
Generating Process Models in
Multi-View Environments

Christophe DAMAS, Bernard LAMBEAU and Axel VAN LAMSWEERDE1

Université catholique de Louvain, Louvain-La-Neuve, Belgium
axel.vanlamsweerde@uclouvain.be

Abstract. The role of high-quality models is increasingly recognized for driving
and documenting processes in safety-critical domains such as medical processes.
In general, the environment of a complex process has to deal with multiple views
referring to different concerns, agents, resources, locations, and so forth. The
variety of needs along those views calls for multiple, complementary and
consistent facets of a composite process model, where each facet addresses a
specific view. Building multi-view process models is in our experience hard and
error-prone. To address this challenge, the paper describes formal operators for
composing process model facets in a coherent way and, conversely, for
decomposing process models into specific facets that abstract from details
irrelevant to a specific view. These operators are grounded on the formal trace
semantics provided by our process language and its supporting analysis toolset.
The paper shows how these operators are automated and reports on their use in a
real case study of model construction for a particle-therapy center.

Keywords. Process modeling, model views, model transformation, process
analysis, model verification, model synthesis, safety-critical workflows.

Introduction

Human-intensive systems involve complex cooperation processes among software
applications, devices, and people, where the human contributions require domain
expertise and have a significant impact on the success or failure of the overall mission
[3, 7]. Such systems are in general safety-critical as exemplified by flight control,
disaster management, or medical process support systems. Errors in medical systems,
in particular, are known to cause more deaths yearly than the equivalent of one civil
aircraft crashing every day.

Human-intensive processes should be captured through adequate models for
effective software support [3, 10, 13]. Such models typically capture the control flow
among tasks performed by the agents forming the considered system.

In general, human-intensive processes take place in complex environments
covering a great variety of different aspects –refering to, e.g., different agents from
different groups (such as organizational departments), different types of resources,
different locations, and so forth. One process might be only concerned with the tasks
performed by a specific subset of agents (e.g., a department workflow). Another might
be a sub-process to be followed by a specific subset of process instances only. Yet

1 Corresponding Author.

another might focus on tasks where specific resources are used. A composite process
can thus be captured through different views along different levels of detail and
different aspects to focus on.

To make this important motivating point further explicit, let us consider a medical
process for cancer treatment. Different views on it may be captured through different
workflows (see Fig. 1).

• A clinical pathway provides a multi-disciplinary view of the treatment
required within a specific class of patients having the same pathology [30].
For example, we might consider the clinical pathway for treating ovarian
cancers. The treatment process involves multiple agents cooperating across
multiple medical departments.

• A pathology-centric department workflow shows the various decisions and
tasks to be performed within a single department for a specific pathology. In
our example, we might consider the workflow for treating ovarian cancers in
the radiotherapy department.

• A department workflow provides a global view of the various decisions and
tasks within a specific department. The process now refers to any patient
treated in this department. In our example, we might be interested in the
workflow of the radiotherapy department for any cancer being treated there.

• An agent-centric workflow focuses on the decisions and tasks of a specific
agent. For example, the workflow for treating ovarian cancers as seen by the
patient includes only those tasks in which the patient is involved. It provides a
good basis for explaining her the treatment.

Such a simple workflow typology does obviously not cover all possible views one
might be interested in. For instance, a mono-pathology, mono-agent and mono-
department workflow might be worth considering; it is not shown in Fig. 1. Other
possible aspects might include medical resources, patient characteristics such as age or
gender, and so forth. For example, a “reminding workflow” might show only those
tasks where the patient is responsible for taking specific drugs.

In such a multi-view setting, it won’t make much sense to build a specific model
for every process view of interest. Our objective instead is to generate models along
specific views from others –and, in particular, to generate a composite model from
partial views associated with specific aspects.

To achieve this, [11] informally introduced a general approach based on operators
for composing or decomposing process models.

• Composition operators produce a composite model from separate ones in a
semantically coherent way. Among these, the Union operator produces a
model containing all paths that are valid in the input models and only those.
The Merge operator produces a model covering all admissible interleavings of
the concurrent input models.

• Decomposition operators produce specific views from a composite model in a
semantically coherent way; each view abstracts from details irrelevant to it.
The Restriction operator produces a model whose paths are followed by a
subclass of process instances only. The Focus operator produces a model
whose tasks form a subset of the set of tasks captured by the input model.

Composition/decomposition operators are aimed at supporting model construction,
analysis, documentation and enactment.

• Model construction. A complex multi-view process model may be built by
composition of view-specific fragments. In Fig. 1, the multi-pathology model
for a department workflow might be obtained by application of the Union
operator on all pathology-centric workflows managed by the department.

• Model analysis. Checks for desired properties may be performed manually by
domain experts or automatically through formal analyses [3, 10, 12].
− Manual inspections prove much easier when dedicated views are provided

on the process model. Details relevant to a specific expert are obtained by
application of the Focus operator on a specific department or agent, or by
application of the Restriction operator to specific process instances.

− Formal property checks may be applied to smaller models obtained by
application of decomposition operators, for increased efficiency and easier
understanding of counterexamples, or to larger models obtained by
application of composition operators, for checking desired properties at a
more global level.

• Model documentation. Any documentation generated from a process model
should only cover those aspects of the process that are specifically relevant to
the target audience. The Restriction and Focus operators may be applied to
remove irrelevant aspects.

• Model enactment. The execution of concurrent process models considered in
isolation might violate resource limitation constraints. Sound composition
operators provide a means for handling this.

This paper expands the overall approach informally introduced in [11] with three
main contributions.

• Formal techniques allowing those model composition and decomposition
operators to be fully automated. In passing, a new variant of the Merge
operator is introduced which proves frequently needed in practice.

• A tool implementing those formal techniques, integrated in our current formal
toolset for process model analysis [12].

• An evaluation of our approach on a real, complex case study suggested by an
industrial partner for orchestrating treatment processes in a particle-therapy
center.

The language of guarded high-level message sequence charts (g-HMSC) is taken
as process formalism for automating our operators. The g-HMSC language is a simple
flowchart-like formalism for modeling multi-agent processes involving decisions on
process variables [10, 12]. The language has a formal trace semantics defined in terms
of guarded labelled transition systems (g-LTS), the latter having a trace semantics
defined in terms of labelled transition systems (LTS) [10, 26, 27]. Automating g-
HMSC composition/decomposition operators eventually reduces to g-LTS
manipulations.

The paper is organized as follows. Section 1 summarizes some background
material on the g-HMSC and g-LTS formalisms together with the different types of
analysis being currently supported. Section 2 describes the various techniques for
computing the Union, Restriction, Focus, and Merge of process models. Section 3
details basic common g-LTS manipulations involved in these techniques. Section 4
suggests how useful macro-operators can be defined by combining those composition
and decomposition operators. Section 5 briefly discusses implementation aspects of the
proposed techniques in our current toolset. Section 6 reports on the evaluation of our
approach on a real, challenging modeling problem. Section 7 reviews some relevant
related work before concluding.

1. Modeling and Analyzing Decision-based Processes

The g-HMSC language is a simple flowchart-style formalism for modeling multi-agent
processes involving decisions on process variables. It is intended to be used by process
analysts while being close enough to the informal sketches provided by medical experts
[20]. The language has a formal semantics to enable different types of analysis [10, 12].
Fig. 2 shows g-HMSC model fragments for treating ovarian and endometrial cancers,
respectively. These examples are simplified for explanation purposes. Roughly, the
processes consist of a diagnosis task, a staff meeting and a surgery task. The choice of
a specific surgical intervention (coelioscopy, laparotomy or lymphectomy) depends on
the type of cancer and on a possible invasion of lymph nodes (N+). For endometrial
cancers with lymph node invasion, additional examinations should also be performed;
they consist of a biopsy followed by anatomo-pathological analysis.

1.1. Process Models as Guarded hMSCs

Guarded High-Level Message Sequence Charts (g-HMSCs) capture decision-based
processes, that is, processes where decisions relying on the state of the process
environment regulate the nature of subsequent tasks and their composition. For
example, the choice of performing a coelioscopy or a laparotomy in Fig. 2a is the
outcome of a medical decision relying on the invasion of lymph nodes (N+).
A g-HMSC model is a directed graph with three types of nodes [10, 12].

• A task node captures a process task, that is, a work unit performed by
collaboration of agent instances involved in the process. A g-HMSC task may
be refined into another g-HMSC or in a message sequence chart (MSC) [19]
showing the required sequence of interactions among the involved agent
instances. A task is represented by a box. Outgoing arcs prescribe how the
connected nodes must be sequentially composed.

• A decision node captures a process decision. A decision is characterized by a
set of guards. Each guard is associated with a specific outgoing branch; it
specifies the condition for the tasks along this branch to be performed. Guards
are Boolean expressions on process variables (defined hereafter). A decision is
represented by a diamond with a guard labeling each outgoing branch of the
decision. In simple cases with two branches only, the guard expression may be
moved up inside the decision node with ‘yes’, 'no’ labels attached to the
corresponding branch.

• Initial and terminal nodes represent the start and end of the (sub-)process,
respectively.

The process variables appearing in guards at decision nodes of a g-HMSC model
dictate which paths are to be followed in specific process instances. They get their
values from the occurrence of specific events; no explicit assignment is needed which
makes g-HMSC models much simpler. Process variables may be task-related fluents or
environment tracking variables.

• Fluents encode task occurrences. A fluent FL is an atomic proposition defined
by a set InitFL of initiating events, a set TermFL of terminating events, and an
initial value InitiallyFL that can be true or false [16].

• Tracking variables approximate unobservable environment quantities as
accurately as possible through some observable counterpart [12]. When a
tracking variable appears in a guard, the decision is based on its current value
rather than the actual, unobservable counterpart. In Fig. 2, the Boolean
variable N+ tracks the fact that the patient’s lymph nodes are invaded.

A g-hMSC may have an initial context condition C0 constraining the acceptable
initial values of process variables. In Fig. 2a, the initial context condition is C0 =
Ovarian. This means that the process only applies for treatment of patients suffering
from ovarian cancer; the tracking variable Ovarian is true in the initial state for any
patient following this process.

A g-HMSC task may be annotated with optional information such as its
applicability precondition, its minimum/maximum duration, its cost, the agents
involved in its performance, the resources needed, and so forth. Such annotations are

used for specific types of analysis. For example, Table 1 lists the agents involved in
tasks from Fig. 2.

The g-HMSC language has a formal trace semantics defined in terms of guarded
labelled transition systems (g-LTS), the latter having a trace semantics defined in terms
of LTS [10].

1.2. Guarded LTS for Process Analysis

A guarded LTS (g-LTS) is a transition system whose transitions are labeled by events
and guards. It is a structured form of LTS that reduces state explosion through guard
abstractions. The g-LTS formalism provides a convenient milestone on the way from a
g-HMSC process model to its corresponding LTS; various types of analysis on g-
hMSC process models are performed on g-LTS translations [12].

A guarded LTS (g-LTS) is defined by a structure (S, E, VAR, δ, s0, C0) where:

• S is a finite set of states.
• E is a set of event labels containing MSC interaction events and events

associated with tasks –every task T has two built-in events, denoted by Tstart
and Tend, associated with its start and end, respectively.

• VAR is a set of process variables defined over E.
• δ is a guarded transition relation: δ ⊆ S × (L × GUARD) × S, where GUARD is

the set of Boolean formulae over VAR, and L = E ∪ { τ } (with τ being a label
for non-observable events).

• s0 is the initial state.
• C0 is a Boolean formula over fluents and tracking variables; it captures an

initial context condition playing the same role as in g-HMSCs.

Fig. 3 shows a g-LTS derived from the g-HMSC in Fig. 2a. The guards there appear
between brackets.

Every g-LTS transition is labeled by a guard and by an event. Similarly to g-
HMSCs, a g-LTS guard is a Boolean formula on fluents and tracking variables. Any g-
HMSC can be automatically converted into a g-LTS having the same set of traces. The

Figure 3. g-LTS derived from the g-hMSC process model in Fig. 2a

rewriting algorithm is detailed in [10, 22]. It extends an algorithm for synthesizing LTS
from hMSC [32] so as to cope with guards. The resulting g-LTS abstracts from agents
and captures the set of global behaviors covered by the g-HMSC.

The semantics of a g-LTS is defined in terms of guard-free event traces. An
algorithm for generating a LTS from a g-LTS can be found in [10, 22].

1.3. Analyzing g-LTS Models

The formal trace semantics of the g-HMSC process language enables a variety of
checks on g-HMSC process models converted into g-LTS form.

• Guard analysis. The guards on the various alternatives at any decision point in
a task flow must be satisfiable in the state reached at that point (for subsequent
tasks to be applicable). They may not overlap in that state (for decisions to be
deterministic). They must cover all possible cases in that state (no alternative
branch is missing).

• Detection of inadequate decisions. A decision is said to be inadequate if it
relies on incorrect information about the state of the process environment.
This arises from tracking variables being outdated or inaccurate because of
missing tasks or unexpected events. Every decision in a task flow should be
adequate.

• Verification of task preconditions. All task preconditions should be satisfied
along all possible paths of the model.

• Verification of non-functional requirements on the process. All timing,
resource and cost constraints should be met along every possible path of the
process model.

The formal techniques underlying these various types of checks are detailed and
amply illustrated in [12]. Each of them is based on a different instantiation of the same
generic algorithm for propagating decorations through the process model.

This algorithm propagates generic state decorations through the g-LTS model by
symbolic execution until a fixpoint is reached, that is, until no state decoration changes
if the propagation is applied once more to every transition. The algorithm accumulates
in every state the decorations contributed by every g-LTS execution reaching this state.

As shown in [12], this algorithm is designed to require as little instantiation effort
as possible; for each type of check, the user just needs to instantiate the generic
decoration together with the rule for propagating decorations through a single state
transition. No correctness proofs of the instantiated algorithms are required; the proof
of the generic algorithm gets instantiated similarly.

In particular, the decoration algorithm can be instantiated for generating most
accurate state invariants [12]. A state invariant is an assertion on a specific state of the
process that holds every time this state is visited. The most accurate state invariant at a
state is a Boolean expression on process variables representing the invariant that
accounts for all possible process paths reaching that state and only those. In the
algorithm instantiation for generating such invariants, the decoration is initially false
for every state except the initial state; the latter is decorated with the initial condition
C0. The algorithm propagates invariants through the state machine according to the
outcomes of guards and definitions of process variables.

The automation of some of the composition and decomposition operators in the
next sections relies on the generation of such invariants to guarantee the desired
semantic properties over traces. In the sequel, we will use the following function that
maps every g-LTS state to its most accurate state invariant:

INV: S → INVARIANT
where INVARIANT is the set of Boolean formulas over process variables.

For example, the most accurate state invariant generated for state 5 in Fig. 3 is:
Ovarian ∧ N+.

2. Automating Model Composition and Decomposition Operators

As g-HMSC models have an operational semantics in terms of g-LTS, the automation
of our model composition and decomposition operators is based on the intermediate g-
LTS formalism too.

The automated application of these operators to g-HMSC models proceeds in three
steps.

(a) The input g-hMSC models are transformed into semantically equivalent g-
LTS representations according to the algorithm described in [10].

(b) Operator-specific manipulations on the resulting g-LTS are performed so as
to meet the semantic properties required by the considered operator. This
step includes some basic g-LTS manipulations common to several operators
such as event removal, parallel composition, and minimization. These basic
operations are described in Section 3.

(c) The resulting g-LTS representation is transformed back into a semantically
equivalent g-hMSC. This is the reverse of step (a).

Steps (a) and (c) are the same for all operators. They involve fairly standard
compilation/unparsing techniques. This section focusses on the operator-specific step
(b).

2.1. The Union Operator

This composition operator generates a process model containing all paths that are valid
in the input models and only those. A path is valid if all guards are satisfied along it.
The output model is restructured by merging all tasks that are equivalent. Roughly,
equivalent tasks have the same label and have common continuations –see Section 3.3
for a more precise definition.

Fig. 4 shows the result of applying the Union operator to the process models for
ovarian cancer (Fig. 2 a) and endometrial cancer (Fig. 2 b). Note the new decision node
on cancer type appearing there.

The Union of two g-LTS models is computed in two steps.

1. A single g-LTS is created from the input g-LTS models. The initial state of
this new g-LTS is a decision node whose outgoing guards are the initial
context conditions C0 from each input model, each leading to its
corresponding g-LTS.

2. The resulting g-LTS is minimized so as to factor out paths common to all
input models and integrate their differences in a minimal number of
distinguishing paths. As g-LTS have no canonical minimal form, a heuristic
algorithm inspired from grammar induction [8, 24] is used for this. This
algorithm, described in Section 3.3 below, restructures the g-LTS by merging
“equivalent” states while preserving the required set of traces. All guards are
then simplified so as to be the weakest for guaranteeing this set of traces. The
merge is driven by most accurate invariants generated for each state according
to the fixpoint algorithm introduced in Section 1.3 (see Section 3.3 for details).

The initial context condition of the union model is the disjunction of the initial
context conditions of the input models.

The Union operator is typically applied for model synthesis or for model
comparison.

• Model Synthesis. Composite process models for large sets of instances are
much more difficult to build than dedicated sub-process models involving
fewer instances. In our experience, stakeholders tend to explain their
procedures by instances. In the medical domain, in particular, they often
explain their procedures on a per-pathology basis. As the examples in Fig. 2
and Fig. 4 should suggest, the composite department process model is
obtained simply by taking the union over all pathology-centric sub-models
(see Fig. 1).

• Model comparison. The generated composite model highlights commonalities
and differences among the input models.

For the output composite model to be homogeneous and lexically coherent, the
input models should be comparable; they should share the same terminology and the
same granularity. It may therefore be sometimes necessary to adapt input models
before computing their union. The g-HMSC task refinement/aggregation mechanism
may be used to enforce the latter assumption.

2.2. The Restriction Operator

This decomposition operator generates a simpler process model containing a subset of
valid paths from the input model according to some specific condition called restriction

Figure 4. Union of models for ovarian and endometrial cancer treatments

condition. The latter is a Boolean expression on process variables that characterizes a
subclass of instances meeting the condition.

For example, we may want to restrict the composite department model in Fig. 4 to
highlight the case of ovarian cancers only. The restriction condition is thus Ovarian. The
restricted model obtained is the one in Fig. 2 a.

As another example, we might want to project the composite department model in
Fig. 4 on patients with no lymph node invasion. The restriction condition is thus ¬ N+.
The resulting model in Fig. 5a has one task sequence only. This shows that, when there
is no lymph node invasion, the treatment is the same for ovarian and endometrial
cancers; no decision node remains that distinguishes between those two cancers.

Note that the restriction condition on process variables must not necessarily be
atomic. Fig. 5b shows the restriction of the model in Fig. 4 according to the condition
N+ ∧ Endom.

The Restriction of a g-LTS model to a given restriction condition RC is computed
in three steps, illustrated on the restriction of the g-LTS in Fig. 4 to RC = ¬ N+.

1. The input g-LTS is decorated with state invariants using C0 ∧ RC as invariant at
the initial state to start the propagation, where C0 is the initial context condition
of the input model. States becoming unreachable due to the restriction

condition are thereby identified; such states end up with a false state invariant.
They are shown in white in Fig. 6a.

2. All unreachable states are removed (see Fig. 6b).
3. The resulting g-LTS is minimized in order to obtain a more compact model

while preserving the accepted traces (see Fig. 6c). All guards are simplified to
their weakest form to ensure this. The counterpart at the g-HMSC level
amounts to remove unnecessary decision nodes having a single outcome. For
example, the guards from states 2 and 5 in Fig. 6b are removed.

The initial context condition of the restricted model is the conjunction of the initial
context condition C0 of the input model and the restricted condition RC. The latter
should be stronger than C0 for the operator to have a restriction effect. Conversely, if
RC does not satisfy C0, the output will be an empty model.

The Restriction operator is typically applied to help readers understand complex
processes or to facilitate their analysis.

• Composite models may capture numerous task sequences followed by process
instances having different characteristics. Showing the model for a subset of
them may increase its readability.

• Larger erroneous models may result in slower tool feedback that may be
harder to understand. Analyses on smaller models of subclasses of process
instances may produce faster and more understandable results.

2.3. The Focus Operator

This decomposition operator “projects” a process model on a subset of tasks, called
focus set. All tasks not included in this set are removed in a semantically consistent
way.

For example, Fig. 1 suggests that focusing clinical pathways on a specific
department yields pathology-centric department workflows. A more specific example
of focused model is shown in Fig 7. The Focus operator there yields the patient’s view
(Fig. 7a), the oncologist’s view (Fig. 7b), and the surgeon’s view (Fig. 7c) of the
department workflow in Fig. 4. The focus set includes all tasks where the
corresponding agent is directly involved (see Table 1).

The Focus of a g-LTS model on given tasks is computed in three steps.

1. All events not involved in the focus set are replaced by non-monitorable τ
events (see Section 3.1.1 hereafter).

2. The latter events are removed using the τ-removal algorithm (see Section
3.1.2 hereafter).

3. The resulting g-LTS is minimized (see Section 3.3).

The Focus operator is typically applied for view extraction, model explanation, or
for structuring process documentation.

• A simpler model customized to a specific agent view may increase the
involvement of the corresponding agent.

• Simplifying a complex model by showing only details relevant to the reader
makes the model easier to explain.

• A presentation by agent or department provides a natural organization for
complex documents.

2.4. The Merge Operator

This composition operator is the reverse of Focus. It generates a semantically
consistent parallel composition of the input process models, where the processes from
the input models synchronize on shared tasks.

For example, let us consider the patient’s, oncologist’s, and surgeon’s views of the
department workflow in Fig. 7 a-c. Fig. 7 d shows the merge of these three workflows
that provides a global view of the department workflow for those three agents.

The Merge of g-LTS models is computed in two steps.

1. The input g-LTS models are composed in parallel; all input processes
synchronize on shared events but not on guards. This parallel composition of
g-LTS is detailed in Section 3.2.

2. The compound g-LTS is minimized (see Section 3.3).

Our Merge operator here composes processes by synchronizing them on shared
tasks only. This is different from the variant operator in [11] which also uses timing
information for defining the composition. In [11], input processes share their timeline;
time elapses at the same rate for all of them. The resulting compound model shows
which tasks may be applied concurrently and which ones need to be applied
sequentially in view of timing constraints.

A new Merge operator is introduced here as timing information is in practice not
necessarily available. It may thus always be applied even without such information.

The Merge operator is typically applied for global analysis, view integration, or for
modeling and analysis of parallel workflows.

• Beyond multi-pathology models, the analysis of merged process models
allows us to check whether required properties of the input processes still hold
at a more global level when they are taken together.

• It is worth merging agent-specific views on a model in order to get a more
global view integrating the individual views (e.g., the department view in
Fig. 1) or even to obtain the full composite model.

• A process instance may be involved in multiple workflows. For example, a
patient may follow multiple clinical treatments –e.g., one for colorectal cancer
and another for diabetes. Undesired “feature interactions” or conflicts [23]
may occur between the corresponding processes. For example, a task in one
input model might change process variables of another input model which
might lead to wrong decisions. Analyses on the merged models may help
detecting such conflicts –e .g., by model-checking the merge against desired
properties [10].

As already noted for the Union operator, the input models to be merged should share
the same terminology and the same granularity.

3. Base Operations for g-LTS Composition and Decomposition

This section details basic g-LTS manipulations used in some of the steps for model
composition/decomposition in the previous section.

3.1. Event Removal From a g-LTS Model

The Focus operator was seen to require specific g-LTS events to be removed (see
Section 2.3). This proceeds in two steps.

1. The events to be removed are hidden, that is, they are replaced by τ-events.
2. These τ-events are removed using the τ-removal algorithm; the latter produces a

new g-LTS with equivalent behavior.

3.1.1. g-LTS hiding

The hiding of a set of labels L in g-LTS G = (S, E, VAR, δ, s0, C0) yields the g-LTS

G \ L = (S, E, VAR, δhidden, s0, C0),

where δhidden is the smallest relation meeting the following rules:

G <g,e>! →!! G '
G \L <g,e>! →!! G ' \L

e∉ L G <g,e>! →!! G '
G \L <g,τ>! →!! G ' \L

e∈ L

In these rules, the notation G <g,e>! →!! G ' means that the g-LTS
G = (S, E, VAR, δ, s0, C0)

transits into the g-LTS
G’ = (S, E, VAR, δ, s1, C1)

through a guard g and an event e from its initial state, that is,

• (s0, (g , e), s1) ∈ δ,
• (C0 ∧ g)|e = C1,

where X|e denotes the Boolean expression obtained from X after application of event e.
This operation meets the semantics of process variables; their value is defined in terms
of event applications along event traces, see [12].

3.1.2. τ-removal

The removal of non-observable transitions works in a way similar to known algorithms
on finite automata [18, 26]. In case of g-LTS models, however, guards must be taken
into account to preserve the trace semantics.

Removing τ-transitions from a g-LTS
G = (S, E, VAR, δ, s0, C0)

yields the g-LTS
G’ = (S, E, VAR, δ’, s0, C0)

where
• δ’ = { (s, g

τ ∧ g, e, t) | ∃ u ∈ S such that (u, g, e, t) ∈ δ, e ∈ E,
 and (g

τ
 , u) ∈ τ-CLOSURE(s)},

• τ-CLOSURE(s) denotes the set of pairs (g, t) such that there is a path from s to t
made of τ-labeled transitions only and whose conjunction of guards is g.

3.2. Parallel Composition of g-LTS Models

The Merge operator was seen to require a parallel composition of g-LTS models to be
computed (see Section 2.4).

Let G1 = (S1, E1, VAR1, δ1, s1, C1) and G2 = (S2, E2, VAR2, δ2, s2, C2) denote two g-
LTS models. Their parallel composition defines the following g-LTS:

G1 || G2 = (S1 x S2, E1 ∪ E2, VAR1 ∪ VAR2, δ, (s1, s2), C1 ∧ C2),
where δ is the smallest relation satisfying the following rules:

G1
<g,e>! →!! G1 '

G1 G2
<g,e>! →!! G1 ' G2

2Ee∉ G2
<g,e>! →!! G2 '

G1 G2
<g,e>! →!! G1 G2 '

1Ee∉

G1
<g1,e>! →!! G1 ',G2

<g2 ,e>! →!! G2 '
G1 G2

<g1^g2 ,e>! →!!! G1 ' G2 '
τ≠e

The compound g-LTS behaves asynchronously while synchronizing on shared
events –but not on guards. In the composition, the guard associated with a shared event
is the conjunction of the guards associated with this event in the respective input g-LTS
models.

3.3. Minimization of a g-LTS Model

Similarly to other state formalisms such as statecharts [17], g-LTS have no known
minimal normal form. Even without any algorithm guaranteed to generate a minimal g-
LTS, the composition/decomposition operators in Section 2 should produce process
models that are as compact as possible while meeting the semantic properties required
on them. A heuristic algorithm is therefore proposed.

The algorithm is inspired from state-merging algorithms for automaton induction
[8, 24]. Roughly, state-merging algorithms reduce the state space of an input automaton
by successively merging pairs of equivalent states. Equivalent states are those sharing
continuations, that is, states sharing at least one outgoing transition labelled with the
same event. Merging a state pair (q, q’) may require further merging of subsequent
state pairs to obtain a deterministic solution; shared continuations of q and q’ are folded
up by such further merges. At every merge, the algorithm checks desired properties.
Here, we need to check that no behavior is added. If the target property is violated, the
merging of state pair (q, q’) is discarded; the algorithm then continues with the next
candidate pair.

This algorithm produces a new g-LTS model meeting the following properties:

• the set of traces of this new g-LTS is exactly the same as the set of traces of
the original g-LTS model;

• all guards are simplified so as to be the weakest ones for covering this set of
traces;

• the model has fewer states than the original g-LTS.

The minimization algorithm is illustrated in Fig. 8 on the g-LTS model resulting
from the union of the two process models in Fig. 2. For lack of space, the event labels
are shortened and represent both the start and end events associated with the
corresponding task. The process variable O is true for patients having an ovarian cancer
and false for those having endometrial cancer. The g-LTS model to be minimized is
shown in Fig. 8a. The algorithm proceeds in three steps.

Step 1: Guard strengthening with generated state invariant. This step aims at
getting all the information captured by most accurate state invariants at guarded
transitions before merging. For this,

• the most accurate state invariant is computed for each state using the
decoration propagation algorithm introduced in Section 1.3;

• each guard is strengthened by adding the computed most accurate invariant at
the corresponding state as conjunct.

Figure 8. Minimization through state merging

For a given g-LTS G = (S, E, VAR, δ, s0, C0), this step produces the new g-LTS G’ =
(S, E, VAR, δ’, s0, C0) where

δ’= {(s, g ∧ INV(s), e, s’) | (s, g, e, s’) ∈ δ}.
Table 2 shows the most accurate invariants generated for each state of the g-LTS

in Fig. 8a. The g-LTS after guard strengthening is given in Fig. 8b.

Step 2: Invariant-based state merging. Well-selected state pairs are merged using
an algorithm inspired from [9]. The pairs being selected are those including states that:

• share similar continuations or are successors of non-deterministic states,
• are non-overlapping.

Two states are said to be non-overlapping if:
INV (state1) ∧ INV (state2) = false.

The non-overlapping condition is required to ensure that no behavior is added in
the minimization process, as explained below.

Consider the g-LTS model in Fig. 8b. State 0 is non-deterministic on events; the
two transitions labelled by event Diag lead to merging State 1 and State 2. When
merging transitions with the same label, the disjunction of their respective guards is
taken as new guard. Here we get:

O ∨ ¬ O = true
The merging of State 1 and State 2 results in non-determinism on event Staff

(Fig. 8c). This calls for further merging of State 3 and State 5 (Fig. 8d). The process
continues while such non-determinism propagates (see Fig. 8e).

As stated before, we need to merge non-overlapping states only. The intuition
behind this is suggested in Fig. 9. Let us consider the left fragment in Fig. 9 where two
states s1 and s2 have a single outgoing transition labelled by (guard g1, event e1) and
(guard g2, event e2), respectively. As we merge them (see right fragment in Fig. 9), a
new trace will be accepted if:

INV(s2) |= (INV(s1) ∧ g1)
or

INV(s1) |= (INV(s2) ∧ g2).

Table 2. Most accurate invariants for g-LTS states in Fig. 8a

As the weakest possible guard is true, a new trace might be introduced if INV(s1)
|= INV(s2) or vice-versa. To avoid introducing such prohibited new traces, we merge
non-overlapping states only. In Fig. 8a, State 2 and State 8 share the same outgoing
Staff event; they may however not merge as

INV(State2) = ¬ O
INV(State8) = ¬ O ∧ N+.

Merging those two states would add new behaviors indeed; for example, after
merge, a patient meeting the initial condition

¬ O ∧ N+
might loop into the Biopsy and Anapath events.

Step 3: Guard simplification. All guards resulting from the first two steps are
simplified so as to be the weakest for preserving the set of accepted behaviors. This
step is the reverse of the first step for guard strengthening; it removes the contextual
invariant from each guard. Fig. 8f shows the minimized g-LTS model after guard
simplification.

Simplifying the guards of a g-LTS G = (S, E, VAR, δ, s0, C0) yields a new g-LTS
G= (S, E, VAR, δ’, s0, C0) where

δ’ = {(s, Simplify(g, INV(s)), e, s’) | (s, g, e, s’) ∈ δ}.
The simplification operation Simplify (g, C) of guard g by context C yields the

weakest Boolean expression such that:
Simplify (g, C) ∧ C = g ∧ C.

For example,
Simplify (P ∧ Q, Q) = P.

This step is implemented using standard propositional operators available in
Binary Decision Diagrams libraries.

4. Macro-Operators for Multi-Step Model Construction

The model composition/decomposition operators in Section 2 take one or more g-
HMSC models as input to produce a single g-HMSC model as output. These operators
are thus closed over g-HMSCs and form a basis for a workflow algebra. In the AI
planning tradition, macro-operators can therefore be defined by combining those base
operators. This proves useful for more sophisticated model manipulations.

In the context of Fig.1, typical macro-operator applications would include the
following operator combinations.

• To produce a specific hospital department workflow from multiple clinical
pathways, we first apply the Union operator and then the Focus operator. For
example, the radiotherapy department workflow model is obtained by taking
the Union of clinical pathway models over all different types of cancer and
then the Focus on the resulting model with all radiotherapy tasks in the focus
set.

• The generation of personal treatment documentations is obtained by applying
the Restriction operator to get the patient’s own treatment and then the Focus
operator to compute her specific view.

5. Tool Support

The model composition/decomposition operators in Section 2 are implemented and
integrated in our earlier toolset for process model analysis [12]. The toolset’s g-LTS
level is implemented as an automaton library; all g-LTS composition/decomposition
operators are implemented there as a service layer to the g-HMSC level. Binary
Decision Diagrams [1] are used for capturing and manipulating g-LTS guards
efficiently thanks to the Cudd library [31] also used in the NuSMV model checker [6].

Our toolset makes use of a declarative guarded command language for users to
enter structured process models. The g-HMSC models expressed textually in this input
language are instantly visualized in the graphical syntax used in the paper while being
compiled into an equivalent g-LTS representation. The latter is manipulated by our
various checkers [12] and by the composition/decomposition operators discussed in
this paper. The resulting g-LTS representations (and error messages) are then converted
back to g-HMSCs by use of decompilation techniques [5]. A g-LTS is seen as a control
flow graph from which goto constructs are incrementally replaced by higher-level
constructs such as if-then-else statements, while loops, and so forth.

Currently, the Union, Restriction and Focus operators are fully supported in
roundtrip mode. The Merge operator requires some further work as g-LTS models are
not all restructurable in our current input language; the latter should first be extended
with an explicit fork/join construct with corresponding decompilation algorithms.

6. Evaluation

Our model composition/decomposition operators were applied in the context of a new
particle-therapy center project envisioned by a key industrial player. Particle therapy is
a form of radiotherapy that uses beams of energetic protons, neutrons, or positive ions
for treating a wide variety of cancers.

Two input documents were available that separately described 18 pathology-
centric treatment processes. Each of these 18 process descriptions consisted of a linear
scenario showing a specific sequence of moves through the center with corresponding
pathology-specific treatment in dedicated rooms containing the required equipment.
These 18 scenarios were thus structured according to the complex topology of the
center. No global composite model integrating those 18 patient routes was available;
some project partners tried to build one but did not succeed because of the complexity

of the overall composite process. The global workflow was thus missing for the
projected center.

Our goal was therefore to build an overall composite model for this global
workflow from those 18 scenarios by use of our operators (regardless of the
appropriateness of the provided input scenarios).

Fig 10 gives simplified and anonymized excerpts from the documents available to
us.

The first document is summarized in a table describing the main characteristics of
all treatments given in the center. A simplified version of this table is outlined in Fig.
10a.

• In treatment A, for example, patient X only undergoes imagery through a CT
scan (computed tomography). She is transported to the imagery room using a
treatment couch trolley (referred as “patlog” in Fig. 10). She does not undergo
radiotherapy.

• In treatment B, patient Y does not use a trolley. He undergoes MR imaging
(Magnetic Resonance) without radiotherapy treatment.

Such a table allowed us to identify process variables such as “move_by_patlog”
which is true if the patient is transported by patlog trolley in the center and false
otherwise. The full table allowed us to extract 10 process variables.

The second document described the task sequence for each treatment. The 18
decision-free workflows involve medical tasks (imagery, radiation, etc.) as well as
administrative and logistics tasks performed by employees. Fig. 10b and Fig. 10c
provide simplified examples for treatments A and B. The initial context condition for
these simple workflows was easily derived using available tables such as the one in
Fig. 10 a.

Our challenge was to produce a composite workflow model for the whole center
that covers all 18 treatment scenarios. First, we tried to build the composite model
manually. Like previous attempts by others, we did not succeed. Building a single

accurate workflow model integrating all 18 treatments, that are interfering at places,
turned to be a daunting, error-prone task.

Using our tool, the Union of the 18 workflows was computed to generate the entire
composite model. To get a rough idea of what the resulting model looks like, a portion
of it is outlined in Fig. 11.

We also wanted to validate this model with domain experts. The model turned out
to be too big for careful manual analysis. We therefore used our tool to support the
validation process. Other operators such as Focus and Restrict were applied to present
various views on the composite model; these views were smaller and much easier to
validate. For example, we showed workflows with administrative tasks only (using
Focus), with medical tasks only (using Focus again), and with treatments involving
anesthesia (using Restriction). Errors were detected on those various views, allowing us
to highlight errors in the input task sequences provided to us. After fixing those errors
in the input scenarios, a new Union workflow was generated again in a few seconds.

Taken together, the 18 task sequences contained 147 task nodes. Their Union
drastically reduced the number of task nodes to 26 while introducing 9 decision nodes
on the 10 identified process variables. These decision nodes prevented new,
undesirable behaviors in the model. The task merging produced by the Union operator
was evaluated as very good by domain experts.

7. Related Work

A conceptual framework for classifying and comparing approaches to model merging
is proposed in [2]. This framework can be applied to any type of model. Generic
operators are suggested there for merging two models into one, for slicing a model to
produce a partial view, and so forth. These operators are expected to meet different
algebraic properties such as associativity and commutativity. This framework might be
used to classify our operators. For example, Merge and Union somewhat instantiate the

“merge” generic operator in [2] whereas Restriction and Focus instantiate the “slice”
generic operator. Our four operators in addition meet the properties of idempotency,
commutativity, associativity and totality.

Another instantiation of the “merge” operator from [2] is found in [28] for
composing hierarchical state machines. It appears related to our Union operator with
notable differences, however.

• Our Union operator requires process operands to have the same granularity.
This limitation is overcome in [28] through a Match operator aimed at finding
relationships between the input models before computing their union. The
latter operator is heuristic and uses both static and behavioral properties to
match state pairs in the input models. User intervention may be required to
find correspondences between the input models. Such Match operator might
nicely complement our framework.

• Like our Union operator, the operator in [28] produces a combined model in
which variant behaviors of the input models are parameterized using guards on
their transitions. In our approach, g-HMSC task occurrences may change the
value of process variables. Our guards are added to preserve the required set
of traces; they depend on state invariants. Our decoration algorithm must
therefore be used in the implementation of the Union operator to compute
invariants and guards.

Workflow views are also considered in workflow management systems and web
services [4, 14, 15, 25]. They are used for composing services while keeping private
parts of the underlying process hidden. Such views are obtained by application of so-
called Abstraction or Hiding mechanisms. The latter somewhat correspond to our
Focus operator. Mechanisms corresponding to our Union, Restriction and Merge
operators are apparently not considered in this literature.

Formal operators are also available on Petri nets [29]. Inspired from relational
algebra, they are not restricted to simple Abstraction/Hiding mechanisms. They are,
however, introduced at the fairly low level of Petri nets –rather than at the level of a
process modeling language such as YAWL [33]. No distinction is made between the
modeller’s level and the level at which the trace semantics of the modeling language is
defined. The application of such operators in workflow management situations remains
unclear.

The algorithm for computing the union of two g-LTS is inspired from our previous
work on synthesizing behavior models from scenarios under constraints [8, 9, 21].
There are two main differences. First, the Union operator does not create new traces
whereas the induction-driven technique in [8] aims at generalizing scenario behaviors.
State invariants are used here to avoid merging states that would result in accepting
new traces. Secondly, the Union operator has to deal with guards by recomputing them
after each merge through guard disjunction. Our previous work makes use of pure
event-based LTS.

8. Conclusion

Processes in human-intensive systems may be quite complex, covering multiple views
refering to different concerns, agents, resources, locations, non-functional requirements,
and so forth. Different views on a composite process may be captured through different

process models. Each of these proves useful for specific purposes including their
analysis, documentation, and enactment. Constructing all relevant models manually, in
a semantically consistent way, appears very difficult in practice.

The formal techniques in this paper for automated model composition and
decomposition address this problem. The Union operator allows us to synthesize a
composite model from simpler ones. The commonalities and differences among
different related workflows may thereby be highlighted through a workflow family
model. The Merge operator allows us to integrate multiple agent-specific views or to
analyze concurrent process views. The Restriction operator allows us to filter a
composite model on a specific restriction condition in order to facilitate understanding
and analysis. The Focus operator allows us to filter a composite model on a specific
subset of tasks in order to extract agent-specific views or to produce customized
documentation.

These composition/decomposition operators, informally introduced in [11], are
fully automated here through a variety of manipulations of g-LTS models. They are
integrated in our earlier toolset for building and analyzing critical process models [12].
Our experience of model synthesis and view extraction for a real, challenging
workflow in a particle-therapy center appears quite promising. Our tool was able to
compute complex models by operator applications in a few seconds. It allows on-the-
fly model building upon request by domain experts.

Future work should include the elaboration of guidelines for making effective use
of our operators together with further research on additional operators and useful
macro-operators –in particular, for detaching unfrequent decision paths as explicit
exceptions and vice-versa.

Acknowledgment

We wish to thank Antoine Cailliau for helping us in the automated simplification of
guards in the g-LTS minimization algorithm. Thanks are also due to François Roucoux
and Damien Bertrand for providing interesting examples and material for the case
study in Section 6. This work was supported by the Regional Government of Wallonia
(PIPAS project Nr. 1017087).

References

[1] S.B. Akers, "Binary decision diagrams", IEEE Transactions on Computers, 27(6), 1978, 509-516.
[2] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh, “A manifesto for model

merging”, Proc. GaMMa '06: Intl. Workshop on Global Integrated Model Management, 2006, 5-12.
[3] B. Chen, G. S. Avrunin, E. A. Henneman, L. A. Clarke, L. J. Osterweil, P. L. Henneman, “Analyzing

medical processes”, Proc. ICSE’2008: 30th Intl. Conf. on Software Engineering, ACM-IEEE, 2008,
623-632.

[4] D. Chiu et al., “Workflow view driven cross-organizational interoperability in a web service
environment”, Information Technology and Management 5(3), 2004, 221-250.

[5] C. Cifuentes, "Structuring decompiled graphs", Compiler Construction, Springer-Verlag, 1996.
[6] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, "NuSMV: A new symbolic model verifier", Proc.

CAV’99, LNCS 1633, Springer-Verlag, 1999.
[7] L.A. Clarke, L.J. Osterweil, and G.S. Avrunin, “Supporting human-intensive systems”, Proc. FoSER’10:

FSE/SDP Workshop on Future of Software Engineering Research, ACM, 2010, 87-92.

[8] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde, “Generating annotated behavior models
from end-user scenarios”, IEEE Trans. on Software Engineering, 31(12), Dec. 2005, 1056-1073.

[9] C. Damas, B. Lambeau, and A. van Lamsweerde, “Scenarios, Goals, and State Machines: A Win-Win
Partnership for Model Synthesis”, Proc. FSE’06: 14th ACM Intl. Symp. on the Foundations of
Software Engineering, Portland (OR), November 2006.

[10] C. Damas, B. Lambeau, F. Roucoux, and A. van Lamsweerde , “Analyzing critical process models
through behavior model synthesis”, Proc. ICSE’2009: 31st Intl. Conf. on Software Engineering,
Vancouver, 2009, 441-451.

[11] C. Damas, B. Lambeau, A. van Lamsweerde, "Transformation operators for easier engineering of
medical process models”, Proc. SEHC’2013: 5th Intl. Workshop on Software Engineering in Health
Care (SEHC), San Francisco, ACM-IEEE, May 2013, 39-45.

[12] C. Damas, B. Lambeau, A. van Lamsweerde, “Analyzing Critical Decision-Based Processes”, IEEE
Transaction on Software Engineering Vol. 40 No. 4, April 2014, 338-365.

[13] M. Dumas, W. van der Aalst, A. ter Hofstede, Process-Aware Information Systems. Wiley, 2005
[14] J. Eder and A. Tahamtan, “Temporal consistency of view-based interorganizational workflows”,

Information Systems and e-Business Technologies, 2008, 96-107.
[15] R. Eshuis and P. Grefen, “Constructing customized process views”, Data & Knowledge Engineering,

64(2), 2008, 419-438.
[16] D. Giannakopoulou, J. Magee, “Fluent model checking for event-based systems”, Proc. ESEC/FSE 2003,

Helsinki, 2003.
[17] D. Harel, "Statecharts: A visual formalism for complex systems", Science of computer programming

8(3), 1987, 231-274.
[18] J. E. Hopcroft and J. D. Ullman, Introduction to Authomata Theory, Languages and Computation,

Addison-Wesley, 1979.
[19] ITU, Message Sequence Charts. Recommendation Z.120, Intl. Telecom Union, Telecom.

Standardization Sector, 1996.
[20] G.T. Jun, J.R. Ward and Z. Morris, “Health care process modelling: which method when?”,

International Journal for Quality in Health Care, Vol. 21 No.3, pp. 214-224, 2009.
[21] B. Lambeau, “State-merging DFA induction algorithms with mandatory merge constraints”, Proc.

ICGI08: 9th International Conference on Grammatical Inference, 2008, 139-153.
[22] B. Lambeau, Synthesizing Multi-Model Views of Software Systems, Ph.D. Thesis, Université catholique

de Louvain, 2011.
[23] A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software

Specifications. Wiley, 2009.
[24] K. Lang, B. Pearlmutter and R. Price, “Results of the abbadingo one DFA learning competition and a

new evidence-driven state merging algorithm”, in Grammatical Inference, LNAI 1433, Springer-
Verlag, 1998, 1-12.

[25] D. R. Liu and M. Shen, “Workflow modeling for virtual processes: an order-preserving process-view
approach”, Information Systems, 28(6), 2003, 505-532.

[26] J. Magee and J. Kramer, Concurrency: State Models and Java Programs. Second Edition, John Wiley &
Sons, 2006.

[27] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[28] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave, “Matching and merging of variant

feature specifications”, IEEE Transactions on Software Engineering, 38(6), 2012, 1355-1375.
[29] V. Pankratius and S. Wolffried, “A formal foundation for workflow composition, workflow view

definition, and workflow normalization based on Petri nets”, Proc. 2nd Asia-Pacific Conf. on
Conceptual Modeling, 2005.

[30] M. Renholm, H. Leino-Kilpi, T. Suominen, “Clinical pathways: a systematic review”, Journal of
Nursing Administration 32(4), 2002,196-202.

[31] Somenzi, Fabio. "CUDD: CU decision diagram package release 2.3", University of Colorado at Boulder,
1998.

[32] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of Behavioral Models from Scenarios”, IEEE Trans.
Softw. Engineering, 29(2), 2003, 99-115.

[33] W. van der Aalst et al., “YAWL: yet another workflw language”, Information Systems 30(4), 2005.

