
Requirements Engineering: From Craft to Discipline
Axel van Lamsweerde

Department of Computing Science
Université catholique de Louvain

B-1348 Louvain-la-Neuve (Belgium)

avl@info.ucl.ac.be

ABSTRACT

Getting the right software requirements under the right
environment assumptions is a critical precondition for developing
the right software. This task is intrinsically difficult. We need to
produce a complete, adequate, consistent, and well-structured set
of measurable requirements and assumptions from incomplete,
imprecise, and sparse material originating from multiple, often
conflicting sources. The system we need to consider comprises
software and environment components including people and
devices.
A rich system model may significantly help us in this task. Such
model must integrate the intentional, structural, functional, and
behavioral facets of the system being conceived. Rigorous
techniques are needed for model construction, analysis,
exploitation, and evolution. Such techniques should support early
and incremental reasoning about partial models for a variety of
purposes including satisfaction arguments, property checks,
animations, the evaluation of alternative options, the analysis of
risks, threats, and conflicts, and traceability management. The
tension between technical precision and practical applicability
calls for a suitable mix of heuristic, deductive, and inductive
forms of reasoning on a suitable mix of declarative and
operational specifications. Formal techniques should be deployed
only when and where needed, and kept hidden wherever possible.
The paper provides a retrospective account of our research efforts
and practical experience along this route. Problem-oriented
abstractions, analyzable models, and constructive techniques were
permanent concerns.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specification.

General Terms

Documentation, Design, Verification.

Keywords

Requirements engineering, system design, problem modeling,
goal orientation, operationalization, responsibility assignment,
specification construction, lightweight analysis, formal derivation.

1. INTRODUCTION
Requirements engineering (RE) is concerned with the elicitation,
evaluation, specification, consolidation, and evolution of the
objectives, functionalities, qualities, and constraints a software-
based system should meet within some organizational or physical
setting.

This task has a critical impact on software quality. Requirements-
related errors were widely and recurrently recognized to be the
most frequent, persistent, expensive, and dangerous types of
software errors. The most serious error types include incomplete,
inadequate, inconsistent, unmeasurable, or ambiguous
requirements or assumptions. Requirements-related errors are the
major cause of project cost overruns, delivery delays, failure to
meet expectations, or degradations in the environment controlled
by the software.

The RE task is difficult.

• We need to cooperate with multiple stakeholders having
different background, interests, and expectations. Their
concerns are generally partial and often conflicting.

• There are multiple transitions to handle. The problem world
we need to investigate is informal whereas the machine
solution we want to build is formal [12]. We need to move
from partial, unstructured collections of sometimes
inconsistent statements to a complete, structured set of
consistent requirements. Hidden, implicit needs and
assumptions must be made explicit. Imprecise formulations
must be converted into precise specifications.

• The problem world may be unfamiliar. While investigating it
we need to consider two system versions: the system as it
exists before the machine is built into it, and the system as it
should be when the machine will operate in it.

• A wide spectrum of concerns must be addressed, ranging from
high-level, strategic objectives to detailed, technical
requirements and assumptions. Different levels of concern are
often intermixed.

• For system robustness and requirements completeness, we
need to anticipate the unexpected –including hazardous or
malicious environment behaviors. The scope of such
investigation may be hard to delimit.

• We generally need to evaluate alternative options for decision
making: alternative ways of satisfying system objectives,
alternative assignments of responsibilities in the system,
alternative resolutions of conflicts, and alternative
countermeasures to threats or hazards.

In view of such impact and difficulties, the RE process should be
made more disciplined through the use of systematic methods.
Such methods should ideally meet the following requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT 2008/FSE-16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 …$5.00.

• Model-driven: An abstract representation of the system, as-
is or to-be, highlights key features and interrelates them. A
rich model may provide a comprehensive structure for what
needs to be elicited, evaluated, specified, consolidated, and
modified. It can be used for explanation, negotiation with
stakeholders, and decision making. The requirements
document can be semi-automatically generated from it.

• Constructive: For complex systems, models are hard to
build. A method should provide effectice guidance in
building adequate models and in exploiting them.

• Incremental for early analysis: A RE method should
support stepwise reasoning on acquired fragments of
information for early detection and fix of errors in
requirements and assumptions.

• Rigorous but lightweight: A model-based method and its
supporting tools must rely on semantically solid grounds to
produce accurate models, beyond boxes and arrows, and
enable sound analysis. For wide applicability in practical
situations and for communicability of results among
ordinary stakeholders, the method should however be easy
to use, hiding formal details wherever possible.

This paper outlines our efforts to develop an integrated set of
techniques intended to address those requirements [18]. The
modeling framework is briefly introduced first (Section 2). Model
construction, incremental analysis, and model exploitation are
discussed in subsequent sections (Sections 3-5). We briefly report
on the practical use of our techniques in industrial projects
(Section 6) before concluding with current challenges.

2. MODELING THE PROBLEM WORLD
In order to fully capture the various system facets relevant to the
RE process, a model should integrate multiple complementary
views (see Fig. 1).

• The intentional view captures the system objectives as
functional and non-functional goals together with their
mutual contribution links.

• The structural view captures the conceptual objects referred
to in the other views, their structure, and their inter-
relationships.

• The responsibility view captures the agents forming the
system, their responsibilities with respect to system goals,
and their interfaces with each other.

• The functional view captures the services the system should
provide in order to operationalize its goals.

• The behavioral view captures the behaviors required for the
system to satisfy its goals. Interaction scenarios illustrate
expected interactions among specific agent instances
whereas state machines prescribe classes of behaviors of any
agent instance on the objects it controls.

2.1 Goals as key RE abstractions
The target system is intended to meet a number of objectives.
These are to be highlighted as first-class citizens and interrelated.
A goal is a prescriptive statement of intent the system should
satisfy through cooperation of its agents [4][18]. An agent is an
active system component having to play some role in goal
satisfaction through adequate control of system items.

Figure 1. Multi-view modeling for requirements engineering [18]

SafeTransportation

SpeedLimited NoCollision DoorsClosed
WhileMoving

Goal model

Train Block
On

 0..1

Platform
At

Object model

Concern

Risk model

N oStopAtSignal

Obstruction

Tracking
System

Train
ControllerSpeed,

Position

Agent model

Responsibility

Operation model

Compute
Acceleration

Send
Acceleration

TrainController

Tracking
System

Operationalization

Behavior model

Movement

State

Closed Open

opening

[TimeOut]

[AtPlatform]

Stopped Moving

start

…

[doorsClosed]

DoorsTrainController Passenger

Opening
entrance

Closing

Start

Stop

 ...

Coverage

Goal satisfaction may involve a variety of system agents defining
the system scope –people, devices, existing software, or software
to be developed. The finer-grained a goal is, the fewer agents are
required to satisfy it. A requirement is a goal under responsibility
of a single agent of the software-to-be. An expectation is a goal
under responsibility of a single agent in the environment of the
software-to-be. Expectations form one kind of assumption we
need to make for the system to satisfy its goals.

To be under the sole responsibility of an agent, a goal must be
realizable by this agent [10][25]. This roughly means that the
agent must be able to control the state variables constrained by the
goal specification and to monitor the state variables to be
evaluated in this specification.

While reasoning about goal satisfaction in the RE process, we
often need to use domain properties. These are descriptive
statements about the problem world, unlike goals which are
prescriptive. They are expected to hold invariably regardless of
how the system will behave. The distinction between descriptive
and prescriptive statements is important. Goals may need to be
refined into subgoals, negotiated with stakeholders, assigned to
agents responsible for them, weakened in case of conflict, or
strengthened or dropped in case of unacceptable exposure to risks.
Unlike prescriptive statements, domain properties are not subject
to such decisions in the RE process.

A goal is either a behavioral goal or a soft goal. A behavioral goal
prescribes intended system behaviors declaratively. It implicitly
defines a maximal set of admissible behaviors. Behavioral goals
can be Achieve or Maintain/Avoid goals. An Achieve goal
prescribes some TargetCondition to be established sooner or later
when some current condition holds. A Maintain goal prescribes
some GoodCondition to be maintained (similarly, an Avoid goal
prescribes some BadCondition to be avoided).

Unlike behavioral goals, a soft goal cannot be established in a
clear-cut sense. It prescribes preferences among alternative system
behaviors, being more satisfied along some alternatives and less
satisfied along others. Behavioral goals are therefore used for
deriving system operations to satisfy them [4][26] whereas soft
goals are used for comparing alternative options to select most
preferred ones [1][27].

Those goal types should not be confused with a categorization
into functional goals, underlying system services, and non-
functional goals, prescribing qualiy of service. For example, a
confidentiality goal Avoid[SensitiveInformationDisclosed] is
traditionally considered as non-functional; it is not a soft goal
though.

A goal model is basically an annotated AND/OR graph showing
how higher-level goals are satisfied by lower-level ones (goal
refinement) and, conversely, how lower-level goals contribute to
the satisfaction of higher-level ones (goal abstraction) [14]. The
top goals are the highest-level ones still in the system scope
whereas the bottom goals are assignable requirements or
expectations. In such graph, an AND-refinement link relates a
goal to a set of subgoals called refinement; this means that the
parent goal can be satisfied by satisfying all subgoals in the
refinement. A goal node can be OR-refined into multiple AND-
refinements; each of these is called alternative for achieving the
parent goal. The meaning of multiple alternative refinements is
that the parent goal can be satisfied by satisfying the conjoined
subgoals in any of the alternative refinements.

Fig. 2 shows a goal model fragment as a goal diagram elaborated
with our modeling tool [31]. An AND-refinement is denoted by
an arrow joining subgoals to the parent goal; multiple incoming
arrows indicate an OR-refinement. The figure also shows agent
assignments to leaf goals. Home-shaped nodes represent domain
properties required for refinement correctness.

Goal nodes in a goal model are annotated with individual features
such as their name and precise specification in natural language,
their type, category, priority level, elicitation source, etc. Such
annotations act as placeholders for dedicated techniques used in
the RE process. For example, priority levels are used by conflict
management and requirements prioritization techniques during the
evaluation phase.

In particular, behavioral goals may optionally be annotated with
their formal specification for further analysis. The specification
formalism is a first-order real-time linear temporal logic (LTL)
[4][19], possibly extended with epistemic constructs for security
goals [9].

The systems as-is and to-be can both be captured within the same
model. The two versions share high-level goals and differ along
refinement branches of common parent goals. We can thereby also
capture multiple variants in a system family [18].

There are numerous reasons why a goal model is so important in
the RE process.

• Goal refinement provides a natural mechanism for struc-
turing complex specifications at different levels of concern.

• A goal model provides a rich structure of satisfaction

arguments, each taking the form:

{SubGoals, DomProps} |= ParentGoal

By chaining such arguments bottom-up, we may show that a
set of requirements and expectations together ensure some
parent goal, the latter ensuring its own parent goal together
with others, and recursively, until some high-level goal of
interest is thereby shown to be satisfied. In particular, the
goal model can be used to show decision makers how the
system-to-be will be aligned with the organization’s
strategic objectives –this proves quite helpful in practice.

Figure 2. Goal diagram

• Goals drive the identification of requirements to support
them, and provide their rationale. They define a precise
criterion for requirements completeness and pertinence [36].
A set of requirements is complete with respect to a set of
goals if all the goals can be argued to be satisfied when the
requirements are satisfied, assuming the environment
assumptions and domain properties are satisfied. A
requirement is pertinent with respect to a set of goals if it is
used in the satisfaction argument of one goal at least.

• A goal model supports traceability management [18]. As
chains of satisfaction arguments are available from a goal-
oriented RE process, there is no need to create and maintain
traceability links for evolution support – we get such links
for free, from low-level technical requirements on system
operations to high-level strategic objectives.

• Goals provide anchors for risk analysis, conflict
management, and comparison of alternative options (see
Section 4).

2.2 Agents, objects, operations, and behaviors
As introduced before, the intentional view of a system is
complemented with other views.

The structural view. Conceptual objects capture domain-specific
concepts referred to by prescriptive or descriptive statements
about the system. Depending on their nature, they are defined
precisely in an associated object model as entities, associations,
agents, or events. This model is represented by an annotated UML
class diagram, where annotations capture individual object
features such as a precise definition of the object in natural
language, its attributes, relevant domain properties associated with
it, initial values when an object instance appears in the system,
etc. [18].

An object model provides the concept definitions and domain
properties used in the other models. In particular, the object
attributes and associations define the system’s state variables in
terms of which goals, agents, operations, and behaviors are
specified in the other system views. A tool can easily generate a
glossary of terms from the object model which all involved parties
need to agree on and use for unambiguous reference. At design
time, this model provides a basis for generating a database schema
(if any) and architectural fragments.

The responsibility view. Agents were already introduced as active
system components that are responsible for the leaf goals in a goal
model. The agent model captures the distribution of
responsibilities within the system together with the capabilities of
every agent. The latter are defined in terms of ability to monitor or
control object attributes and associations from the object model.

An agent model thus shows the system scope and the boundary
between the software-to-be and its environment. Agents can be
decomposed into finer-grained ones with finer-grained goal
responsibilities [18]. The model may also capture agent wishes on
goals, for assignment heuristics and conflict management [4];
agent beliefs, for threat analysis [16]; and dependencies on other
agents [1], for vulnerability analysis. An agent model also
provides a basis for load analysis. It serves as input to the
architectural design process [15].

The functional view. An operation model captures the system
operations in terms of their individual features and their links to
the goal, object, agent, and behavior models. This model

specifies, for each operation, its signature, the descriptive pre-and
postconditions that intrinsically characterize the state transitions
produced by the operation in the problem world, and an additional
set of prescriptive pre, trigger, and post conditions that must
further constrain any application of the operation for each
underlying goal to be satisfied [4][26]. An operation model is
represented by operationalization diagrams.

The model part covering software-to-be operations yields software
specifications for input to the development process. We can use
them in particular for deriving external specifications of
functional components in the software architecture [15]. The
model part covering environment operations provides descriptions
of tasks and procedures to be jointly performed in the
environment for satisfaction of system goals. There are other
products we can derive such as black box test data and executable
specifications for system animation [35] or software prototyping.
The explicit linking of operational specifications to the underlying
system goals provides a rich basis for satisfaction arguments,
traceability management, and evolution support [18].

The behavioral view. A behavior model captures current
behaviors in the system-as-is or desired ones in the system-to-be.
Global system behaviors are obtained by parallel composition of
agent behaviors. The latter are made explicit through scenarios
and state machines. A scenario shows sequences of interactions
among specific agent instances. It is represented by a UML
sequence diagram. A state machine shows sequences of state
transitions for the variables controlled by any agent instance
within some class. Such transitions are caused by operation
applications or by external events. A state machine is represented
by a UML state diagram or by a labelled transition system (LTS)
[29] depending on the type of analysis we want to perform on it.

Intance-level scenarios provide partial, narrative representations
that are useful for eliciting, validating, or explaining behavioral
goals [24]. We can also produce acceptance test data from them.
Class-level state machines provide executable representations that
can be used for model validation through animation [35], for
model checking against formal specifications of domain properties
and goals [29][3], and for code generation.

2.3 View integration
The complementary views of the target system are integrated
through inter-model links constrained by rules for structural
consistency and completeness of the overall model. For example,
responsibility links connect leaf goals in the goal model and agents
in the agent model; concern links connect goals in the goal model
and the conceptual objects in the object model these goals refer
to; operationalization links connect leaf goals in the goal model
and the operations ensuring them in the operation model;
scenarios or state machines in the behavior model are connected
to behavioral goals by coverage links; and so forth (see Fig. 1).

The rules constraining inter-model links allow us to check the
structural completeness and consistency of the overall model, e.g.,
“every conceptual item referenced by a goal specification in the

goal model must appear as an attribute or object in the object

model, and vice versa”; “an agent responsible for a goal must

have the capability of controlling the variables constrained by the

goal specification and of monitoring the variables to be evaluated

in it”, “every operation in the operation model must

operationalize at least one leaf goal from the goal model”; “if an

agent is responsible for a goal, it must perform all operations

operationalizing that goal”; “every state machine capturing the

behavior of an agent in the behavior model must show a set of

paths prescribed by goals assigned to this agent in the agent

model”; etc.

To automate such checks, all view types are defined within a
common meta-model [21][4]. The structural rules then constrain
metamodel components. Many of them take the form:

For every instance of metaconcept C1 in the metamodel,

there must be a corresponding instance of metaconcept C2,

linked to it by an instance of the inter-view link type L.

A modeling tool managing the model database can provide a list
of precooked queries we can submit for checking such rules
automatically [21][31].

Fig. 3 provides an overall picture of what a system model
semantically conveys when the various system views are
integrated formally in a LTL-based framework. The leaf
behavioral goals together prescribe a maximal set of admissible
system behaviors. These behaviors are composed of parallel agent
behaviors. A behavior of an agent instance is captured by a
sequence of state transitions for the object attributes and
associations the agent controls. Such state transitions correspond
to applications of operations performed by the agent, taking the
smallest time unit. Agent instances evolve synchronously from
state to state according to the obligations and permissions
prescribed on their operations for goal satisfaction. An agent
instance might do nothing along system state transitions while
another might be required to apply multiple operations in parallel
because of multiple trigger conditions becoming true in the same
state. Do-nothing behaviors may arise from lack of permission, as
preconditions required for some goals do not hold, or from non-
deterministic agent behavior.

Such semantic framework can be integrated with others, e.g., for
providing a goal layer on top of SCR [33] and LTSA [29], see
[8][28]. Difficulties however arise from different semantic
assumptions related to synchronicity and non-determinism.

3. MODEL CONSTRUCTION
An adequate, complete, and consistent multi-view model is
difficult to obtain for a complex system. Beyond modeling
notations, we need a method to guide us in the model building
process.

The KAOS method and supporting toolset were developed,
refined, and extended over years of research and practical
experience in real projects [17]. (KAOS stands for “Keep All
Objectives Satisfied”.) Overall it consists of a number of
intertwined steps linked by data dependencies (see Fig. 4).

Every elaboration step is supported by a blend of complementary
techniques of different types.

• Heuristic rules help identifying, refining, or abstracting
model items within a view.

• Formal or semi-formal derivation rules allow items in a
view to be obtained from items in another view.

• Formal or semi-formal model building patterns can be
reused through instantiation in matching situations.

• More sophisticated procedures, based on deductive or
inductive inferencing mechanisms, allow candidate model
fragments to be synthesized interactively.

• Analogical reuse techniques allow models of similar
systems to be retrieved, transposed, and adapted [30][13].

Bad smells are also provided to let modellers avoid common
pitfalls [18].

3.1 Building the goal model
As goals prove difficult to identify and structure in practice, we
especially need guidance for elaborating the intentional view.
Here is a sample of more or less elaborate techniques that work
quite well in practice.

Goal identification.

• Search for prescriptive and intentional keywords in
statements found in elicitation material [14].

• For every problem identified in the system-as-is, derive an
improvement goal [4].

• Identify wishes of human agents [4].

• Browse goal taxonomies to instantiate leaf goal categories to
system-specific objects [4][1][9] –e.g., satisfaction,
information, accuracy, confidentiality, availability, or
response time goals.

• Ask WHY and and WHY NOT questions about posititive
and negative scenarios, respectively, as they are provided by
stakeholders [20] or generated by a model synthesizer [3].

Figure 3. Goals, objects, agents, operations, and behaviors: the semantic picture [18]

 agent instances

 operation applications

behavioral

goals

state of

controlled

object instances

…

…

 timesmallest time unit

…

• Infer goal specifications inductively from scenarios taken as
positive or negative examples [24].

• Identify soft goals and contribution links by analyzing the
pros and cons of alternative refinements [18].

• Check the converse of Achieve goals as candidate Maintain
goals [18] –for example, the e-commerce goal
Achieve[ItemSentIfPaid] yields the goal
Maintain[ItemSentOnlyIfPaid]; the flight management goal
Achieve[ReverseThrustIfPlaneOnRunway] yields the goal
Maintain[ReverseThrustOnlyf PlaneOnRunway].

Goal refinement and abstraction

• Ask HOW and WHY questions about identified goals to
obtain subgoals and parent goals, respectively [20].

• Split responsibilities among agents towards goals realizable
by single agents [4][25].

• Use goal refinement patterns formally [5][25] or semi-
formally [18]. Such patterns encode common refinement
tactics on generic goals specified in LTL. Their correctness
is formally proved once for all. As multiple patterns might
be applicable in the same situation, we can thereby explore
alternative refinements. Examples include the milestone-
driven, decomposition-by-cases, guard-introduction,
unrealizability-driven, and divide-and-conquer patterns (see
Fig. 5).

3.2 Building the object model
UML gurus often confess that the building of a complete and
pertinent class diagram requires much experience and creativity.
In our framework, such diagram is derived incrementally from the
goal model, semi-formally or formally, using rules such as the
following [14][18].

• Take all conceptual objects referred to in the specification of
identified goals and domain properties, and only those.

• Derive associations and participating objects from atomic
predicates in those specifications (or, informally, from
linking expressions in them).

• If the same domain property might be attached to different
objects, consider attaching it to an association between these
objects.

• Use standard heuristics for deciding whether a concept
should be an entity, association, attribute, or event (e.g.,
autonomous vs. dependent object, passive vs. active object,
multi-state vs. single-state object, etc.)

• Identify specializations from classification expressions and
discriminant factors in the specification of goals and domain
properties. Identify generalizations from objects
characterized by similar attributes, associations, or domain
properties.

• Identify tracking associations between environment objects
and software counterparts, together with corresponding
accuracy goals [25].

3.3 Building the agent model
Some heuristic rules may help us here such as the following.

• Identify any active object referred to in the specification of
leaf goals [4].

• Check for software counterparts of assignments to human
agents that are overloaded in the system-as-is [4].

• Look for agents whose capabilities match the variables
evaluated in and constrained by a leaf goal specification,
respectively [25].

 Figure 4. Main steps of a model building method for RE

Build a preliminary goal model
illustrated by scenarios

Modeling the

system-as-is Derive a preliminary
object model

Update the goal model with new
goals illustrated by scenarios

Modeling the

system-to-be Derive the updated
object model

Analyze obstacles, threats,
and conflicts

Analyze responsibilities
and build the agent model

Make choices among
alternative options

Operationalize goals
 in the operation model

Build and analyze the
behavior model

data dependency

backtracking

Figure 5. Refinement patterns

C ⇒ ◊ T
Milestone-driven

C ⇒ ◊ M M ⇒ ◊ T

Guard-introduction

C ⇒ ◊ T

C ⇒ C W TC ⇒ ◊ DC ∧ ∧ ∧ ∧ D ⇒ ◊ T

• Consider abstract agents and responsibilities first and then
refine these until individual roles are reached [18].

• Avoid assigning a goal to an agent if this goal is conflicting
with the agent’s wished goals [4]. Avoid goal assignments
resulting in critical dependencies among agents [1]. If not
possible, introduce defensive goals against such
vulnerabilities in the goal model. Favor trustworthy agents
for assignment of security goals.

We can automatically generate a context diagram from an agent
model that shows the interfaces among all system agents [18]. The
detection of dataflow “holes” in the generated diagram calls for
the introduction of missing agents to control or monitor the
corresponding dataflow.

3.4 Building the operation model
Various techniques and heuristics may help us identify operations
and elaborate goal operationalizations. Here are some.

• Derive operations from goal fluents: For each atomic state
condition P in a goal specification, determine its initiating

operation, with domain precondition ¬ P and domain
postcondition P, and its terminating operation, with domain

precondition P and domain postcondition ¬ P [18][29].

• Derive operations from scenarios: Identify operations from
interaction events, and determine their domain pre- and
postconditions from state conditions characterizing the
agent timeline right before and right after the corresponding
interaction [24].

• Strengthen domain pre- and postconditions with

permissions, obligations, and additional effects: Consider
any operation whose effect may affect some goal. If this

effect can violate the goal under some condition C, take ¬ C
as required precondition for this goal. If the goal prescribes
that this effect must hold whenever some sufficient
condition C became true, take C as required trigger
condition. If the effect is not sufficient to ensure the target
condition prescribed by the goal, take the missing
subcondition C in the target as required postcondition [18].

• Use formal operationalization patterns that encode common
ways of converting LTL specifications of behavioral goals
into complete and consistent sets of required pre, trigger,
and postconditions on operations [26].

UML use case diagrams can easily be generated from an operation
model to provide an outline view of the system’s functionalities in
relation with the goal model [18][31].

3.5 Building the behavior model
This task is not easy. Like examples or test cases, instance-level
scenarios raise a coverage problem as they are inherently partial.
Class-level state machine models, on the other hand, may be very
complex.

Elaborating scenarios. Heuristics available from the RE literature
may be used for structuring and consolidating scenarios emerging
from elicitation material [18]. For example, we may first express
normal courses of interaction and then, at the end of each episode
along a normal scenario, systematically consider exceptional
conditions and their required abnormal episode. We may also
identify auxiliary episodes, responses needed to external stimuli,
etc.

The elaborated scenarios should be checked against unrelated
concerns, irrelevant events, impossible interactions, and
incompatible or inadequate granularities [24]. We may also use
animation tools to check their adequacy [29][35].

Interesting scenarios can be produced by a model checker [29] or
a goal refinement checker [34]. The scenario questions generated
by our state machine synthesizer are another source of positive
and negative scenarios [2].

For scenario-based reasoning during model construction, it is
often useful to decorate scenario timelines with state conditions
monitored or controlled by the corresponding agent. Such
conditions are generated by propagating the domain pre- and
postconditions of the operations associated with each interaction
down the timeline [24].

Synthesizing state machine models. Several complementary
approaches were explored in our work.

• Goal-driven synthesis [35]: In this approach, state diagrams
are derived from goals and their operationalization. A state
diagram for some controlled variable is obtained by
retrieving all goal operationalizations where the variable
appears as operation output. The states, transitions, and
transition labels in the diagram are derived from the domain
pre- and postconditions of those operations together with
their required pre- and trigger conditions. The agent’s
behavior model is the parallel composition of such diagrams
for the variables the agent controls. Such derivation
additionally provides satisfaction arguments and
derivational traceability links for model evolution.

• Scenario-driven synthesis: Two different approaches were
considered dependent on whether the target behavior model
is state-based or event-based.

- A state-based model is obtained from a set of scenarios by
generalizing the latter so as to refer to any agent instance
and to cover all behaviors captured by the scenarios [18].
A state diagram for some variable controlled by an agent
is obtained by deriving state machine paths from the
sequences of state conditions on this variable along the
agent’s timelines in the scenarios. These paths are then
merged to form the state diagram for this variable. The
agent’s state diagram is obtained as parallel composition
of such diagrams.

- An event-based model can be synthesized interactively,
when formal state conditions along scenario timelines are
not available, using grammar induction techniques and
scenario questions [2]. The generalization search space
and the number of generated scenario questions are
substantially reduced by injection of fluents, goals, and
domain properties to prune the search space [3]. With
such additional knowledge the model adequacy is
obviously improved too.

4. INCREMENTAL MODEL ANALYSIS
Whatever techniques are used for building our multi-view models,
we need companion techniques to check their adequacy,
completeness, and consistency. Such checks should be made
early, for early fix, and stepwise while building the model. The
goal model supports this as it is declarative and captures different
levels of abstraction and precision.

The query-based structural checks in Section 2.3 are surface-level
ones; they do not take into account the optional formal
specifications annotating goals, objects and operations in the
model. This section outlines different types of formal analysis that
can be performed on formalized goal fragments when available. A
weaker version of most of them can however be used when no
LTL formalization is available [18].

4.1 Refinement checking
A first kind of RE-specific verification consists of checking that
the refinements of behavioral goals in the goal model are
consistent and complete. Such checking is important as missing
subgoals result in incomplete requirements.

For such checks we can use a LTL theorem prover, formal
refinement patterns, or a bounded SAT solver. To shortcut the
heavyweight theorem proving approach, formal patterns prove
quite effective in matching situations (see Fig. 5). As they are
proved once for all to produce consistent and complete
refinements, their instantiation can reveal missing subgoals [5].

A roundtrip use of a SAT solver is another effective, more general
approach. A front-end tool to a bounded SAT solver for LTL can
check any refinement and produce bounded trace
counterexamples in case of incomplete refinement [34]. For a
refinement of goal G into subgoals G1, ..., Gn in some domain
theory Dom, the tool (a) asks the user to select a trace bound and
specific object instances for propositionalization of the submitted
formulas; (b) translates the result in the input format required by
the selected SAT solver; (c) runs the SAT solver to check whether
the formula:

G1 ∧ ... ∧ Gn ∧ Dom ∧ ¬ G

is satisfiable and, if so, generate a satisfying trace; and (d)
translates the output back to the level of abstraction of the
graphical input model. Fig. 6 shows the result produced by our
tool when the two left subgoals only are taken in the refinement.
The counterexample trace shows a train getting back to the
preceding block instead of waiting until the block signal is set to
‘go’. Such negative scenario may suggest the missing subgoal.

Figure 6. Bounded SAT solving for refinement checking

4.2 Checking operationalizations
A LTL semantics for operationalization allows us to formally
derive correct operationalizations by use of operationalization

patterns. Fig. 7 shows a very simple pattern that also suggests
how a LTL goal can be mapped to a consistent and complete set
of operations. The patterns are organized for easy retrieval
according to a taxonomy of goal specification patterns [26]. They
are proved correct once for all. We can use them forwards, to
derive operations with their domain conditions and required pre-,
trigger, and postconditions; or backwards, for goal mining from
operational specifications.

More generally, we can use our SAT solver tool to check the
consistency and completeness of given operationalizations [34].
The formula checked for satisfiability is now:

[| R1 |] ∧ ... ∧ [| Rn |] ∧ Dom ∧ ¬ G,

where G is the operationalized goal and [| Ri |] denotes the LTL
formula expressing that the corresponding operation is applied
under its required (pre, trigger, or post) condition Ri [26].

4.3 Risk analysis
For system robustness, we need to perform risk analysis early at
RE time. Anticipating what could go wrong with an overideal
system model is essential for getting an adequate and complete set
of software requirements and environment assumptions. Obstacle

analysis is a goal-based form of risk analysis aimed at identifying,
assessing, and resolving the possibilities of breaking assertions in
the goal model [22]. An obstacle is a precondition for non-
satisfaction of some goal, assumption, or questionable domain
property used in the goal model. It must be consistent with valid
domain properties and hypotheses, and feasible through agent
behaviors.

An obstacle diagram is a goal-anchored risk tree showing how a
root obstacle to some assertion can be AND/OR refined into
subobstacles whose feasibility, likelihood, and resolution are
easier to establish. OR-refinements show different ways of
obstructing the assertion. They should ideally be domain-
complete. AND-refinements capture specific combinations of
circumstances for obstruction. They should be complete, domain-
consistent, and minimal. Leaf obstacles are connected to
countermeasure goals through resolution links (see Fig. 8).

We can build obstacle diagrams systematically using techniques
such as tautology-based refinement, refinement driven by
necessary conditions in the domain for the obstructed target, and
obstacle refinement patterns [18]. Fig. 9 illustrates the latter two
techniques into a single pattern for obstructing an Achieve goal.

Obstacles estimated to be sufficiently likely and critical need be
resolved. Alternative resolutions should be explored before a best
one is selected based on estimations of risk reduction leverages
and contributions to non-functional goals. Such exploration can
be made systematic by use of operators that transform the goal
model so as to eliminate the obstacle, reduce its likelihood, or

Figure 7. Operationalization pattern for

Immediate Achieve goals

G: C ⇒ ο T

Operation Op1

DomPre ¬ T

DomPost T

ReqTrig for G: C

Operation Op2

DomPre T

DomPost ¬ T

ReqPre for G: ¬ ¬ ¬ ¬ C

attenuate its consequences. Such operators include goal
substitution, agent substitution, obstacle prevention, goal
weakening, obstacle reduction, goal restoration, and obstacle
mitigation [22].

When a goal to be obstructed is formalized in LTL, we can
generate obstacles formally by regressing the goal negation
through formal specifications of domain properties. Regression is
a declarative precondition calculus for abductive reasoning. It
may be used to elicit domain properties as well [22].

Formal obstruction patterns allow us to shortcut the formal
derivations involved in regression. The semi-formal pattern in Fig.
9 has an obvious LTL counterpart. Other patterns are available for
Maintain goals and for other types of obstruction [22].

The example in Fig. 9 also suggests how formal patterns can be
used semi-formally, e.g., by people having no LTL background.

4.4 Threat analysis
Threat analysis is aimed at breaking the model at RE time in order
to anticipate security problems and complete the model with
adequate security countermeasures. Threats amount to obstacles to
security goals. They can be unintentional or intentional. The
analysis of intentional threats calls for modeling malicious agents,
their anti-goals, and their capabilities. A threat model and its
associated countermeasures can be elaborated systematically, like
a goal refinement model, starting from negations of security goals
and ending up when fine-grained anti-goals are reached that are
realizable by attackers in view of their assumed capabilities [16].

For formal threat analysis, we need to specify security properties
in terms of epistemic constructs that capture what agents may or

may not know [16][9]. Formal anti-goal regressions through
properties of the attacker’s environment allow us to derive
portions of a threat model formally. We can explore security
countermeasures on a more solid basis then.

Recently, we developed a threat model synthesizer that generates
proof trees showing how the attacker’s anti-goal can be satisfied
through the attacked software in view of its capabilities. The
approach relies on BDD technology and calculations of minimal
or maximal fixpoints, depending on whether the anti-goal is an
Achieve or a Maintain goal, respectively. Such fixpoint approach
was developed in the good old time in a different context [23].

4.5 Conflict analysis
A goal model should be analyzed against potential conflicts
among overlapping goals. Divergence is a weak form of conflict,
more frequenly found in RE than pure logical inconsistency. It
captures a situation where some goals become logically
inconsistent if some boundary condition holds.

Divergences are detected by finding boundary conditions that are
feasible and consistent with domain properties [19]. Such
conditions can be generated by regressing goal negations through
overlapping goals. Alternatively, we may use heuristic rules based
on the metamodel and on goal categories. Divergence patterns are
also available.

Once detected, the conflicts may be recorded in the goal model,
for later resolution, through conflict links connecting the divergent
goal nodes. Like for obstacles, formal operators may help us
explore conflict resolutions in more solid and accurate ways.

4.6 Goal-oriented animation
Animation is a widely recognized approach for checking model
adequacy. Animators generally simulate behavioral models that do
not directly reflect the objectives, constraints and assumptions
stated declaratively by stakeholders.

Our animation tool animates goal-oriented models [35]. It
compiles goal operationalizations into parallel state machines (see
Section 3.5), instantiates these to user-selected object instances,
executes the instantiated machines from concurrent events input
by one or more users, and visualizes the concurrent simulations as
animated scenes in the environment [29] –see Fig. 10. The tool
also monitors property violations, and can “slice” the animation
on specific model portions relevant to user-selected goals.

4.7 Reasoning about alternative options
Any RE process is faced with alternative options among which to
decide. In a goal-oriented framework, alternative options refer to
alternative goal refinements, conflict resolutions, obstacle
resolutions, threat resolutions, and responsibility assignments.
Different alternatives contribute to different degrees of
satisfaction of the soft goals in the goal model. To select best
options, we can use qualitative or quantitative approaches.

On the qualitative side, we can compare options against high-
level soft goals in the model by assessing their contribution to
each leaf soft goal through qualitative labels (+, ++, -, etc.). Such
labels are propagated bottom-up along refinement and conflict
links in the goal graph until the top-level soft goals are reached
[1].

For quantitative reasoning, we may replace such labels by
numerical scores. The total score of each option is determined as a

Figure 8. Portion of obstacle model with new goal as resolution

 Figure 9. Obstacle refinement driven by

necessary conditions for the obstructed target

 [If CurrentCondition then]
 sooner-or-later TargetCondition

[CurrentCondition and]
 never TargetCondition

 If TargetCondition
 then NecessaryCondition

[CurrentCondition and]
 never NecessaryCondition

Achieve

goal

weighted summation of its scores with respect to each leaf soft
goal in the model. For non-subjective conclusions, the option
scores should be grounded on measurable system phenomena
[27]. When the leaf soft goals are specified in measurable terms,
we can identify gauge variables that provide measures for
comparing options. A gauge variable for some soft goal captures
an associated quantity such as something the soft goal prescribes
to Improve, Increase, Reduce, Maximize, or Minimize; or the
estimated cost of satisfying the soft goal; or the estimated time
taken for satisfying it. Gauge variables propagate additively along
the AND-trees refining alternative options in the model. We can
thereby compare the overall scores of different options from the
leaf values in their respective refinement trees [18].

5. MODEL EXPLOITATION
A good model for RE is a means, not an end. Beside early
detection and fix of a variety of problems, we can use our goal-
oriented models for generating the requirements document, for
managing traceability to anticipate requirements evolution, for
derivation of a preliminary software architecture, and for runtime
system adaptation.

5.1 Generating the requirements document
A goal-oriented model allows us to produce the requirements
document semi-automatically [31]. The textual structure of this
document is first generated from the structure of the goal model
according to some required documentation standards –e.g., IEEE
Std-830. This structure is populated with the annotations of all
model elements at some appropriate place. In particular, the
glossary of terms is generated from the object model; the section
on user requirements is produced by a pre-order traversal of the
goal model from top to bottom; the section on assumptions and
dependencies is generated from the expectations on environment
agents and the unresolved obstacles. The resulting text is
expandable by “drag-and-drop” of model diagram portions and
any other item the model is hyperlinked with.

5.2 Traceability management
The model provides intra- and inter-view links among its elements
that define Use and Derivation traceability links we can browse
backwards and forwards to retrieve the source, rationale, and
impact of decisions [18]. We thus save the cost of creating and

maintaining traceability links separately; the model gives them for
free.

5.3 From requirements to architecture
A goal-oriented model can also be used for deriving a preliminary
software architecture [15]. An abstract dataflow architecture is
first generated from the agent and operation models. This
architecture is transformed to meet some architectural style
matching the architectural requirements found in the goal model.
The components and connectors in the resulting architecture are
refined next by use of architectural refinement patterns that meet
the non-functional goals in the model.

5.4 Runtime self-adaptation
We may sometimes want to defer the resolution of some obstacle
until system runtime when the obstacle occurs (if it does). On
another hand, a selected option in the goal model might contain
some requirements or assumptions that might no longer be
adequate when the system will be running. In such cases, a
monitoring-based component of the software-to-be can let the
latter run the resolution or dynamically shift to some other model
option when necessary. If such obstacle, requirement, or
assumption is formalized in LTL, a dedicated monitor can be
automatically generated. At system runtime, this monitor runs
concurrently with the software to detect event sequences that
violate the monitored assertion (or satisfy it, in case of an
obstacle). Violations are reported to a rule-based compensator for
system reconfiguration to a more adequate alternative option in
the model [11]. The monitoring part of this mechanism was in fact
implemented for detection of goal violations at system animation
time [35], see the red-lined box on the left bottom of Fig. 10.

6. FROM RESEARCH TO PRACTICE
Our experience convinced us that RE research, tool development,
and practice should be highly intertwined. In most projects we
were involved in, the customers felt that the method and
supporting tools produced much better requirements documents.
Conversely, the techniques and tools resulting from research were
significantly refined, simplified and polished over the years from
feedback from practice.

KAOS was applied in about 25 industrial projects in a wide
variety of domains to engineer requirements for fairly different
types of systems [17]. The method was also used to build goal-
oriented models for strategic planning and business process
reengineering projects, to reengineer unintelligible requirements
documents, to generate calls for tenders and tender evaluation
forms, and to elaborate a model of on-board terrorist threats in
civil aviation as a basis for a software-based detection/reaction
system [7]. Others have integrated some of our techniques in their
commercial product [32].

Examples of system models elaborated with our techniques
include a phone system on TV cable, ATC systems for inter-
controller communication support and conflict handling between
ground and on-board collision avoidance systems, a test suite
design system for rocket launch, production management systems
in the steel and automotive industries, a complex copyright
management system, a newspaper back office system, various
healthcare systems, and business management systems in the
pharmaceutics, food, and insurance sectors.

Figure 10. Goal-oriented animation

Table 1 gives an idea on the size of the models constructed in
some of these projects. The generated requirements documents
were ranging from 100 to 300 pages. Medium-size projects
typically range from 3 to 8 person-months, with 1-2 consultants
working over a period of 2-5 months. The effort required for
model building and validation was about twice the effort required
for stakeholder interviews.

Concept type A B C D E F G

Goal 370 56 141 341 640 171 151

Requirement 160 50 164 256 440 311 108

Agent 80 24 32 8 315 116 21

Entity 240 123 106 102 215 166 127

Association 90 71 48 13 77 126 5

Operation NA 59 42 NA 86 36 80

Table 1: Number of modelled concepts for systems A-G [17]

The successful completion of such projects would never have
been possible without fully reworking the GRAIL research
prototype [6] into a professional version for model editing,
browsing, querying, and requirements document generation [31].
(The formal analysis [34] and synthesis [2] tools are still research
protypes at this stage.)

Goal graphs consistently proved to be quite an effective support
for validation and negotiation with stakehoders. Decision makers,
in particular, don’t care about class diagrams or state machine
models; they want to see alternative options in the goal model to
think about and make decisions.

The informal use of formal refinement, obstruction, and conflict
patterns by analysts having no LTL expertise worked surprisingly
well in practice. In particular, refinement patterns revealed
questionable refinements in a number of cases.

7. CONCLUSION
A multi-view model integrating system goals, objects, agents,
operations, and behaviors is a key artifact for articulating
requirements elicitation, evaluation, specification, consolidation,
and evolution. Building an adequate, complete, and consistent
model is far from trivial. Completeness is especially difficult as
we need to pessimistically anticipate unexpected system
behaviors.

Constructive techniques may help elaborate such models both
bottom-up, from scenario examples and other operational
material, and top-down, from goals and other declarative material.
A synergistic blend of modeling heuristics, patterns, reuse
mechanisms, derivation rules, and more sophisticated forms of
deductive and inductive reasoning may guide analysts in the
model building process. Such techniques are to be complemented
with others for early, incremental analysis of partial models. They
are rooted in research in software engineering, artificial
intelligence, databases, and formal methods.

In many cases, the formal techniques can have a semi-formal
counterpart. A “two-button” method and toolset, where the formal
button is pressed only when and where needed, proves invaluable
in practice for wider accessibility.

There are indications that such techniques have reached a certain
degree of maturity. On the one hand, they were applied
successfully in a variety of challenging projects. On the other
hand, they are currently exported and adapted to other areas,

including safety-critical medical processes which we are currently
focussing on.

The road is paved with many challenges. In particular, we lack
precise yet simple techniques for dealing with goals to be satisfied
only partially –in X% of the cases, say. The integration in the RE
process of lightweight quantitative techniques for decision
support is much needed. Beyond traceability management,
effective support for requirements evolution is missing.
Dedicated RE techniques for certain kinds of systems, such as
product lines, and certain kinds of non-functional requirements,
such as security, are still in their infancy. The interplay between
RE and architectural design is not well understood yet. Multiple
formal frameworks are hard to integrate and hide to ordinary
users.

Yet the biggest challenge, we believe, remains in technology
transfer and the moving from best practices to normal practices.
Practitioners often seem reluctant to spend some effort in the RE
process. They are, in a sense, like cigarette smokers who know
that smoking is pretty unhealthy but keep smoking.

Requirements engineering is traditionally seen as a craft. There
are some prospects for turning it into a discipline established on
more solid, technical grounds. Further research is needed along
this way. It is worth the effort though. After all, the most
automated form of software engineering will always require
requirements engineering.

8. ACKNOWLEDGMENTS
Special thanks are due to Emmanuel Letier and Robert Darimont
for significant contributions to the material outlined in this paper.
Many other people contributed to the KAOS project. I wish to
thank in particular Christophe Damas, Anne Dardenne, Renaud
De Landtsheer, Emmanuelle Delor, Martin Feather, Steve Fickas,
Bernard Lambeau, Philippe Massonet, Cédric Nève, Christophe
Ponsard, André Rifaut, Jean-Luc Roussel, Hung Tran Van, and
Laurent Willemet. Much of the work has been supported by the
Walloon Region, the Belgian National Research Council, and the
European Union.

9. REFERENCES
[1] Chung, L., Nixon, B., Yu E. and Mylopoulos, J., Non-

functional requirements in software engineering. Kluwer
Academic, Boston, 2000.

[2] Damas, C., Lambeau, B., Dupont, P. and van Lamsweerde,
A., “Generating Annotated Behavior Models from End-User
Scenarios”, IEEE Transactions on Software Engineering,
Vol. 31, No. 12, December 2005 , 1056-1073.

[3] Damas, C., Lambeau, B. and van Lamsweerde, A.,
“Scenarios, Goals, and State Machines: A Win-Win
Partnership for Model Synthesis”, Proc. FSE’06, 14th ACM

Sigsoft Symp. on the Foundations of Software Engineering,
Portland (OR), November 2006.

[4] Dardenne, A., van Lamsweerde, A. and Fickas, S. (1993).
“Goal-Directed Requirements Acquisition”, Science of

Computer Programming, Vol. 20, 3-50.

[5] Darimont, R. and van Lamsweerde, A., “Formal Refinement
Patterns for Goal-Driven Requirements Elaboration”, Proc.

FSE’4 - Fourth ACM SIGSOFT Symp. on the Foundations of

Software Engineering, San Francisco, Oct. 1996 , 179-190.

[6] Darimont, R., Delor, E., Massonet, P. and van Lamsweerde,
A., “GRAIL/KAOS: An Environment for Goal-Driven
Requirements Engineering”, Proc. ICSE’98 - 20th Intl. Conf.

on Software Engineering, Kyoto, April 1998, vol. 2, 58-62.

[7] Darimont, R. and Lemoine, M. “Security Requirements for
Civil Aviation with UML and Goal Orientation”, Proc.

REFSQ’07 – Intl. Working Conference on Foundations for

Software Quality, Trondheim (Norway), LNCS 4542,
Springer-Verlag, 2007.

[8] De Landtsheer, R., Letier, E. and van Lamsweerde, A.,
“Deriving Tabular Event-Based Specifications from Goal-
Oriented Requirements Models”, Requirements Engineering

Journal, Vol.9 No. 2, 2004, 104-120.

[9] De Landtsheer, R. and van Lamsweerde, A., “Reasoning
About Confidentiality at Requirements Engineering Time”,
Proc. ESEC/FSE’05, Lisbon, Portugal, September 2005.

[10] Feather, M., “Language Support for the Specification and
Development of Composite Systems”, ACM Trans. on

Programming Languages and Systems 9(2), April, 198-234.

[11] Feather, M., Fickas, S., van Lamsweerde, A. and Ponsard,
C., “Reconciling System Requirements and Runtime
Behaviour”, Proc. IWSSD’98 - 9th Intl. Workshop on

Software Specification and Design, Isobe, IEEE, April 1998.

[12] Jackson, M., “The World and the Machine”, Proc. ICSE’95:

17th International Conference on Software Engineering,
ACM Press, 1995, pp. 283-292.

[13] van Lamsweerde, A., Learning Machine Learning. In
Introducing a Logic Based Approach to Artificial

Intelligence, A. Thayse (Ed.), Vol. 3, Wiley, 1991, 263-356.

[14] van Lamsweerde , A.,“Goal-Oriented Requirements
Engineering: A Guided Tour”, Invited Minitutorial, Proc.

RE’01 - 5th Intl. Symp. Requirements Engineering, Toronto,
Aug. 2001, 249-263.

[15] van Lamsweerde, A., “From System Goals to Software
Architecture”, in Formal Methods for Software Architecture,
LNCS 2804, Springer-Verlag, 2003.

[16] van Lamsweerde, A.,“Elaborating Security Requirements by
Construction of Intentional Anti-Models”, Proc. ICSE’04,

26th International Conference on Software Engineering,
Edinburgh, May 2004, ACM-IEEE, 148-157.

[17] van Lamsweerde, A., “Goal-Oriented Requirements
Engineering: A Roundtrip from Research to Practice”,
Keynote paper, Proc. RE’04, 12th IEEE Joint Intl.

Requirements Engineering Conf., Kyoto, Sept. 2004, 4-8.

[18] van Lamsweerde, A., Requirements Engineering: From

System Goals to UML Models to Software Specifications.
Wiley, 2008.

[19] van Lamsweerde, A., Darimont, R. and Letier, E.,
“Managing Conflicts in Goal-Driven Requirements
Engineering”, IEEE Trans. on Sofware. Engineering, Vol.
24 No. 11, November 1998 , 908-926.

[20] van Lamsweerde, A., Darimont, R. and Massonet, Ph.,
“Goal-Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learnt”, Proc. RE’95 -

2nd Intl. IEEE Symp. on Requirements Engineering, March
1995, 194-203.

[21] van Lamsweerde, A., Delcourt, B., Delor, E., Schayes, M.C.
and Champagne, R., “Generic Lifecycle Support in the
ALMA Environment”, IEEE Transactions on Software

Engineering, Vol. 14, No. 6, June 1988, 720-741.

[22] van Lamsweerde, A. and Letier, E. “Handling Obstacles in
Goal-Oriented Requirements Engineering”, IEEE Trans. on

Software Engineering, Special Issue on Exception Handling,
Vol. 26 No. 10, October 2000, 978-1005.

[23] van Lamsweerde, A. and Sintzoff, M., Formal Derivation of
Strongly Correct Concurrent Programs. Acta Informatica

Vol.12, Springer Verlag, 1979, 1-31.

[24] van Lamsweerde, A. and Willemet, L., “Inferring Declarative
Requirements Specifications from Operational Scenarios”,
IEEE Trans. on Sofware. Engineering, Vol. 24 No. 12,
December 1998 , 1089-1114.

[25] Letier, E. and van Lamsweerde, A., “Agent-Based Tactics for
Goal-Oriented Requirements Elaboration”, Proc. ICSE’02:

24th Intl. Conf. on Software Engineering, Orlando, IEEE
Press, May 2002.

[26] Letier, E. and van Lamsweerde, A., “Deriving Operational
Software Specifications from System Goals”, Proc. FSE’10:

10th ACM Symp. Foundations of Software Engineering,
Charleston, November 2002.

[27] Letier, E. and van Lamsweerde, A., “Reasoning about Partial
Goal Satisfaction for Requirements and Design
Engineering”, Proc. ACM FSE’04, 2004, 53-62.

[28] Letier, E., Kramer, J., Magee, J., and S. Uchitel, “Deriving
Event-based Transition Systems from Goal-oriented
Requirements Models”, Automated Software Engineering
Vol. 15 No. 2, 2008, 175-206.

[29] Magee, J. and Kramer, J. Concurrency – State Models &

Java Programs. Second edition, Wiley, 2006.

[30] Massonet, P. and van Lamsweerde, A., “Analogical Reuse
of Requirements Frameworks”, Proc. RE-97 - 3rd Int. Symp.

on Requirements Engineering, Annapolis, Jan. 1997 26-37.

[31] Objectiver, http://www.objectiver.com.

[32] http://www.kinetium.com/map/demo/demo_index.html.

[33] Parnas, D.L. and J. Madey, J., “Functional Documents for
Computer Systems”, Science of Computer Programming,
Vol. 25, 1995, 41-61.

[34] Ponsard, C., Massonet, P. Molderez, J.F., Rifaut, A., and van
Lamsweerde, A. “Early Verification and Validation of
Mission-Critical Systems”, Formal Methods in System

Design Vol. 30 No. 3, Springer, June 2007, 233-247.

[35] Tran Van, H., van Lamsweerde, A., Massonet, P. and
Ponsard, Ch., “Goal-Oriented Requirements Animation”,
Proc. RE’04, 12th IEEE Joint International Requirements

Engineering Conference, Kyoto, Sept. 2004, 218-22.

[36] Yue, K. “What Does It Mean to Say that a Specification is
Complete?”, Proc. IWSSD-4, Fourth International Workshop

on Software Specification and Design, Monterey, 1987.

