative representations 
that are useful for eliciting, validating, or explaining behavioral 
goals [24]. We can also produce acceptance test data from them. 
Class-level state machines provide executable representations that 
can be used for model validation through animation [35], for 
model checking against formal specifications of domain properties 
and goals [29][3], and for code generation.  

2.3 View integration 
The complementary views of the target system are integrated 
through inter-model links constrained by rules for structural 
consistency and completeness of the overall model. For example, 
responsibility links connect leaf goals in the goal model and agents 
in the agent model; concern links connect goals in the goal model 
and the conceptual objects in the object model these goals refer 
to; operationalization links connect leaf goals in the goal model 
and the operations ensuring them in the operation model; 
scenarios or state machines in the behavior model are connected 
to behavioral goals by coverage links; and so forth (see Fig. 1).  

The rules constraining inter-model links allow us to check the 
structural completeness and consistency of the overall model, e.g., 
“every conceptual item referenced by a goal specification in the 

goal model must appear as an attribute or object in the object 

model, and vice versa”; “an agent responsible for a goal must 

have the capability of controlling the variables constrained by the 

goal specification and of monitoring the variables to be evaluated 

in it”, “every operation in the operation model must 

operationalize at least one leaf goal from the goal model”; “if an 

agent is responsible for a goal, it must perform all operations 



operationalizing that goal”; “every  state machine capturing the 

behavior of an agent in the behavior model must show a set of 

paths prescribed by goals assigned to this agent in the agent 

model”; etc. 

To automate such checks, all view types are defined within a 
common meta-model [21][4]. The structural rules then constrain 
metamodel components. Many of them take the form: 

For every instance of metaconcept C1 in the metamodel, 

there must be a corresponding instance of metaconcept C2,  

linked to it by an instance of the inter-view link type L. 

A modeling tool managing the model database can provide a list 
of precooked queries we can submit for checking such rules 
automatically [21][31]. 

Fig. 3 provides an overall picture of what a system model 
semantically conveys when the various system views are 
integrated formally in a LTL-based framework. The leaf 
behavioral goals together prescribe a maximal set of admissible 
system behaviors. These behaviors are composed of parallel agent 
behaviors. A behavior of an agent instance is captured by a 
sequence of state transitions for the object attributes and 
associations the agent controls. Such state transitions correspond 
to applications of operations performed by the agent, taking the 
smallest time unit. Agent instances evolve synchronously from 
state to state according to the obligations and permissions 
prescribed on their operations for goal satisfaction. An agent 
instance might do nothing along system state transitions while 
another might be required to apply multiple operations in parallel 
because of multiple trigger conditions becoming true in the same 
state. Do-nothing behaviors may arise from lack of permission, as 
preconditions required for some goals do not hold,  or from non-
deterministic agent behavior. 

Such semantic framework can be integrated with others, e.g., for 
providing a goal layer on top of SCR [33] and LTSA [29], see 
[8][28]. Difficulties however arise from different semantic 
assumptions related to synchronicity and non-determinism. 

3. MODEL CONSTRUCTION 
An adequate, complete, and consistent multi-view model is 
difficult to obtain for a complex system. Beyond modeling 
notations, we need a method to guide us in the model building 
process. 

The KAOS method and supporting toolset were developed, 
refined, and extended over years of research and practical 
experience in real projects [17]. (KAOS stands for “Keep All 
Objectives Satisfied”.) Overall it consists of a number of 
intertwined steps linked by data dependencies (see Fig. 4).  

Every elaboration step is supported by a blend of complementary 
techniques of different types. 

• Heuristic rules help identifying, refining, or abstracting 
model items within a view. 

• Formal or semi-formal derivation rules allow items in a 
view to be obtained from items in another view. 

• Formal or semi-formal model building patterns can be 
reused through instantiation in matching situations. 

• More sophisticated procedures, based on deductive or 
inductive inferencing mechanisms, allow candidate model 
fragments to be synthesized interactively. 

• Analogical reuse techniques allow models of similar 
systems to be retrieved, transposed, and adapted [30][13]. 

Bad smells are also provided to let modellers avoid common 
pitfalls [18].  

3.1 Building the goal model  
As goals prove difficult to identify and structure in practice, we 
especially need guidance for elaborating the intentional view. 
Here is a sample of more or less elaborate techniques that work 
quite well in practice. 

Goal identification. 

• Search for prescriptive and intentional keywords in 
statements found in elicitation material [14].  

• For every problem identified in the system-as-is, derive an 
improvement goal [4].  

• Identify wishes of human agents [4].  

• Browse goal taxonomies to instantiate leaf goal categories to 
system-specific objects [4][1][9] –e.g., satisfaction, 
information, accuracy, confidentiality, availability, or 
response time goals. 

• Ask WHY and and WHY NOT questions about posititive 
and negative scenarios, respectively, as they are provided by 
stakeholders [20] or generated by a model synthesizer [3]. 

Figure 3. Goals, objects, agents, operations, and behaviors:  the semantic picture [18]
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• Infer goal specifications inductively from scenarios taken as 
positive or negative examples [24]. 

• Identify soft goals and contribution links  by analyzing the 
pros and cons of alternative refinements [18]. 

• Check the converse of Achieve goals as candidate Maintain 
goals [18] –for example, the e-commerce goal 
Achieve[ItemSentIfPaid] yields the goal 
Maintain[ItemSentOnlyIfPaid]; the flight management goal 
Achieve[ReverseThrustIfPlaneOnRunway] yields the goal 
Maintain[ReverseThrustOnlyf PlaneOnRunway]. 

Goal refinement and abstraction 

• Ask HOW and WHY questions about identified goals to 
obtain subgoals and parent goals, respectively [20]. 

• Split responsibilities among agents towards goals realizable 
by single agents [4][25]. 

• Use goal refinement patterns formally [5][25] or semi-
formally [18]. Such patterns encode common refinement 
tactics on generic goals specified in LTL. Their correctness 
is formally proved once for all. As multiple patterns might 
be applicable in the same situation, we can thereby explore 
alternative refinements. Examples include the milestone-
driven, decomposition-by-cases, guard-introduction, 
unrealizability-driven, and divide-and-conquer patterns (see 
Fig. 5). 

3.2 Building the object model  
UML gurus often confess that the building of a complete and 
pertinent class diagram requires much experience and creativity. 
In our framework, such diagram is derived incrementally from the 
goal model, semi-formally or formally, using rules such as the 
following [14][18]. 

• Take all conceptual objects referred to in the specification of 
identified goals and domain properties, and only those. 

• Derive associations and participating objects from atomic 
predicates in those specifications (or, informally, from 
linking expressions in them). 

• If the same domain property might be attached to different 
objects, consider attaching it to an association between these 
objects. 

• Use standard heuristics for deciding whether a concept 
should be an entity, association, attribute, or event (e.g., 
autonomous vs. dependent object, passive vs. active object, 
multi-state vs. single-state object, etc.) 

• Identify specializations from classification expressions and 
discriminant factors in the specification of goals and domain 
properties. Identify generalizations from objects 
characterized by similar attributes, associations, or domain 
properties. 

• Identify tracking associations between environment objects 
and software counterparts, together with corresponding 
accuracy goals [25]. 

3.3 Building the agent model  
Some heuristic rules may help us here such as the following. 

• Identify any active object referred to in the specification of 
leaf goals [4]. 

• Check for software counterparts of assignments to human 
agents that are overloaded in the system-as-is [4]. 

• Look for agents whose capabilities match the variables 
evaluated in and constrained by a leaf goal specification, 
respectively [25].  

 Figure 4.  Main steps of a model building method for RE
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• Consider abstract agents and responsibilities first and then 
refine these until individual roles are reached [18]. 

• Avoid assigning a goal to an agent if this goal is conflicting 
with the agent’s wished goals [4]. Avoid goal assignments 
resulting in critical dependencies among agents [1]. If not 
possible, introduce defensive goals against such 
vulnerabilities in the goal model. Favor trustworthy agents 
for assignment of security goals. 

We can automatically generate a context diagram from an agent 
model that shows the interfaces among all system agents [18]. The 
detection of dataflow “holes” in the generated diagram calls for 
the introduction of missing agents to control or monitor the 
corresponding dataflow. 

3.4 Building the operation model  
Various techniques and heuristics may help us identify operations 
and elaborate goal operationalizations. Here are some. 

• Derive operations from goal fluents:  For each atomic state 
condition P in a goal specification, determine its initiating 

operation, with domain precondition ¬ P and domain 
postcondition P, and its terminating operation, with domain 

precondition P and domain postcondition ¬ P [18][29]. 

• Derive operations from scenarios: Identify operations from 
interaction events, and determine their domain pre- and 
postconditions from state conditions characterizing the 
agent timeline right before and right after the corresponding 
interaction [24]. 

• Strengthen domain pre- and postconditions with 

permissions, obligations, and additional effects: Consider 
any operation whose effect may affect some goal. If this 

effect can violate the goal under some condition C, take ¬ C 
as required precondition for this goal. If the goal prescribes 
that this effect must hold whenever some sufficient 
condition C became true, take C as required trigger 
condition. If the effect is not sufficient to ensure the target 
condition prescribed by the goal, take the missing 
subcondition C in the target as required postcondition [18]. 

• Use formal operationalization patterns that encode common 
ways of converting LTL specifications of behavioral goals 
into complete and consistent sets of required pre, trigger, 
and postconditions on operations [26]. 

UML use case diagrams can easily be generated from an operation 
model to provide an outline view of the system’s functionalities in 
relation with the goal model [18][31]. 

3.5 Building the behavior model  
This task is not easy. Like examples or test cases, instance-level 
scenarios raise a coverage problem as they are inherently partial. 
Class-level state machine models, on the other hand, may be very 
complex.  

Elaborating scenarios. Heuristics available from the RE literature 
may be used for structuring and consolidating scenarios emerging 
from elicitation material [18]. For example, we may first express 
normal courses of interaction and then, at the end of each episode 
along a normal scenario, systematically consider exceptional 
conditions and their required abnormal episode. We may also 
identify auxiliary episodes, responses needed to external stimuli, 
etc. 

The elaborated scenarios should be checked against unrelated 
concerns, irrelevant events, impossible interactions, and 
incompatible or inadequate granularities [24]. We may also use 
animation tools to check their adequacy [29][35]. 

Interesting scenarios can be produced by a model checker [29] or 
a goal refinement checker [34]. The scenario questions generated 
by our state machine synthesizer are another source of positive 
and negative scenarios [2]. 

For scenario-based reasoning during model construction, it is 
often useful to decorate scenario timelines with state conditions 
monitored or controlled by the corresponding agent. Such 
conditions are generated by propagating the domain pre- and 
postconditions of the operations associated with each interaction 
down the timeline [24]. 

Synthesizing state machine models. Several complementary 
approaches were explored in our work. 

• Goal-driven synthesis [35]: In this approach, state diagrams 
are derived from goals and their operationalization. A state 
diagram for some controlled variable is obtained by 
retrieving all goal operationalizations where the variable 
appears as operation output. The states, transitions, and 
transition labels in the diagram are derived from the domain 
pre- and postconditions of those operations together with 
their required pre- and trigger conditions.  The agent’s 
behavior model is the parallel composition of such diagrams 
for the variables the agent controls. Such derivation 
additionally provides satisfaction arguments and 
derivational traceability links for model evolution. 

• Scenario-driven synthesis: Two different approaches were 
considered dependent on whether the target behavior model 
is state-based or event-based.  

- A state-based model is obtained from a set of scenarios by 
generalizing the latter so as to refer to any agent instance 
and to cover all behaviors captured by the scenarios [18]. 
A state diagram for some variable controlled by an agent 
is obtained by deriving state machine paths from the 
sequences of state conditions on this variable along the 
agent’s timelines in the scenarios. These paths are then 
merged to form the state diagram for this variable. The 
agent’s state diagram is obtained as parallel composition 
of such diagrams.  

- An event-based model can be synthesized interactively, 
when formal state conditions along scenario timelines are 
not available, using grammar induction techniques and 
scenario questions [2]. The generalization search space 
and the number of generated scenario questions are 
substantially reduced by injection of fluents, goals, and 
domain properties to prune the search space [3]. With 
such additional knowledge the model adequacy is 
obviously improved too. 

4. INCREMENTAL MODEL ANALYSIS  
Whatever techniques are used for building our multi-view models, 
we need companion techniques to check their adequacy, 
completeness, and consistency. Such checks should be made 
early, for early fix, and stepwise while building the model. The 
goal model supports this as it is declarative and captures different 
levels of abstraction and precision. 



The query-based structural checks in Section 2.3 are surface-level 
ones; they do not take into account the optional formal 
specifications annotating goals, objects and operations in the 
model. This section outlines different types of formal analysis that 
can be performed on formalized goal fragments when available. A 
weaker version of most of them can however be used when no 
LTL formalization is available [18]. 

4.1 Refinement checking 
A first kind of RE-specific verification consists of checking that 
the refinements of behavioral goals in the goal model are 
consistent and complete. Such checking is important as missing 
subgoals result in incomplete requirements. 

For such checks we can use a LTL theorem prover, formal 
refinement patterns, or a bounded SAT solver. To shortcut the 
heavyweight theorem proving approach, formal patterns prove 
quite effective in matching situations (see Fig. 5).  As they are 
proved once for all to produce consistent and complete 
refinements, their instantiation can reveal missing subgoals [5].  

A roundtrip use of a SAT solver is another effective, more general 
approach. A front-end tool to a bounded SAT solver for LTL can 
check any refinement and produce bounded trace 
counterexamples in case of incomplete refinement [34]. For a 
refinement of goal G into subgoals G1, ..., Gn in some domain 
theory Dom, the tool (a) asks the user to select a trace bound and 
specific object instances for propositionalization of the submitted 
formulas; (b) translates the result in the input format required by 
the selected SAT solver; (c) runs the SAT solver to check whether 
the formula: 

G1 ∧ ... ∧ Gn ∧ Dom ∧ ¬ G 

is satisfiable and, if so, generate a satisfying trace; and (d) 
translates the output back to the level of abstraction of the 
graphical input model. Fig. 6 shows the result produced by our 
tool when the two left subgoals only are taken in the refinement. 
The counterexample trace shows a train getting back to the 
preceding block instead of waiting until the block signal is set to 
‘go’. Such negative scenario may suggest the missing subgoal. 

Figure 6. Bounded SAT solving for refinement checking  

4.2 Checking operationalizations 
A LTL semantics for operationalization allows us to formally 
derive correct operationalizations by use of operationalization 

patterns. Fig. 7 shows a very simple pattern that also suggests 
how a LTL goal can be mapped to a consistent and complete set 
of operations. The patterns are organized for easy retrieval 
according to a taxonomy of goal specification patterns [26]. They 
are proved correct once for all. We can use them forwards, to 
derive operations with their domain conditions and required pre-, 
trigger, and postconditions; or backwards, for goal mining from 
operational specifications. 

More generally, we can use our SAT solver tool to check the 
consistency and completeness of given operationalizations [34]. 
The formula checked for satisfiability is now: 

[| R1 |] ∧ ... ∧ [| Rn |] ∧ Dom ∧ ¬ G, 

where G is the operationalized goal and [| Ri |] denotes the LTL 
formula expressing that the corresponding operation is applied 
under its required (pre, trigger, or post) condition Ri [26]. 

4.3 Risk analysis 
For system robustness, we need to perform risk analysis early at 
RE time. Anticipating what could go wrong with an overideal 
system model is essential for getting an adequate and complete set 
of software requirements and environment assumptions. Obstacle 

analysis is a goal-based form of risk analysis aimed at identifying, 
assessing, and resolving the possibilities of breaking assertions in 
the goal model [22]. An obstacle is a precondition for non-
satisfaction of some goal, assumption, or questionable domain 
property used in the goal model. It must be consistent with valid 
domain properties and hypotheses, and feasible through agent 
behaviors.  

An obstacle diagram is a goal-anchored risk tree showing how a 
root obstacle to some assertion can be AND/OR refined into 
subobstacles whose feasibility, likelihood, and resolution are 
easier to establish. OR-refinements show different ways of 
obstructing the assertion. They should ideally be domain-
complete. AND-refinements capture specific combinations of 
circumstances for obstruction. They should be complete, domain-
consistent, and minimal. Leaf obstacles are connected to 
countermeasure goals through resolution links (see Fig. 8).  

We can build obstacle diagrams systematically using techniques 
such as tautology-based refinement, refinement driven by 
necessary conditions in the domain for the obstructed target, and 
obstacle refinement patterns [18]. Fig. 9 illustrates the latter two 
techniques into a single pattern for obstructing an Achieve goal. 

Obstacles estimated to be sufficiently likely and critical need be 
resolved. Alternative resolutions should be explored before a best 
one is selected based on estimations of risk reduction leverages 
and contributions to non-functional goals. Such exploration can 
be made systematic by use of operators that transform the goal 
model so as to eliminate the obstacle, reduce its likelihood, or 

Figure 7. Operationalization pattern for

Immediate Achieve goals  
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attenuate its consequences. Such operators include goal 
substitution, agent substitution, obstacle prevention, goal 
weakening, obstacle reduction, goal restoration, and obstacle 
mitigation [22]. 

When a goal to be obstructed is formalized in LTL, we can 
generate obstacles formally by regressing the goal negation 
through formal specifications of domain properties. Regression is 
a declarative precondition calculus for abductive reasoning. It 
may be used to elicit domain properties as well [22]. 

Formal obstruction patterns allow us to shortcut the formal 
derivations involved in regression. The semi-formal pattern in Fig. 
9 has an obvious LTL counterpart. Other patterns are available for 
Maintain goals and for other types of obstruction [22].  

The example in Fig. 9 also suggests how formal patterns can be 
used semi-formally, e.g., by people having no LTL background. 

4.4 Threat analysis  
Threat analysis is aimed at breaking the model at RE time in order 
to anticipate security problems and complete the model with 
adequate security countermeasures. Threats amount to obstacles to 
security goals. They can be unintentional or intentional. The 
analysis of intentional threats calls for modeling malicious agents, 
their anti-goals, and their capabilities. A threat model and its 
associated countermeasures can be elaborated systematically, like 
a goal refinement model, starting from negations of security goals 
and ending up when fine-grained anti-goals are reached that are 
realizable by attackers in view of their assumed capabilities [16]. 

For formal threat analysis, we need to specify security properties 
in terms of epistemic constructs that capture what agents may or 

may not know [16][9]. Formal anti-goal regressions through 
properties of the attacker’s environment allow us to derive 
portions of a threat model formally. We can explore security 
countermeasures on a more solid basis then. 

Recently, we developed a threat model synthesizer that generates 
proof trees showing how the attacker’s anti-goal can be satisfied 
through the attacked software in view of its capabilities. The 
approach relies on BDD technology and calculations of minimal 
or maximal fixpoints, depending on whether the anti-goal is an 
Achieve or a Maintain goal, respectively. Such fixpoint approach 
was developed in the good old time in a different context [23]. 

4.5 Conflict analysis  
A goal model should be analyzed against potential conflicts 
among overlapping goals. Divergence is a weak form of conflict, 
more frequenly found in RE than pure logical inconsistency. It 
captures a situation where some goals become logically 
inconsistent if some boundary condition holds.  

Divergences are detected by finding boundary conditions that are 
feasible and consistent with domain properties [19]. Such 
conditions can be generated by regressing goal negations through 
overlapping goals. Alternatively, we may use heuristic rules based 
on the metamodel and on goal categories. Divergence patterns are 
also available. 

Once detected, the conflicts may be recorded in the goal model, 
for later resolution, through conflict links connecting the divergent 
goal nodes. Like for obstacles, formal operators may help us 
explore conflict resolutions in more solid and accurate ways. 

4.6 Goal-oriented animation 
Animation is a widely recognized approach for checking model 
adequacy. Animators generally simulate behavioral models that do 
not directly reflect the objectives, constraints and assumptions 
stated declaratively by stakeholders. 

Our animation tool animates goal-oriented models [35]. It 
compiles goal operationalizations into parallel state machines (see 
Section 3.5), instantiates these to user-selected object instances, 
executes the instantiated machines from concurrent events input 
by one or more users, and visualizes the concurrent simulations as 
animated scenes in the environment [29] –see Fig. 10. The tool 
also monitors property violations, and can “slice” the animation 
on specific model portions relevant to user-selected goals. 

4.7 Reasoning about alternative options  
Any RE process is faced with alternative options among which to 
decide. In a goal-oriented framework, alternative options refer to 
alternative goal refinements, conflict resolutions, obstacle 
resolutions, threat resolutions, and responsibility assignments. 
Different alternatives contribute to different degrees of 
satisfaction of the soft goals in the goal model. To select best 
options, we can use qualitative or quantitative approaches. 

On the qualitative side, we can compare options  against high-
level soft goals in the model by assessing their contribution to 
each leaf soft goal through qualitative labels (+, ++, -, etc.). Such 
labels are propagated bottom-up along refinement and conflict 
links in the goal graph until the top-level soft goals are reached 
[1].  

For quantitative reasoning, we may replace such labels by 
numerical scores. The total score of each option is determined as a 

Figure 8.  Portion of obstacle model with new goal as resolution

 Figure 9.  Obstacle refinement driven by

necessary conditions for the obstructed target
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weighted summation of its scores with respect to each leaf soft 
goal in the model. For non-subjective conclusions, the option 
scores should be grounded on measurable system phenomena 
[27]. When the leaf soft goals are specified in measurable terms, 
we can identify gauge variables that provide measures for 
comparing options. A gauge variable for some soft goal captures 
an associated quantity such as something the soft goal prescribes 
to Improve, Increase, Reduce, Maximize, or Minimize; or the 
estimated cost of satisfying the soft goal; or the estimated time 
taken for satisfying it. Gauge variables propagate additively along 
the AND-trees refining alternative options in the model. We can 
thereby compare the overall scores of different options from the 
leaf values in their respective refinement trees [18]. 

5. MODEL EXPLOITATION  
A good model for RE is a means, not an end. Beside early 
detection and fix of a variety of problems, we can use our goal-
oriented models for generating the requirements document, for 
managing traceability to anticipate requirements evolution, for 
derivation of a preliminary software architecture, and for runtime 
system adaptation. 

5.1 Generating the requirements document 
A goal-oriented model allows us to produce the requirements 
document semi-automatically [31]. The textual structure of this 
document is first generated from the structure of the goal model 
according to some required documentation standards –e.g., IEEE 
Std-830. This structure is populated with the annotations of all 
model elements at some appropriate place. In particular, the 
glossary of terms is generated from the object model; the section 
on user requirements is produced by a pre-order traversal of the 
goal model from top to bottom; the section on assumptions and 
dependencies is generated from the expectations on environment 
agents and the unresolved obstacles. The resulting text is 
expandable by “drag-and-drop” of model diagram portions and 
any other item the model is hyperlinked with. 

5.2 Traceability management  
The model provides intra- and inter-view links among its elements 
that define Use and Derivation traceability links we can browse 
backwards and forwards to retrieve the source, rationale, and 
impact of decisions [18].  We thus save the cost of creating and 

maintaining traceability links separately; the model gives them for 
free. 

5.3 From requirements to architecture 
A goal-oriented model can also be used for deriving a preliminary 
software architecture [15]. An abstract dataflow architecture is 
first generated from the agent and operation models. This 
architecture is transformed to meet some architectural style 
matching the architectural requirements found in the goal model. 
The components and connectors in the resulting architecture are 
refined next by use of architectural refinement patterns that meet 
the non-functional goals in the model. 

5.4 Runtime self-adaptation 
We may sometimes want to defer the resolution of some obstacle 
until system runtime when the obstacle occurs (if it does).  On 
another hand, a selected option in the goal model might contain 
some requirements or assumptions that might no longer be 
adequate when the system will be running. In such cases, a 
monitoring-based component of the software-to-be can let the 
latter run the resolution or dynamically shift to some other model 
option when necessary. If such obstacle, requirement, or 
assumption is formalized in LTL, a dedicated monitor can be 
automatically generated. At system runtime, this monitor runs 
concurrently with the software to detect event sequences that 
violate the monitored assertion (or satisfy it, in case of an 
obstacle). Violations are reported to a rule-based compensator for 
system reconfiguration to a more adequate alternative option in 
the model [11]. The monitoring part of this mechanism was in fact 
implemented for detection of goal violations at system animation 
time [35], see the red-lined box on the left bottom of Fig. 10. 

6. FROM RESEARCH TO PRACTICE  
Our experience convinced us that RE research, tool development, 
and practice should be highly intertwined. In most projects we 
were involved in, the customers felt that the method and 
supporting tools produced much better requirements documents. 
Conversely, the techniques and tools resulting from research were 
significantly refined, simplified and polished over the years from 
feedback from practice. 

KAOS was applied in about 25 industrial projects in a wide 
variety of domains to engineer requirements for fairly different 
types of systems [17]. The method was also used to build goal-
oriented models for strategic planning and business process 
reengineering projects, to reengineer unintelligible requirements 
documents, to generate calls for tenders and tender evaluation 
forms, and to elaborate a model of on-board terrorist threats in 
civil aviation as a basis for a software-based detection/reaction 
system [7]. Others have integrated some of our techniques in their 
commercial product [32]. 

Examples of system models elaborated with our techniques 
include a phone system on TV cable, ATC systems for inter-
controller communication support and conflict handling between 
ground and on-board collision avoidance systems, a test suite 
design system for rocket launch, production management systems 
in the steel and automotive industries, a complex copyright 
management system,  a newspaper back office system, various 
healthcare systems, and business management systems in the 
pharmaceutics, food, and insurance sectors.  

Figure 10. Goal-oriented animation



Table 1 gives an idea on the size of the models constructed in 
some of these projects. The generated requirements documents 
were ranging from 100 to 300 pages. Medium-size projects 
typically range from 3 to 8 person-months, with 1-2 consultants 
working over a period of 2-5 months.  The effort required for 
model building and validation was about twice the effort required 
for stakeholder interviews. 

Concept type A B C D E F G 

Goal 370 56 141 341 640 171 151 

Requirement 160 50 164 256 440 311 108 

Agent 80 24 32 8 315 116 21 

Entity 240 123 106 102 215 166 127 

Association 90 71 48 13 77 126 5 

Operation NA 59 42 NA 86 36 80 

Table 1: Number of modelled concepts for systems A-G [17] 

The successful completion of such projects would never have 
been possible without fully reworking the GRAIL research 
prototype [6] into a professional version for model editing, 
browsing, querying, and requirements document generation [31]. 
(The formal analysis  [34] and synthesis [2] tools are still research 
protypes at this stage.) 

Goal graphs consistently proved to be quite an effective support 
for validation and negotiation with stakehoders. Decision makers, 
in particular, don’t care about class diagrams or state machine 
models; they want to see alternative options in the goal model to 
think about and make decisions. 

The informal use of formal refinement, obstruction, and conflict 
patterns by analysts having no LTL expertise worked surprisingly 
well in practice. In particular, refinement patterns revealed 
questionable refinements in a number of cases. 

7. CONCLUSION 
A multi-view model integrating system goals, objects, agents, 
operations, and behaviors is a key artifact for articulating 
requirements elicitation, evaluation, specification, consolidation, 
and evolution. Building an adequate, complete, and consistent 
model is far from trivial. Completeness is especially difficult as 
we need to pessimistically anticipate unexpected system 
behaviors. 

Constructive techniques may help elaborate such models both 
bottom-up, from scenario examples and other operational 
material, and top-down, from goals and other declarative material. 
A synergistic blend of modeling heuristics, patterns, reuse 
mechanisms, derivation rules, and more sophisticated forms of 
deductive and inductive reasoning may guide analysts in the 
model building process. Such techniques are to be complemented 
with others for early, incremental analysis of partial models. They 
are rooted in research in software engineering, artificial 
intelligence, databases, and formal methods. 

In many cases, the formal techniques can have a semi-formal 
counterpart. A “two-button” method and toolset, where the formal 
button is pressed only when and where needed, proves invaluable 
in practice for wider accessibility. 

There are indications that such techniques have reached a certain 
degree of maturity. On the one hand, they were applied 
successfully in a variety of challenging projects. On the other 
hand, they are currently exported and adapted to other areas, 

including safety-critical medical processes which we are currently 
focussing on.  

The road is paved with many challenges. In particular, we lack 
precise yet simple techniques for dealing with goals to be satisfied 
only partially –in X% of the cases, say. The integration in the RE 
process of lightweight quantitative techniques for decision 
support is much needed. Beyond traceability management, 
effective support for requirements evolution is missing.  
Dedicated RE techniques for certain kinds of systems, such as 
product lines, and certain kinds of non-functional requirements, 
such as security, are still in their infancy. The interplay between 
RE and architectural design is not well understood yet. Multiple 
formal frameworks are hard to integrate and hide to ordinary 
users. 

Yet the biggest challenge, we believe, remains in technology 
transfer and the moving from best practices to normal practices. 
Practitioners often seem reluctant to spend some effort in the RE 
process. They are, in a sense, like cigarette smokers who know 
that smoking is pretty unhealthy but keep smoking. 

Requirements engineering is traditionally seen as a craft. There 
are some prospects for turning it into a discipline established on 
more solid, technical grounds. Further research is needed along 
this way. It is worth the effort though. After all, the most 
automated form of software engineering will always require 
requirements engineering. 
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