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Abstract. The role of high-quality models is increasingly recognized for driving 
and documenting processes in safety-critical domains such as medical processes. 
In general, the environment of a complex process has to deal with multiple views 
referring to different concerns, agents, resources, locations, and so forth. The 
variety of needs along those views calls for multiple, complementary and 
consistent facets of a composite process model, where each facet addresses a 
specific view. Building multi-view process models is in our experience hard and 
error-prone. To address this challenge, the paper describes formal operators for 
composing process model facets in a coherent way and, conversely, for 
decomposing process models into specific facets that abstract from details 
irrelevant to a specific view. These operators are grounded on the formal trace 
semantics provided by our process language and its supporting analysis toolset. 
The paper shows how these operators are automated and reports on their use in a 
real case study of model construction for a particle-therapy center. 

Keywords. Process modeling, model views, model transformation, process 
analysis, model verification, model synthesis, safety-critical workflows. 

Introduction 

Human-intensive systems involve complex cooperation processes among software 
applications, devices, and people, where the human contributions require domain 
expertise and have a significant impact on the success or failure of the overall mission 
[3, 7]. Such systems are in general safety-critical as exemplified by flight control, 
disaster management, or medical process support systems. Errors in medical systems, 
in particular, are known to cause more deaths yearly than the equivalent of one civil 
aircraft crashing every day. 

Human-intensive processes should be captured through adequate models for 
effective software support [3, 10, 13]. Such models typically capture the control flow 
among tasks performed by the agents forming the considered system. 

In general, human-intensive processes take place in complex environments 
covering a great variety of different aspects –refering to, e.g., different agents from 
different groups (such as organizational departments), different types of resources, 
different locations, and so forth. One process might be only concerned with the tasks 
performed by a specific subset of agents (e.g., a department workflow). Another might 
be a sub-process to be followed by a specific subset of process instances only. Yet 
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another might focus on tasks where specific resources are used. A composite process 
can thus be captured through different views along different levels of detail and 
different aspects to focus on. 

To make this important motivating point further explicit, let us consider a medical 
process for cancer treatment. Different views on it may be captured through different 
workflows (see Fig. 1).  

•  A clinical pathway provides a multi-disciplinary view of the treatment 
required within a specific class of patients having the same pathology [30]. 
For example, we might consider the clinical pathway for treating ovarian 
cancers. The treatment process involves multiple agents cooperating across 
multiple medical departments.  

• A pathology-centric department workflow shows the various decisions and 
tasks to be performed within a single department for a specific pathology. In 
our example, we might consider the workflow for treating ovarian cancers in 
the radiotherapy department. 

• A department workflow provides a global view of the various decisions and 
tasks within a specific department. The process now refers to any patient 
treated in this department. In our example, we might be interested in the 
workflow of the radiotherapy department for any cancer being treated there. 

• An agent-centric workflow focuses on the decisions and tasks of a specific 
agent. For example, the workflow for treating ovarian cancers as seen by the 
patient includes only those tasks in which the patient is involved. It provides a 
good basis for explaining her the treatment. 

Such a simple workflow typology does obviously not cover all possible views one 
might be interested in. For instance, a mono-pathology, mono-agent and mono-
department workflow might be worth considering; it is not shown in Fig. 1. Other 
possible aspects might include medical resources, patient characteristics such as age or 
gender, and so forth. For example, a “reminding workflow” might show only those 
tasks where the patient is responsible for taking specific drugs. 

In such a multi-view setting, it won’t make much sense to build a specific model 
for every process view of interest. Our objective instead is to generate models along 
specific views from others –and, in particular, to generate a composite model from 
partial views associated with specific aspects. 

 



To achieve this, [11] informally introduced a general approach based on operators 
for composing or decomposing process models. 

• Composition operators produce a composite model from separate ones in a 
semantically coherent way. Among these, the Union operator produces a 
model containing all paths that are valid in the input models and only those. 
The Merge operator produces a model covering all admissible interleavings of 
the concurrent input models.  

• Decomposition operators produce specific views from a composite model in a 
semantically coherent way; each view abstracts from details irrelevant to it. 
The Restriction operator  produces a model whose paths are followed by a 
subclass of process instances only. The Focus operator produces a model 
whose tasks form a subset of the set of tasks captured by the input model.  

Composition/decomposition operators are aimed at supporting model construction, 
analysis, documentation and enactment. 

• Model construction. A complex multi-view process model may be built by 
composition of view-specific fragments. In Fig. 1, the multi-pathology model 
for a department workflow might be obtained by application of the Union 
operator on all pathology-centric workflows managed by the department. 

• Model analysis. Checks for desired properties may be performed manually by 
domain experts or automatically through formal analyses [3, 10, 12].  
−  Manual inspections prove much easier when dedicated views are provided 

on the process model. Details relevant to a specific expert are obtained by 
application of the Focus operator on a specific department or agent, or by 
application of the Restriction operator to specific process instances.   

−  Formal property checks may be applied to smaller models obtained by 
application of decomposition operators, for increased efficiency and easier 
understanding of counterexamples, or to larger models obtained by 
application of composition operators, for checking desired properties at a 
more global level. 

• Model documentation. Any documentation generated from a process model 
should only cover those aspects of the process that are specifically relevant to 
the target audience. The Restriction and Focus operators may be applied to 
remove irrelevant aspects. 

• Model enactment. The execution of concurrent process models considered in 
isolation might violate resource limitation constraints. Sound composition 
operators provide a means for handling this. 

This paper expands the overall approach informally introduced in [11] with three 
main contributions.  

• Formal techniques allowing those model composition and decomposition 
operators to be fully automated. In passing, a new variant of the Merge 
operator is introduced which proves frequently needed in practice.  

• A tool implementing those formal techniques, integrated in our current formal 
toolset for process model analysis [12].  

• An evaluation of our approach on a real, complex case study suggested by an 
industrial partner for orchestrating treatment processes in a particle-therapy 
center. 



The language of guarded high-level message sequence charts (g-HMSC) is taken 
as process formalism for automating our operators. The g-HMSC language is a simple 
flowchart-like formalism for modeling multi-agent processes involving decisions on 
process variables [10, 12]. The language has a formal trace semantics defined in terms 
of guarded labelled transition systems (g-LTS), the latter having a trace semantics 
defined in terms of labelled transition systems (LTS) [10, 26, 27]. Automating g-
HMSC composition/decomposition operators eventually reduces to g-LTS 
manipulations. 

The paper is organized as follows. Section 1 summarizes some background 
material on the g-HMSC and g-LTS formalisms together with the different types of 
analysis being currently supported. Section 2 describes the various techniques for 
computing the Union, Restriction, Focus, and Merge of process models. Section 3 
details basic common g-LTS manipulations involved in these techniques. Section 4 
suggests how useful macro-operators can be defined by combining those composition 
and decomposition operators. Section 5 briefly discusses implementation aspects of the 
proposed techniques in our current toolset. Section 6 reports on the evaluation of our 
approach on a real, challenging modeling problem. Section 7 reviews some relevant 
related work before concluding. 

1. Modeling and Analyzing Decision-based Processes 

The g-HMSC language is a simple flowchart-style formalism for modeling multi-agent 
processes involving decisions on process variables. It is intended to be used by process 
analysts while being close enough to the informal sketches provided by medical experts 
[20]. The language has a formal semantics to enable different types of analysis [10, 12]. 
Fig. 2 shows g-HMSC model fragments for treating ovarian and endometrial cancers, 
respectively. These examples are simplified for explanation purposes. Roughly, the 
processes consist of a diagnosis task, a staff meeting and a surgery task. The choice of 
a specific surgical intervention (coelioscopy, laparotomy or lymphectomy) depends on 
the type of cancer and on a possible invasion of lymph nodes (N+). For endometrial 
cancers with lymph node invasion, additional examinations should also be performed; 
they consist of a biopsy followed by anatomo-pathological analysis. 

 



1.1. Process Models as Guarded hMSCs 

Guarded High-Level Message Sequence Charts (g-HMSCs) capture decision-based 
processes, that is, processes where decisions relying on the state of the process 
environment regulate the nature of subsequent tasks and their composition. For 
example, the choice of performing a coelioscopy or a laparotomy in Fig. 2a is the 
outcome of a medical decision relying on the invasion of lymph nodes (N+). 
A g-HMSC model is a directed graph with three types of nodes [10, 12]. 

• A task node captures a process task, that is, a work unit performed by 
collaboration of agent instances involved in the process.  A g-HMSC task may 
be refined into another g-HMSC or in a message sequence chart (MSC) [19] 
showing the required sequence of interactions among the involved agent 
instances. A task is represented by a box. Outgoing arcs prescribe how the 
connected nodes must be sequentially composed. 

• A decision node captures a process decision. A decision is characterized by a 
set of guards. Each guard is associated with a specific outgoing branch; it 
specifies the condition for the tasks along this branch to be performed. Guards 
are Boolean expressions on process variables (defined hereafter). A decision is 
represented by a diamond with a guard labeling each outgoing branch of the 
decision. In simple cases with two branches only, the guard expression may be 
moved up inside the decision node with ‘yes’, 'no’ labels attached to the 
corresponding branch.  

• Initial and terminal nodes represent the start and end of the (sub-)process, 
respectively.  

The process variables appearing in guards at decision nodes of a g-HMSC model 
dictate which paths are to be followed in specific process instances. They get their 
values from the occurrence of specific events; no explicit assignment is needed which 
makes g-HMSC models much simpler. Process variables may be task-related fluents or 
environment tracking variables. 

• Fluents encode task occurrences. A fluent FL is an atomic proposition defined 
by a set InitFL of initiating events, a set TermFL of terminating events, and an 
initial value InitiallyFL that can be true or false [16].  

• Tracking variables approximate unobservable environment quantities as 
accurately as possible through some observable counterpart [12]. When a 
tracking variable appears in a guard, the decision is based on its current value 
rather than the actual, unobservable counterpart. In Fig. 2, the Boolean 
variable N+ tracks the fact that the patient’s lymph nodes are invaded. 

A g-hMSC may have an initial context condition C0 constraining the acceptable 
initial values of process variables. In Fig. 2a, the initial context condition is C0 = 
Ovarian. This means that the process only applies for treatment of patients suffering 
from ovarian cancer; the tracking variable Ovarian is true in the initial state for any 
patient following this process. 

A g-HMSC task may be annotated with optional information such as its 
applicability precondition, its minimum/maximum duration, its cost, the agents 
involved in its performance, the resources needed, and so forth. Such annotations are 



used for specific types of analysis. For example, Table 1 lists the agents involved in 
tasks from Fig. 2. 

The g-HMSC language has a formal trace semantics defined in terms of guarded 
labelled transition systems (g-LTS), the latter having a trace semantics defined in terms 
of LTS [10]. 

1.2. Guarded LTS for Process Analysis 

A guarded LTS (g-LTS) is a transition system whose transitions are labeled by events 
and guards.  It is a structured form of LTS that reduces state explosion through guard 
abstractions. The g-LTS formalism provides a convenient milestone on the way from a 
g-HMSC process model to its corresponding LTS; various types of analysis on g-
hMSC process models are performed on g-LTS translations [12].  

A guarded LTS (g-LTS) is defined by a structure (S, E, VAR, δ, s0, C0) where:  

• S is a finite set of states. 
• E is a set of event labels containing MSC interaction events and events 

associated with tasks –every task T has two built-in events, denoted by Tstart 
and Tend, associated with its start and end, respectively.  

• VAR is a set of process variables defined over E.  
• δ is a guarded transition relation: δ ⊆ S × (L × GUARD) × S, where GUARD is 

the set of Boolean formulae over VAR, and L = E ∪ { τ } (with τ being a label 
for non-observable events). 

• s0 is the initial state.  
• C0 is a Boolean formula over fluents and tracking variables; it captures an 

initial context condition playing the same role as in g-HMSCs. 

Fig. 3 shows a g-LTS derived from the g-HMSC in Fig. 2a. The guards there appear 
between brackets. 

Every g-LTS transition is labeled by a guard and by an event. Similarly to g-
HMSCs, a g-LTS guard is a Boolean formula on fluents and tracking variables. Any g-
HMSC can be automatically converted into a g-LTS having the same set of traces. The 

 

 

Figure 3.  g-LTS derived from the g-hMSC process model in Fig. 2a 

 



rewriting algorithm is detailed in [10, 22]. It extends an algorithm for synthesizing LTS 
from hMSC [32] so as to cope with guards. The resulting g-LTS abstracts from agents 
and captures the set of global behaviors covered by the g-HMSC.  

The semantics of a g-LTS is defined in terms of guard-free event traces. An 
algorithm for generating a LTS from a g-LTS can be found in [10, 22]. 

1.3. Analyzing  g-LTS Models 

The formal trace semantics of the g-HMSC process language enables a variety of 
checks on g-HMSC process models converted into g-LTS form.  

• Guard analysis. The guards on the various alternatives at any decision point in 
a task flow must be satisfiable in the state reached at that point (for subsequent 
tasks to be applicable). They may not overlap in that state (for decisions to be 
deterministic). They must cover all possible cases in that state (no alternative 
branch is missing).  

• Detection of inadequate decisions. A decision is said to be inadequate if it 
relies on incorrect information about the state of the process environment. 
This arises from tracking variables being outdated or inaccurate because of 
missing tasks or unexpected events. Every decision in a task flow should be 
adequate. 

• Verification of task preconditions. All task preconditions should be satisfied 
along all possible paths of the model. 

• Verification of non-functional requirements on the process. All timing, 
resource and cost constraints should be met along every possible path of the 
process model.  

The formal techniques underlying these various types of checks are detailed and 
amply illustrated in [12]. Each of them is based on a different instantiation of the same 
generic algorithm for propagating decorations through the process model.  

This algorithm propagates generic state decorations through the g-LTS model by 
symbolic execution until a fixpoint is reached, that is, until no state decoration changes 
if the propagation is applied once more to every transition. The algorithm accumulates 
in every state the decorations contributed by every g-LTS execution reaching this state.  

As shown in [12], this algorithm is designed to require as little instantiation effort 
as possible; for each type of check, the user just needs to instantiate the generic 
decoration together with the rule for propagating decorations through a single state 
transition. No correctness proofs of the instantiated algorithms are required; the proof 
of the generic algorithm gets instantiated similarly. 

In particular, the decoration algorithm can be instantiated for generating most 
accurate state invariants [12]. A state invariant is an assertion on a specific state of the 
process that holds every time this state is visited. The most accurate state invariant at a 
state is a Boolean expression on process variables representing the invariant that 
accounts for all possible process paths reaching that state and only those. In the 
algorithm instantiation for generating such invariants, the decoration is initially false 
for every state except the initial state; the latter is decorated with the initial condition 
C0. The algorithm propagates invariants through the state machine according to the 
outcomes of guards and definitions of process variables. 



The automation of some of the composition and decomposition operators in the 
next sections relies on the generation of such invariants to guarantee the desired 
semantic properties over traces. In the sequel, we will use the following function that 
maps every g-LTS state to its most accurate state invariant: 

INV:  S → INVARIANT 
where INVARIANT is the set of Boolean formulas over process variables.  

For example, the most accurate state invariant generated for state 5 in Fig. 3 is:  
Ovarian ∧ N+. 

2. Automating Model Composition and Decomposition Operators  

As g-HMSC models have an operational semantics in terms of g-LTS, the automation 
of our model composition and decomposition operators is based on the intermediate g-
LTS formalism too.  

The automated application of these operators to g-HMSC models proceeds in three 
steps. 

(a) The input g-hMSC models are transformed into semantically equivalent g-
LTS representations according to the algorithm described in [10]. 

(b) Operator-specific manipulations on the resulting g-LTS are performed so as 
to meet the semantic properties required by the considered operator. This 
step includes some basic g-LTS manipulations common to several operators 
such as event removal, parallel composition, and minimization. These basic 
operations are described in Section 3. 

(c) The resulting g-LTS representation is transformed back into a semantically 
equivalent g-hMSC. This is the reverse of step (a). 

Steps (a) and (c) are the same for all operators. They involve fairly standard 
compilation/unparsing techniques. This section focusses on the operator-specific step 
(b). 

2.1. The Union Operator 

This composition operator generates a process model containing all paths that are valid 
in the input models and only those. A path is valid if all guards are satisfied along it. 
The output model is restructured by merging all tasks that are equivalent. Roughly, 
equivalent tasks have the same label and have common continuations –see Section 3.3 
for a more precise definition. 

Fig. 4 shows the result of applying the Union operator to the process models for 
ovarian cancer (Fig. 2 a) and endometrial cancer (Fig. 2 b). Note the new decision node 
on cancer type appearing there. 

The Union of two g-LTS models is computed in two steps. 

1. A single g-LTS is created from the input g-LTS models. The initial state of 
this new g-LTS is a decision node whose outgoing guards are the initial 
context conditions C0 from each input model, each leading to its 
corresponding g-LTS. 



2. The resulting g-LTS is minimized so as to factor out paths common to all 
input models and integrate their differences in a minimal number of 
distinguishing paths. As g-LTS have no canonical minimal form, a heuristic 
algorithm inspired from grammar induction [8, 24] is used for this. This 
algorithm, described in Section 3.3 below, restructures the g-LTS by merging  
“equivalent” states while preserving the required set of traces. All guards are 
then simplified so as to be the weakest for guaranteeing this set of traces. The 
merge is driven by most accurate invariants generated for each state according 
to the fixpoint algorithm introduced in Section 1.3 (see Section 3.3 for details). 

The initial context condition of the union model is the disjunction of the initial 
context conditions of the input models. 

The Union operator is typically applied for model synthesis or for model 
comparison. 

• Model Synthesis. Composite process models for large sets of instances are 
much more difficult to build than dedicated sub-process models involving 
fewer instances. In our experience, stakeholders tend to explain their 
procedures by instances. In the medical domain, in particular, they often 
explain their procedures on a per-pathology basis. As the examples in Fig. 2 
and Fig. 4 should suggest, the composite department process model is 
obtained simply by taking the union over all pathology-centric sub-models 
(see Fig. 1). 

• Model comparison. The generated composite model highlights commonalities 
and differences among the input models.  

For the output composite model to be homogeneous and lexically coherent, the 
input models should be comparable; they should share the same terminology and the 
same granularity. It may therefore be sometimes necessary to adapt input models 
before computing their union. The g-HMSC task refinement/aggregation mechanism 
may be used to enforce the latter assumption. 

2.2. The Restriction Operator 

This decomposition operator generates a simpler process model containing a subset of 
valid paths from the input model according to some specific condition called restriction 

Figure 4. Union of models for ovarian and endometrial cancer treatments  

 



condition. The latter is a Boolean expression on process variables that characterizes a 
subclass of instances meeting the condition. 

For example, we may want to restrict the composite department model in Fig. 4 to 
highlight the case of ovarian cancers only. The restriction condition is thus Ovarian. The 
restricted model obtained is the one in Fig. 2 a. 

As another example, we might want to project the composite department model in 
Fig. 4 on patients with no lymph node invasion. The restriction condition is thus ¬ N+. 
The resulting model in Fig. 5a has one task sequence only. This shows that, when there 
is no lymph node invasion, the treatment is the same for ovarian and endometrial 
cancers; no decision node remains that distinguishes between those two cancers. 

Note that the restriction condition on process variables must not necessarily be 
atomic. Fig. 5b shows the restriction of the model in Fig. 4 according to the condition 
N+ ∧ Endom. 

The Restriction of a g-LTS model to a given restriction condition RC is computed 
in three steps, illustrated on the restriction of the g-LTS in Fig. 4 to RC = ¬ N+. 

1. The input g-LTS is decorated with state invariants using C0 ∧ RC as invariant at 
the initial state to start the propagation, where C0 is the initial context condition 
of the input model. States becoming unreachable due to the restriction 

 

 



condition are thereby identified; such states end up with a false state invariant. 
They are shown in white in Fig. 6a.  

2. All unreachable states are removed (see Fig. 6b). 
3. The resulting g-LTS is minimized in order to obtain a more compact model 

while preserving the accepted traces (see Fig. 6c). All guards are simplified to 
their weakest form to ensure this. The counterpart at the g-HMSC level 
amounts to remove unnecessary decision nodes having a single outcome. For 
example, the guards from states 2 and 5 in Fig. 6b are removed. 

The initial context condition of the restricted model is the conjunction of the initial 
context condition C0 of the input model and the restricted condition RC. The latter 
should be stronger than C0 for the operator to have a restriction effect. Conversely, if 
RC does not satisfy C0, the output will be an empty model. 

The Restriction operator is typically applied to help readers understand complex 
processes or to facilitate their analysis. 

• Composite models may capture numerous task sequences followed by process 
instances having different characteristics.  Showing the model for a subset of 
them may increase its readability. 

• Larger erroneous models may result in slower tool feedback that may be 
harder to understand. Analyses on smaller models of subclasses of process 
instances may produce faster and more understandable results. 

2.3. The Focus Operator 

This decomposition operator “projects” a process model on a subset of tasks, called 
focus set. All tasks not included in this set are removed in a semantically consistent 
way. 

For example, Fig. 1 suggests that focusing clinical pathways on a specific 
department yields pathology-centric department workflows. A more specific example 
of focused model is shown in Fig 7. The Focus operator there yields the patient’s view 
(Fig. 7a), the oncologist’s view (Fig. 7b), and the surgeon’s view (Fig. 7c) of the 
department workflow in Fig. 4. The focus set includes all tasks where the 
corresponding agent is directly involved (see Table 1).  

The Focus of a g-LTS model on given tasks is computed in three steps. 

1. All events not involved in the focus set are replaced by non-monitorable τ 
events (see Section 3.1.1 hereafter).  

2. The latter events are removed using the τ-removal algorithm  (see Section 
3.1.2 hereafter).  

3. The resulting g-LTS is minimized (see Section 3.3). 

The Focus operator is typically applied for view extraction, model explanation, or 
for structuring process documentation. 

• A simpler model customized to a specific agent view may increase the 
involvement of the corresponding agent. 

• Simplifying a complex model by showing only details relevant to the reader 
makes the model easier to explain. 

• A presentation by agent or department provides a natural organization for 
complex documents. 



2.4. The Merge Operator 

This composition operator is the reverse of Focus. It generates a semantically 
consistent parallel composition of the input process models, where the processes from 
the input models synchronize on shared tasks.  

For example, let us consider the patient’s, oncologist’s, and surgeon’s views of the 
department workflow in Fig. 7 a-c. Fig. 7 d shows the merge of these three workflows 
that provides a global view of the department workflow for those three agents.      

The Merge of g-LTS models is computed in two steps. 

1. The input g-LTS models are composed in parallel; all input processes 
synchronize on shared events but not on guards. This parallel composition of 
g-LTS is detailed in Section 3.2.  

2. The compound g-LTS is minimized (see Section 3.3). 

Our Merge operator here composes processes by synchronizing them on shared 
tasks only. This is different from the variant operator in [11] which also uses timing 
information for defining the composition. In [11], input processes share their timeline; 
time elapses at the same rate for all of them. The resulting compound model shows 
which tasks may be applied concurrently and which ones need to be applied 
sequentially in view of timing constraints.  

A new Merge operator is introduced here as timing information is in practice not 
necessarily available. It may thus always be applied even without such information.  

 



The Merge operator is typically applied for global analysis, view integration, or for 
modeling and analysis of parallel workflows. 

• Beyond multi-pathology models, the analysis of merged process models 
allows us to check whether required properties of the input processes still hold 
at a more global level when they are taken together. 

• It is worth merging agent-specific views on a model in order to get a more 
global view integrating the individual views (e.g., the department view in 
Fig. 1) or even to obtain the full composite model. 

• A process instance may be involved in multiple workflows. For example, a 
patient may follow multiple clinical treatments –e.g., one for colorectal cancer 
and another for diabetes. Undesired “feature interactions” or conflicts [23] 
may occur between the corresponding processes. For example, a task in one 
input model might change process variables of another input model which 
might lead to wrong decisions. Analyses on the merged models may help 
detecting such conflicts –e .g., by model-checking the merge against desired 
properties [10]. 

As already noted for the Union operator, the input models to be merged should share 
the same terminology and the same granularity. 

3. Base Operations for g-LTS Composition and Decomposition 

This section details basic g-LTS manipulations used in some of the steps for model 
composition/decomposition in the previous section. 

3.1. Event Removal From a g-LTS Model 

The Focus operator was seen to require specific g-LTS events to be removed (see 
Section 2.3). This proceeds in two steps. 

1. The events to be removed are hidden, that is, they are replaced by τ-events. 
2. These τ-events are removed using the τ-removal algorithm; the latter produces a 

new g-LTS with equivalent behavior. 

3.1.1.  g-LTS hiding 

The hiding of a set of labels L in g-LTS G = (S, E, VAR, δ, s0, C0) yields the g-LTS  

G \ L = (S, E, VAR, δhidden, s0, C0), 

where δhidden is the smallest relation meeting the following rules: 

G <g,e>! →!! G '
G \L <g,e>! →!! G ' \L

e∉ L  G <g,e>! →!! G '
G \L <g,τ>! →!! G ' \L

e∈ L  

In these rules, the notation G <g,e>! →!! G '  means that the g-LTS  
G = (S, E, VAR, δ, s0, C0) 

transits into the g-LTS  
G’ = (S, E, VAR, δ, s1, C1) 

through a guard g and an event e from its initial state, that is, 



• (s0, (g , e), s1) ∈ δ, 
• (C0 ∧ g)|e = C1, 

where X|e  denotes the Boolean expression obtained from X after application of event e. 
This operation meets the semantics of process variables; their value is defined in terms 
of event applications along event traces, see [12]. 

3.1.2. τ-removal 

The removal of non-observable transitions works in a way similar to known algorithms 
on finite automata [18, 26]. In case of g-LTS models, however, guards must be taken 
into account to preserve the trace semantics. 

Removing τ-transitions from a g-LTS  
G = (S, E, VAR, δ, s0, C0) 

yields the g-LTS  
G’ = (S, E, VAR, δ’, s0, C0)  

where 
• δ’ = { (s, g

τ ∧ g, e, t) | ∃ u ∈ S such that (u, g, e, t) ∈ δ, e ∈ E, 
 and (g

τ
 , u) ∈ τ-CLOSURE(s)}, 

• τ-CLOSURE(s) denotes the set of pairs (g, t) such that there is a path from s to t 
made of τ-labeled transitions only and whose conjunction of guards is g. 

3.2. Parallel Composition of g-LTS Models 

The Merge operator was seen to require a parallel composition of g-LTS models to be 
computed (see Section 2.4). 

Let G1 = (S1, E1, VAR1, δ1, s1, C1) and G2 = (S2, E2, VAR2, δ2, s2, C2) denote two g-
LTS models. Their parallel composition defines the following g-LTS: 

G1 || G2 =  (S1 x S2, E1 ∪ E2, VAR1 ∪ VAR2, δ, (s1, s2), C1 ∧ C2), 
where δ is the smallest relation satisfying the following rules: 

G1
<g,e>! →!! G1 '

G1 G2
<g,e>! →!! G1 ' G2

2Ee∉    G2
<g,e>! →!! G2 '

G1 G2
<g,e>! →!! G1 G2 '

1Ee∉  

G1
<g1,e>! →!! G1 ',G2

<g2 ,e>! →!! G2 '
G1 G2

<g1^g2 ,e>! →!!! G1 ' G2 '
τ≠e  

The compound g-LTS behaves asynchronously while synchronizing on shared 
events –but not on guards. In the composition, the guard associated with a shared event 
is the conjunction of the guards associated with this event in the respective input g-LTS 
models. 

3.3. Minimization of a g-LTS Model 

Similarly to other state formalisms such as statecharts [17], g-LTS have no known 
minimal normal form. Even without any algorithm guaranteed to generate a minimal g-
LTS, the composition/decomposition operators in Section 2 should produce process 
models that are as compact as possible while meeting the semantic properties required 
on them. A heuristic algorithm is therefore proposed. 



The algorithm is inspired from state-merging algorithms for automaton induction 
[8, 24]. Roughly, state-merging algorithms reduce the state space of an input automaton 
by successively merging pairs of equivalent states. Equivalent states are those sharing 
continuations, that is, states sharing at least one outgoing transition labelled with the 
same event. Merging a state pair (q, q’) may require further merging of subsequent 
state pairs to obtain a deterministic solution; shared continuations of q and q’ are folded 
up by such further merges. At every merge, the algorithm checks desired properties. 
Here, we need to check that no behavior is added. If the target property is violated, the 
merging of state pair (q, q’) is discarded; the algorithm then continues with the next 
candidate pair. 

This algorithm produces a new g-LTS model meeting the following properties:  

• the set of traces of this new g-LTS  is exactly the same as the set of traces of 
the original g-LTS model; 

• all guards are simplified so as to be the weakest ones for covering this set of 
traces; 

• the model has fewer states than the original g-LTS. 

The minimization algorithm is illustrated in Fig. 8 on the g-LTS model resulting 
from the union of the two process models in Fig. 2. For lack of space, the event labels 
are shortened and represent both the start and end events associated with the 
corresponding task. The process variable O is true for patients having an ovarian cancer 
and false for those having endometrial cancer. The g-LTS model to be minimized is 
shown in Fig. 8a.  The algorithm proceeds in three steps. 

Step 1: Guard strengthening with generated state invariant. This step aims at 
getting all the information captured by most accurate state invariants at guarded 
transitions before merging. For this, 

• the most accurate state invariant is computed for each state using the 
decoration propagation algorithm introduced in Section 1.3; 

• each guard is strengthened by adding the computed most accurate invariant at 
the corresponding state as conjunct. 

Figure 8. Minimization through state merging 



For a given g-LTS G = (S, E, VAR, δ, s0, C0), this step produces the new g-LTS G’ =  
(S, E, VAR, δ’, s0, C0) where 

δ’= {(s, g ∧ INV(s), e, s’) | (s, g, e, s’) ∈ δ}. 
Table 2 shows the most accurate invariants generated for each state of the g-LTS 

in Fig. 8a. The g-LTS after guard strengthening is given in Fig. 8b.   

Step 2: Invariant-based state  merging. Well-selected state pairs are merged using 
an algorithm inspired from [9]. The pairs being selected are those including states that:  

• share similar continuations or are successors of non-deterministic states,  
• are non-overlapping.   

Two states are said to be non-overlapping if: 
INV (state1) ∧ INV (state2) = false. 

The non-overlapping condition is required to ensure that no behavior is added in 
the minimization process, as explained below. 

Consider the g-LTS model in Fig. 8b.  State 0 is non-deterministic on events; the 
two transitions labelled by event Diag lead to merging State 1 and State 2. When 
merging transitions with the same label, the disjunction of their respective guards is 
taken as new guard. Here we get:  

O ∨ ¬ O  = true 
The merging of State 1 and State 2 results in non-determinism on event Staff 

(Fig. 8c). This calls for further merging of State 3 and State 5 (Fig. 8d). The process 
continues while such non-determinism propagates (see Fig. 8e). 

As stated before, we need to merge non-overlapping states only. The intuition 
behind this is suggested in Fig. 9. Let us consider the left fragment in Fig. 9 where two 
states s1 and s2 have a single outgoing transition labelled by (guard g1, event e1) and 
(guard g2, event e2), respectively. As we merge them (see right fragment in Fig. 9), a 
new trace will be accepted if: 

INV(s2) |= (INV(s1) ∧ g1)  
or  

INV(s1) |= (INV(s2) ∧ g2). 

Table 2. Most accurate invariants for g-LTS states in Fig. 8a 

 



As the weakest possible guard is true, a new trace might be introduced if INV(s1) 
|= INV(s2) or vice-versa. To avoid introducing such prohibited new traces, we merge 
non-overlapping states only. In Fig. 8a, State 2 and State 8 share the same outgoing 
Staff event; they may however not merge as  

INV(State2) = ¬ O 
INV(State8) = ¬ O ∧ N+. 

Merging those two states would add new behaviors indeed; for example, after 
merge, a patient meeting the initial condition  

¬ O ∧ N+ 
might loop into the Biopsy and Anapath events. 

Step 3: Guard simplification. All guards resulting from the first two steps are 
simplified so as to be the weakest for preserving the set of accepted behaviors. This 
step is the reverse of the first step for guard strengthening; it removes the contextual 
invariant from each guard. Fig. 8f shows the minimized g-LTS model after guard 
simplification. 

Simplifying the guards of a g-LTS G = (S, E, VAR, δ, s0, C0) yields a new g-LTS 
G= (S, E, VAR, δ’, s0, C0) where 

δ’ = {(s, Simplify(g, INV(s)), e, s’) | (s, g, e, s’) ∈ δ}. 
The simplification operation Simplify (g, C) of guard g by context C yields the 

weakest Boolean expression such that: 
Simplify (g, C) ∧ C  =  g ∧ C. 

For example,  
Simplify (P ∧ Q, Q) = P. 

This step is implemented using standard propositional operators available in 
Binary Decision Diagrams libraries. 

4. Macro-Operators for Multi-Step Model Construction 

The model composition/decomposition operators in Section 2 take one or more g-
HMSC models as input to produce a single g-HMSC model as output. These operators 
are thus closed over g-HMSCs and form a basis for a workflow algebra. In the AI 
planning tradition, macro-operators can therefore be defined by combining those base 
operators. This proves useful for more sophisticated model manipulations.  

In the context of Fig.1, typical macro-operator applications would include the 
following operator combinations. 

 



• To produce a specific hospital department workflow from multiple clinical 
pathways, we first apply the Union operator and then the Focus operator. For 
example, the radiotherapy department workflow model is obtained by taking 
the Union of clinical pathway models over all different types of cancer and 
then the Focus on the resulting model with all radiotherapy tasks in the focus 
set. 

• The generation of personal treatment documentations is obtained by applying 
the Restriction operator to get the patient’s own treatment and then the Focus 
operator to compute her specific view. 

5. Tool Support 

The model composition/decomposition operators in Section 2 are implemented and 
integrated in our earlier toolset for process model analysis [12]. The toolset’s g-LTS 
level is implemented as an automaton library; all g-LTS composition/decomposition 
operators are implemented there as a service layer to the g-HMSC level. Binary 
Decision Diagrams [1] are used for capturing and manipulating g-LTS guards 
efficiently thanks to the Cudd library [31] also used in the NuSMV model checker [6]. 

Our toolset makes use of a declarative guarded command language for users to 
enter structured process models. The g-HMSC models expressed textually in this input 
language are instantly visualized in the graphical syntax used in the paper while being 
compiled into an equivalent g-LTS representation. The latter is manipulated by our 
various checkers [12] and by the composition/decomposition operators discussed in 
this paper. The resulting g-LTS representations (and error messages) are then converted 
back to g-HMSCs by use of decompilation techniques [5]. A g-LTS is seen as a control 
flow graph from which goto constructs are incrementally replaced by higher-level 
constructs such as if-then-else statements, while loops, and so forth. 

Currently, the Union, Restriction and Focus operators are fully supported in 
roundtrip mode. The Merge operator requires some further work as g-LTS models are 
not all restructurable in our current input language; the latter should first be extended 
with an explicit fork/join construct with corresponding decompilation algorithms. 

6. Evaluation 

Our model composition/decomposition operators were applied in the context of a new 
particle-therapy center project envisioned by a key industrial player. Particle therapy is 
a form of radiotherapy that uses beams of energetic protons, neutrons, or positive ions 
for treating a wide variety of cancers.  

Two input documents were available that separately described 18 pathology-
centric treatment processes. Each of these 18 process descriptions consisted of a linear 
scenario showing a specific sequence of moves through the center with corresponding 
pathology-specific treatment in dedicated rooms containing the required equipment. 
These 18 scenarios were thus structured according to the complex topology of the 
center. No global composite model integrating those 18 patient routes was available; 
some project partners tried to build one but did not succeed because of the complexity 



of the overall composite process. The global workflow was thus missing for the 
projected center.  

Our goal was therefore to build an overall composite model for this global 
workflow from those 18 scenarios by use of our operators (regardless of the 
appropriateness of the provided input scenarios). 

Fig 10 gives simplified and anonymized excerpts from the documents available to 
us.  

The first document is summarized in a table describing the main characteristics of 
all treatments given in the center. A simplified version of this table is outlined in Fig. 
10a.  

• In treatment A, for example, patient X only undergoes imagery through a CT 
scan (computed tomography). She is transported to the imagery room using a 
treatment couch trolley (referred as “patlog” in Fig. 10). She does not undergo 
radiotherapy.  

• In treatment B, patient Y does not use a trolley. He undergoes MR imaging 
(Magnetic Resonance) without radiotherapy treatment. 

Such a table allowed us to identify process variables such as “move_by_patlog” 
which is true if the patient is transported by patlog trolley in the center and false 
otherwise. The full table allowed us to extract 10 process variables. 

The second document described the task sequence for each treatment. The 18 
decision-free workflows involve medical tasks (imagery, radiation, etc.) as well as 
administrative and logistics tasks performed by employees. Fig. 10b and Fig. 10c 
provide simplified examples for treatments A and B. The initial context condition for 
these simple workflows was easily derived using available tables such as the one in 
Fig. 10 a. 

Our challenge was to produce a composite workflow model for the whole center 
that covers all 18 treatment scenarios. First, we tried to build the composite model 
manually. Like previous attempts by others, we did not succeed. Building a single 

 



accurate workflow model integrating all 18 treatments, that are interfering at places, 
turned to be a daunting, error-prone task.    

Using our tool, the Union of the 18 workflows was computed to generate the entire 
composite model. To get a rough idea of what the resulting model looks like, a portion 
of it is outlined in Fig. 11. 

We also wanted to validate this model with domain experts. The model turned out 
to be too big for careful manual analysis. We therefore used our tool to support the 
validation process. Other operators such as Focus and Restrict were applied to present 
various views on the composite model; these views were smaller and much easier to 
validate. For example, we showed workflows with administrative tasks only (using 
Focus), with medical tasks only (using Focus again), and with treatments involving 
anesthesia (using Restriction). Errors were detected on those various views, allowing us 
to highlight errors in the input task sequences provided to us. After fixing those errors 
in the input scenarios, a new Union workflow was generated again in a few seconds. 

Taken together, the 18 task sequences contained 147 task nodes. Their Union 
drastically reduced the number of task nodes to 26 while introducing 9 decision nodes 
on the 10 identified process variables. These decision nodes prevented new, 
undesirable behaviors in the model. The task merging produced by the Union operator 
was evaluated as very good by domain experts. 

7. Related Work 

A conceptual framework for classifying and comparing approaches to model merging 
is proposed in [2]. This framework can be applied to any type of model. Generic 
operators are suggested there for merging two models into one, for slicing a model to 
produce a partial view, and so forth. These operators are expected to meet different 
algebraic properties such as associativity and commutativity.  This framework might be 
used to classify our operators. For example, Merge and Union somewhat instantiate the 

 



“merge” generic operator in [2] whereas Restriction and Focus instantiate the “slice” 
generic operator. Our four operators in addition meet the properties of idempotency, 
commutativity, associativity and totality. 

Another instantiation of the “merge” operator from [2] is found in [28] for 
composing hierarchical state machines. It appears related to our Union operator with 
notable differences, however. 

• Our Union operator requires process operands to have the same granularity. 
This limitation is overcome in [28] through a Match operator aimed at finding 
relationships between the input models before computing their union. The 
latter operator is heuristic and uses both static and behavioral properties to 
match state pairs in the input models. User intervention may be required to 
find correspondences between the input models. Such Match operator might 
nicely complement our framework. 

• Like our Union operator, the operator in [28] produces a combined model in 
which variant behaviors of the input models are parameterized using guards on 
their transitions. In our approach, g-HMSC task occurrences may change the 
value of process variables. Our guards are added to preserve the required set 
of traces; they depend on state invariants. Our decoration algorithm must 
therefore be used in the implementation of the Union operator to compute 
invariants and guards. 

Workflow views are also considered in workflow management systems and web 
services [4, 14, 15, 25]. They are used for composing services while keeping private 
parts of the underlying process hidden. Such views are obtained by application of so-
called Abstraction or Hiding mechanisms. The latter somewhat correspond to our 
Focus operator. Mechanisms corresponding to our Union, Restriction and Merge 
operators are apparently not considered in this literature. 

Formal operators are also available on Petri nets [29]. Inspired from relational 
algebra, they are not restricted to simple Abstraction/Hiding mechanisms. They are, 
however, introduced at the fairly low level of Petri nets –rather than at the level of a 
process modeling language such as YAWL [33]. No distinction is made between the 
modeller’s level and the level at which the trace semantics of the modeling language is 
defined. The application of such operators in workflow management situations remains 
unclear. 

The algorithm for computing the union of two g-LTS is inspired from our previous 
work on synthesizing behavior models from scenarios under constraints [8, 9, 21]. 
There are two main differences. First, the Union operator does not create new traces 
whereas the induction-driven technique in [8] aims at generalizing scenario behaviors. 
State invariants are used here to avoid merging states that would result in accepting 
new traces. Secondly, the Union operator has to deal with guards by recomputing them 
after each merge through guard disjunction. Our previous work makes use of pure 
event-based LTS.  

8. Conclusion 

Processes in human-intensive systems may be quite complex, covering multiple views 
refering to different concerns, agents, resources, locations, non-functional requirements, 
and so forth. Different views on a composite process may be captured through different 



process models. Each of these proves useful for specific purposes including their 
analysis, documentation, and enactment. Constructing all relevant models manually, in 
a semantically consistent way, appears very difficult in practice.  

The formal techniques in this paper for automated model composition and 
decomposition address this problem. The Union operator allows us to synthesize a 
composite model from simpler ones. The commonalities and differences among 
different related workflows may thereby be highlighted through a workflow family 
model. The Merge operator allows us to integrate multiple agent-specific views or to 
analyze concurrent process views. The Restriction operator allows us to filter a 
composite model on a specific restriction condition in order to facilitate understanding 
and analysis. The Focus operator allows us to filter a composite model on a specific 
subset of tasks in order to extract agent-specific views or to produce customized 
documentation.   

These composition/decomposition operators, informally introduced in [11], are 
fully automated here through a variety of manipulations of g-LTS models. They are 
integrated in our earlier toolset for building and analyzing critical process models [12]. 
Our experience of model synthesis and view extraction for a real, challenging 
workflow in a particle-therapy center appears quite promising. Our tool was able to 
compute complex models by operator applications in a few seconds.  It allows on-the-
fly model building upon request by domain experts.   

Future work should include the elaboration of guidelines for making effective use 
of our operators together with further research on additional operators and useful 
macro-operators –in particular, for detaching unfrequent decision paths as explicit 
exceptions and vice-versa.  

Acknowledgment  

We wish to thank Antoine Cailliau for helping us in the automated simplification of 
guards in the g-LTS minimization algorithm. Thanks are also due to François Roucoux 
and Damien Bertrand for providing interesting examples and material for the case 
study in Section 6. This work was supported by the Regional Government of Wallonia 
(PIPAS project Nr. 1017087). 

References 

[1] S.B. Akers, "Binary decision diagrams", IEEE Transactions on Computers, 27(6), 1978, 509-516. 
[2] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh, “A manifesto for model 

merging”, Proc. GaMMa '06: Intl. Workshop on Global Integrated Model Management, 2006, 5-12. 
[3] B. Chen, G. S. Avrunin, E. A. Henneman, L. A. Clarke, L. J. Osterweil, P. L. Henneman, “Analyzing 

medical processes”, Proc. ICSE’2008: 30th Intl. Conf. on Software Engineering, ACM-IEEE, 2008, 
623-632. 

[4] D. Chiu et al., “Workflow view driven cross-organizational interoperability in a web service 
environment”, Information Technology and Management 5(3), 2004, 221-250. 

[5] C. Cifuentes, "Structuring decompiled graphs", Compiler Construction, Springer-Verlag, 1996. 
[6] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, "NuSMV: A new symbolic model verifier", Proc. 

CAV’99, LNCS 1633, Springer-Verlag, 1999. 
[7] L.A. Clarke, L.J. Osterweil, and G.S. Avrunin, “Supporting human-intensive systems”, Proc. FoSER’10: 

FSE/SDP Workshop on Future of Software Engineering Research, ACM, 2010, 87-92. 



[8] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde, “Generating annotated behavior models 
from end-user scenarios”, IEEE Trans. on Software Engineering, 31(12), Dec. 2005, 1056-1073. 

[9] C. Damas, B. Lambeau, and A. van Lamsweerde, “Scenarios, Goals, and State Machines: A Win-Win 
Partnership for Model Synthesis”, Proc. FSE’06: 14th ACM Intl. Symp. on the Foundations of 
Software Engineering, Portland (OR), November 2006. 

[10] C. Damas, B. Lambeau, F. Roucoux, and A. van Lamsweerde , “Analyzing critical process models 
through behavior model synthesis”, Proc. ICSE’2009: 31st Intl. Conf. on Software Engineering, 
Vancouver, 2009, 441-451. 

[11] C. Damas, B. Lambeau, A. van Lamsweerde, "Transformation operators for easier engineering of 
medical process models”, Proc. SEHC’2013: 5th Intl. Workshop on Software Engineering in Health 
Care (SEHC), San Francisco, ACM-IEEE, May 2013, 39-45. 

[12] C. Damas, B. Lambeau, A. van Lamsweerde, “Analyzing Critical Decision-Based Processes”, IEEE 
Transaction on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 

[13] M. Dumas, W. van der Aalst, A. ter Hofstede,  Process-Aware Information Systems. Wiley, 2005 
[14] J. Eder and A. Tahamtan, “Temporal consistency of view-based interorganizational workflows”, 

Information Systems and e-Business Technologies, 2008, 96-107. 
[15] R. Eshuis and P. Grefen, “Constructing customized process views”, Data & Knowledge Engineering, 

64(2), 2008, 419-438. 
[16] D. Giannakopoulou, J. Magee, “Fluent model checking for event-based systems”, Proc. ESEC/FSE 2003, 

Helsinki, 2003. 
[17] D. Harel, "Statecharts: A visual formalism for complex systems", Science of computer programming 

8(3), 1987, 231-274. 
[18] J. E. Hopcroft and J. D. Ullman, Introduction to Authomata Theory, Languages and Computation, 

Addison-Wesley, 1979. 
[19] ITU, Message Sequence Charts. Recommendation Z.120, Intl. Telecom Union, Telecom. 

Standardization Sector, 1996. 
[20] G.T. Jun, J.R. Ward and Z. Morris, “Health care process modelling: which method when?”, 

International Journal for Quality in Health Care,  Vol. 21 No.3, pp. 214-224, 2009. 
[21] B. Lambeau, “State-merging DFA induction algorithms with mandatory merge constraints”, Proc. 

ICGI08: 9th International Conference on Grammatical Inference, 2008, 139-153. 
[22] B. Lambeau, Synthesizing Multi-Model Views of Software Systems, Ph.D. Thesis, Université catholique 

de Louvain, 2011. 
[23] A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software 

Specifications. Wiley, 2009. 
[24] K. Lang, B. Pearlmutter and R. Price, “Results of the abbadingo one DFA learning competition and a 

new evidence-driven state merging algorithm”, in Grammatical Inference, LNAI 1433, Springer-
Verlag, 1998, 1-12. 

[25] D. R. Liu and M. Shen, “Workflow modeling for virtual processes: an order-preserving process-view 
approach”, Information Systems, 28(6), 2003, 505-532. 

[26] J. Magee and J. Kramer, Concurrency: State Models and Java Programs. Second Edition, John Wiley & 
Sons, 2006. 

[27] R. Milner, Communication and Concurrency. Prentice-Hall, 1989. 
[28] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave, “Matching and merging of variant 

feature specifications”, IEEE Transactions on Software Engineering, 38(6), 2012, 1355-1375. 
[29] V. Pankratius and S. Wolffried, “A formal foundation for workflow composition, workflow view 

definition, and workflow normalization based on Petri nets”, Proc. 2nd Asia-Pacific Conf. on 
Conceptual Modeling, 2005. 

[30] M. Renholm, H. Leino-Kilpi, T. Suominen, “Clinical pathways: a systematic review”, Journal of 
Nursing Administration 32(4), 2002,196-202. 

[31] Somenzi, Fabio. "CUDD: CU decision diagram package release 2.3", University of Colorado at Boulder, 
1998. 

[32] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of Behavioral Models from Scenarios”, IEEE Trans. 
Softw. Engineering, 29(2), 2003, 99-115. 

[33] W. van der Aalst et al., “YAWL: yet another workflw language”, Information Systems 30(4), 2005. 
 


