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Abstract. This paper elaborates on some of the fundamental contributions
made by John Mylopoulos in the area of Requirements Engineering.  We
specifically focus on the use of goal models and their soft goals for reasoning
about alternative options arising in the requirements engineering process. A
personal account of John�s qualitative reasoning technique for comparing
alternatives is provided first. A quantitative but lightweight technique for
evaluating alternative options is then presented. This technique builds on
mechanisms introduced by the qualitative scheme while overcoming some
problems raised by it. A meeting scheduling system is used as a running
example to illustrate the main ideas.
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1   Introduction

Poor requirements were recurrently recognized to be the major cause of software
problems such as cost overruns, delivery delays, failure to meet expectations, or
degradations in the environment controlled by the software. The early awareness of
the so-called requirements problem  [2], [3], [6] raised preliminary efforts to develop
modeling languages for requirements definition and analysis [1], [41], [18]. With the
increasing complexity of software-intensive systems, the research challenges raised
by the requirements problem were so significant that an active community emerged in
the nineties with dedicated conferences, workshops, working groups, networks, and
journals. The term �requirements engineering� (RE) was introduced to refer to the
process of eliciting, evaluating, specifying, consolidating, and changing the
objectives, functionalities, qualities, and constraints to be achieved by a software-
intensive system.

John Mylopoulos was involved in requirements engineering research since the
early days. His ICSE�82 paper brought early RE research efforts significantly further
[16]. The SADT graphical language [41] allowed analysts to model two dual system
views, the data view and the operation view, together with rudimentary forms of
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events, triggering operations, and performing agents. As in Structured Analysis [13],
stepwise model refinement was supported. The RML language introduced in [16]
provided richer structuring mechanisms such as generalization, aggregation and
classification. In that sense it was a precursor to object-oriented analysis techniques.
These structuring mechanisms were applicable to three kinds of conceptual units:
entities, operations, and constraints. Constraints were expressed in a formal assertion
language providing, in particular, built-in constructs for temporal referencing. RML
was also the first requirements modeling language to have a formal semantics, defined
in terms of mappings to first-order predicate logic [17]. The RML breakthrough was
made possible, I believe, thanks to John�s unique position at the intersection of three
different areas: database modeling [42], [34], knowledge representation [5], and
formal specification [4].

In the early nineties, John�s group and mine converged on two observations
(without any interaction at that time):

•  Models for RE needed richer and higher-level abstractions than those
provided by design modeling languages and software specification
techniques. (It took more than a decade for this observation to gain wide
acceptance [33], [37], [22], [25]).

•  Some well-established AI techniques were relevant to the RE challenges
we wanted to address, in particular in the area of general problem solving,
knowledge representation, and knowledge acquisition [21], [35].

Goal-Oriented Requirements Engineering (GORE) emerged from these premises.
Two GORE frameworks appeared independently: KAOS [10], [11] and NFR/i* [35],
[44]. While both frameworks addressed common targets such as modeling goals and
their responsible agents, there were differences and complementarities in focus.

•  By and large, the emphasis in NFR/i* was more on qualitative reasoning
about soft goals for: analysis of goal contributions [8]; evaluation of
alternative goal refinements [36]; reasoning about dependencies among
organizational agents [44] and vulnerabilities resulting from such
dependencies [32]; customization of user-software interactions [19]; and
transition to agent-oriented programming [7].

•  In KAOS, the emphasis was more on semi-formal and formal reasoning
about behavioral goals for: derivation of goal refinements [12], goal
operationalizations [30], and goal assignments [29];  goal-based risk
analysis [28]; conflict management [27]; and behavior model synthesis
from goals and scenarios [9].

KAOS was more oriented towards goal satisfaction whereas NFR/I* was more
oriented towards goal satisficing. Beyond our complementary approaches, there were
parallel efforts towards formal goal-based model checking and animation [15], [43],
[39] and security analysis [32], [24].

In this overall setting, this paper focuses on what appears to me among the most
important contributions of John�s group to RE, namely,

•  the introduction and use of soft goals as criteria for evaluating alternative
options arising throughout the RE process;

•  the exploitation of goal models for evaluating such options through
qualitative reasoning schemes.



This choice of focus is inevitably biased by my research interests and by the ways
John�s work has influenced my own efforts. The purpose of the paper is to provide a
brief personal account of John�s work in this area and discuss some continuation
aimed at addressing various issues raised by it.

Section 2 reviews the various types of alternative options we can find during
requirements elicitation and evaluation. Section 3 briefly discusses goal models
together with the role played by soft goals in them. Section 4 outlines the qualitative
reasoning technique in [35], illustrates its use on a meeting scheduling system, and
discusses some problems we may experience with it. Section 5 presents a lightweight
quantitative technique aimed at addressing these problems while sharing the same
underlying principles.

2 Alternative Options in Requirements Engineering

In any software project, we need to discover, understand, formulate, analyze and
agree on what problem should be solved, why such problem needs to be solved, and
who should be involved in the responsibility of solving that problem. The problem
arises within some broader context. It is in general rooted in a complex
organizational, technical, or physical system. This system is made of components such
as organizational units, people playing specific roles, devices such as measurement
instruments, sensors and actuators, and pre-existing software. The aim of the project
is to improve this system by building a software solution to the problem and plugging
it into the system. We therefore need to consider two versions of the same system:

•  the system-as-is is the system as it exists before the software is built into it,
•  the system-to-be is the system as it should be when the software will be

built and operate in it.
Our job as requirements engineers is to explore the desired effects of the software-

to-be on its surrounding environment together with the assumptions we need to make
about this environment. While doing so, we have to make decisions among alternative
options arising at multiple places [26], in particular:

•  When we have elicited an objective of the system-to-be and want to
decompose it into sub-objectives; different decompositions might be
envisioned, and we need to select a �best� one.

•  When we have identified some likely and critical risk; different
countermeasures might be envisioned, and we need to select a �best� one.

•  When we have detected a conflict between objectives or requirements and
want to resolve it; different resolutions might be envisioned, and we need
to select a �best� one.

•  When we operationalize a system objective through some combination of
functional features, constraints, and assumptions; different combinations
might be envisioned, and we need to select a �best� one.

•  When we consider alternative assignments of responsibilities among
components of the system-to-be �in particular, alternative software-



environment boundaries where more or less functionality is automated;
�best� alternatives must eventually be selected.

All such situations involve system design decisions (not to be confused with
software design decisions). Once such decisions have been made, we need to
recursively elicit, evaluate, document, and consolidate new requirements and
assumptions based on them. Different decisions result in different system proposals
which, in turn, will result in different software architectures.

Consider a meeting scheduling system, for example. The objective of knowing the
constraints of invited participants might be decomposed into a sub-objective of
knowing these constraints through email requests or, alternatively, a sub-objective of
knowing them through access to their electronic agenda. A system based on e-mail
communication for getting constraints will be different at places from one based on e-
agendas. Likewise, different system proposals will result from an alternative where
meeting initiators are taking responsibility for resolving date conflicts and a more
automated alternative where the software-to-be is responsible for this.

3 Goal Models and the Role of Soft Goals

The system-to-be is intended to meet a number of objectives. These are highlighted as
first-class citizens in a goal model where they are interrelated through
positive/negative contribution links. A goal is a prescriptive statement of intent the
system should satisfy through cooperation of its agents. An agent is an active system
component having to play some role in goal satisfaction through adequate control of
system items [26].

Goal satisfaction may involve a variety of system agents defining the system scope.
The finer-grained a goal is, the fewer agents are required to satisfy it. A requirement
is a goal under responsibility of a single agent of the software-to-be. An expectation is
a goal under responsibility of a single agent in the environment of the software-to-be.
Expectations cannot be enforced by the software-to-be; they form one kind of
assumption we need to make for the system to satisfy its goals.

To be under the sole responsibility of an agent, a goal must be realizable by this
agent [29]. This means roughly that the agent must be able to control the state
variables constrained by the goal specification and to monitor the state variables to be
evaluated in this specification.

While reasoning about goal satisfaction in the RE process, we often need to use
domain properties [26]. These are descriptive statements about the system unlike
goals; the latter are prescriptive. Domain properties are expected to hold invariably
regardless of how the system will behave  [20], [38]. The distinction between
descriptive and prescriptive statements is important. Goals may need to be refined
into subgoals, negotiated with stakeholders, assigned to agents responsible for them,
weakened in case of conflict, or strengthened or discarded in case of unacceptable
exposure to risks. Unlike prescriptive statements, domain properties are not subject to
such decisions in the RE process.

A goal is either a behavioral goal or a soft goal. A behavioral goal prescribes
intended system behaviors declaratively. It implicitly defines a maximal set of



admissible behaviors [11]. Behavioral goals can be Achieve or Maintain/Avoid goals.
An Achieve goal prescribes some TargetCondition to be established sooner or later
when some current condition holds. A Maintain goal prescribes some GoodCondition to
be maintained. (Similarly, an Avoid goal prescribes some BadCondition to be avoided.)

Unlike behavioral goals, a soft goal cannot be established in a clear-cut sense [35].
In a meeting scheduling system, for example, we cannot say in a strict sense whether
a specic system behavior satisfies the goal of reducing the meeting initiator�s load or
not. We may however say that one system behavior reduces the initiator�s load further
than another. Said in more general terms, the phrase �goal satisfaction� should not be
taken in a strict sense for a soft goal as we cannot observe that the goal is satisfied by
some behaviors and not satisfied by others. The phrase �goal satisficing� is
sometimes used instead; the degree of satisfaction of a soft goal may be higher in one
alternative than in another.

Behavioral goals are therefore used for deriving system operations to satisfy them
[11], [30] whereas soft goals are used for comparing alternative options to select best
ones [35], [8]. We come back to this in Sections 4 and 5.

The behavioral/soft goal typology should not be confused with a goal
categorization into functional goals, underlying system services, and non-functional
goals, prescribing qualiy of service. For example, a confidentiality goal
Avoid[SensitiveInformationDisclosed] is traditionally considered as non-functional; it is not
a soft goal though as we can always determine whether or not this goal is satisfied in a
clear-cut sense.

A goal model is basically an annotated AND/OR graph showing how higher-level
goals are satisfied by lower-level ones (goal refinement) and, conversely, how lower-
level goals contribute to the satisfaction of higher-level ones (goal abstraction) [10],
[35].

Fig. 1 shows a fragment of a goal model for the meeting scheduling system. The
goals appearing there are behavioral goals.

In a goal model, the top goals are the highest-level ones to be still in the system
scope whereas the bottom goals are requirements or expectations assignable to single
system agents (see the bottom of Fig. 1). In such graph, an AND-refinement link
relates a goal to a set of subgoals called refinement. Domain properties may also be
included in a refinement. The meaning is that the parent goal can be
satisfied/satisficed by satisfying/satisficing all subgoals in the refinement, assuming
the domain properties to hold. A goal node can be OR-refined into multiple AND-
refinements; each of these is called alternative for satisfying/satisficing the parent
goal. The meaning of multiple alternative refinements is that the parent goal can be
satisfied/satisficed by satisfying/satisficing the conjoined subgoals in any of the
alternative refinements.

For example, the goal ParticipantConstraintsKnownFromRequest in Fig. 1 is OR-refined
into three alternatives: ConstraintsAcquiredByEmail, ConstraintsAcquiredFromE-Agenda, and
ConstraintsTakenByDefault. The goal ConstraintsAcquiredByEmail is in turn AND-refined
into three subgoals: ConstraintsRequested, ConstraintsTransmitted, and
CommunicationWorking.



A goal model may also document conflicts that were detected among two or more
goals (see Fig. 2 in the next section for an example). A conflict arises when behavioral
goals cannot be satisfied together or when one of the soft goals contributes negatively
to the other goals.

Goal nodes in a goal model are annotated with individual features such as their
name and precise specification in natural language, their type, category, priority level,
elicitation source, etc. Such annotations act as placeholders for dedicated techniques
used in the RE process [26]. For example, priority levels are used for conflict
management and requirements prioritization.

The systems as-is and to-be can both be captured within the same model. The two
versions share high-level goals and differ along refinement branches of common
parent goals. We can thereby capture multiple variants in a system family.

Goal models can be used for a wide variety of purposes [25], [26], including: the
evaluation of alternative options; the structuring and documentation of satisfaction
arguments; the checking of the correctness of goal refinements and
operationalizations; model animation; the analysis of risks, security threats, and
conflicts; requirements prioritization; traceability management; the derivation of
software architecture drafts; and the semi-automated generation of the requirements
document. In this paper we focus on the use of goal models as a basis for evaluating
alternative options.

 Figure 1 –  Goal model fragment for the meeting scheduling system
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4 Qualitative Reasoning about Alternative Options

Throughout the RE process we need to explore alternative options of different types,
as introduced in Section 2, and select best ones based on specific evaluation criteria.
In a GORE framework, options may refer to alternative goal refinements,
responsibility assignments, operationalizations, conflict resolutions, risk resolutions,
and threat resolutions.

To compare options and select best ones, we need evaluation criteria. The great
idea set forth by the NFR framework  was to use the soft goals identified in the goal
model as evaluation criteria [35]. Different alternatives contribute to different degrees
of satisficing these soft goals. Although originally described in the context of
alternative goal refinements, the qualitative evaluation technique in [35] does in fact
work for the other types of options as well.

The general idea is to use qualitative estimations for assessing the positive or
negative contribution of alternative options to the soft goals [35]. The aim is to
determine, in each alternative, a qualitative degree of satisfaction of the top-level soft
goals in the goal refinement graph; the option with best degrees of satisfaction is then
selected.

To achieve this we need, for each alternative option, to:
•  assess its positive or negative influence on each leaf soft goal in the model,
•  propagate such influence bottom-up in the goal graph until we reach the

top-level soft goals.
Let us make these steps more precise while seeing them in action on our meeting

scheduling system. Fig. 2 shows a portion of a goal model with soft goal refinements
and conflicts � e.g., the faster the constraint acquisition process or the fewer the
interactions with a participant, the less accurate the acquired constraints with respect
to the participant�s actual constraints.

4. 1 Assessing the qualitative contribution of alternative options to leaf soft goals

We first need to qualitatively assess the extent to which each alternative contributes to
the various leaf goals in soft goal refinement trees � e.g., �++� (very positively), �+�
(positively), �-� (negatively), �--� (very negatively), �n� (neutral). This amounts to
putting some qualitative weight on refinement and conflict links in the goal model.

Condider our meeting scheduler case study, for example. Fig. 1 highlighted three
alternative options for knowing the participant�s date constraints:

•  acquiring them by email requests,
•  acquiring them by access to the participant�s electronic agenda,
•  taking default constraints (such as working days only).

Table 1 shows the qualitative contribution of these three options to the four leaf
soft goals in Fig. 2. For example, the option ConstraintsAcquiredByEmail might
contribute negatively to the soft goal FastConstraintAcquisition (as an invited participant
might be non-responsive), positively to the soft goal AccurateConstraints (as the
participant is likely to know her actual constraints), negatively to the soft goal
MinimumInteractionForGettingConstraints (as the participant might get multiple email



reminders), etc. On the other hand, the option ConstraintsAcquiredFromE-Agenda might
contribute positively to FastConstraintAcquisition, negatively to AccurateConstraints (as
the participant�s e-agenda is likely to inaccurately reflect her actual availabilities), and
positively to MinimumInteractionForGettingConstraints (as no participant interaction is
required) .

Table 1.  Qualitative contributions of options to leaf soft goals.

Alternative options

Leaf soft goals
Constraints
Acquired
By Email

Constraints
Acquired

FromE-Agenda

Constraints
aken

ByDefault
AccurateConstraints + - -
FastConstraintAcquisition - + +
Minimum Replanning + - -
Minimum Interaction
ForGettingConstraints

- + -

4.2 Bottom-up propagation of qualitative contributions

The next step consists of propagating such contributions upwards in the sof goal
graph through refinement and conflict links. For this we may use a procedure that
assigns qualitative labels to each node in the graph [35]. A node is labelled:

S  (satisficed): if it is satisficeable and not deniable,
D  (denied): if it is deniable but not satisficeable,
C  (conflicting): if it is both satisficeable and deniable,
U  (undetermined): if it is neither satisficeable nor deniable.

 Figure 2 – Upward propagation of satisficing labels in a soft goal refinement graph [26]
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The procedure propagates such labels bottom-up along refinement links, marked as
�+� or �++� according to the strength of the positive contribution, and along conflict
links, marked as �-� or �--�  according to the severity of the negative contribution.
Additional label values can be assigned at intermediate stages of the procedure, e.g.,

U+:  unconclusive positive support,  U-:  unconclusive negative support,
?:  user intervention required for getting an adequate label value.

An upward propagation step from offspring nodes to their parent node goes as
follows.
1. The individual effect of a weighted link from an offspring to its parent is

determined according to propagation rules such as the ones shown in Table 2 (we
only consider a few weights to make things simpler). One additional rule states that
if a node is a refinement node and all its offspring nodes have a S label then this
node gets a S label.  A node will thus in general have multiple labels �one per
incoming link.

2. The various labels thereby collected at a parent node are merged into one single
label. The user is first asked to combine the U+ and U- labels into one or more S,
D, C and U labels. The result is then combined into a single label by choosing the
minimal label according to the following ordering:

S, D ≥ U ≥ C.

Table 2.  Qualitative label propagation rules [35].

Link
weight

+ - n
Offspring

label
Parent
label

S U+ D U

D D U+ U

C ? ? U
U U U U

This upward propagation step is applied recursively until the top-level soft goals
get a single label.

Let us see how this technique works for the options in Fig. 1 and the soft goal
model portion in Fig. 2. We consider the first option ConstraintsAcquiredByEmail in
Table 1; it therefore gets a �S� label at the left bottom in Fig. 2. According to Table 2,
its �+� contribution links to AccurateConstraints and MinimumReplanning yield a �S� label
for these two leaf soft goals (as no other subgoal is shown for the latter goals in the
goal model; otherwise they would get a �U+� instead, unless all other subgoals have a
�S�). On the other hand, the �-� links from this first option to FastConstraintAcquisition
and MinimumInteractionForGettingConstraints yield a “D� label for these two leaf soft
goals in Fig. 2.

At the next step, the �S� label of AccurateConstraints yields a �S� label for
ConvenientSchedule, through a �+� link,  and a �D� label for FastConstraintAcquisition,



through the �-� conflict link shown in Fig. 2. Based on the above ordering, the labels
�D,D� on the latter goal get merged into a single �D�.

At the next step, this �D� label on FastConstraintAcquisition gets propagated through
a �+� link to the parent goal FastScheduling as a �D� label again whereas the latter goal
also gets a �U+� label through a �+� link from its offspring MinimumReplanning (see
Table 2). After user intervention this �U+� might become �U� and the resulting label
merge yields, according to the predefined label ordering, a single �U� label for
FastScheduling. The process goes on upwards until we obtain �U, U, U� labels for the
top soft goal EffectiveMeetingScheduling, which get merged into a single �U� label.

A similar upward propagation for the second option in Table 1, namely,
ConstraintsAcquiredFromE-Agenda, yields �D, U, U� labels for the top soft goal, as
shown in Fig. 3.

4.3 Discussion

Overall the two options ConstraintsAcquiredByEmail and ConstraintsAcquiredFromE-Agenda
seem comparable as they get the same top label after merge, namely, �U�
(undetermined). However, the second option has a �D� label (denied) among the top
labels which might make it less preferred. The third option of just taking default
constraints gets one �D� more at the top which might be a good reason for discarding
it.

This simple meeting scheduling example illustrates some limitations of qualitative
approaches:

•  The propagation rules make labels become rapidly unconclusive as we
move up in the soft goal refinement tree. To overcome this, we might
refine the qualitative labels, weights, and propagation rules in Table 2 to
make them less rough.

Figure 3 –  Propagation of degrees of satisficing for the option ConstraintsAcquiredFromE-Agenda
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•  Still, the various types of labels and link weights have no clear meaning in
terms of system-specific phenomena. Qualitative reasoning schemes
provide some quick and cheap means for rough evaluation in the early
stages of the RE process. Their applicability for effective decision support
based on accurate arguments appears more questionable.

•  All leaf soft goals used as evaluation criteria are considered to have the
same importance. This is rarely the case in practice. For example, the soft
goal AccurateConstraints is much more important than the soft goal
MinimumInteractionForGettingConstraints in view of the key concern of
maximum attendance to the meeting.

Regarding the second limitation above, the problem partly arises from the way soft
goals are specified. Their specification often violates a basic RE principle stating that
goals, requirements and assumptions should be measurable. The specification of a
soft goal should therefore be complemented with a fit criterion that quantifies the
extent to which this goal must be satisfied [40]. For example:

ConvenientSchedule: The scheduled meeting dates shall meet the date constraints of invited
participants as much as possible.

   Fit criterion:  Scheduled dates should fit all actual date constraints of at least 90% of
invited participants.

MinimumInteractionforGettingConstraints: There should be as little interaction as possible
with participants for getting their time constraints.

   Fit criterion: There should be at most 4 interactions per participant to organize a
meeting.

Measurable soft goal specifications open the way to more accurate evaluation as
we discuss now.

5 Lightweight Quantitative Evaluation of Alternative Options

To address the preceding limitations, we may use quantitative estimations for
assessing the positive or negative contribution of alternative options to soft goals. The
aim is to determine the overall score of each option with respect to all the leaf soft
goals in the goal refinement graph, taking their respective importance into account.
The option with highest score is then selected.

To achieve this,
•  We assign different weights to the leaf soft goals in order to reflect their

relative importance.
•  We numerically score each option against the leaf soft goals. The scores

should be grounded on measurable system phenomena related to the fit
criteria of these soft goals.

•  We collect the weights and scores in a weighted matrix for overall
comparison.



5.1 Quantifying option contributions to leaf soft goals through score matrices

Weighted matrices are a standard system engineering technique for quantitative
decision support. Such matrices bear similarities with those used for risk management
within the RE process [14]. They capture estimated scores of each option with respect
to the evaluation criteria used.

•  As our evaluation criteria are the soft goals from the goal model, we first
assign a weight to each leaf soft goal to reflect its importance relatively to
others � typically, a numerical proportion. Such weight can be derived
from the goal�s priority level specified in the goal model [26].

•  A matrix cell associated with an option opt and a leaf soft goal lsg captures
the estimated score of the option with respect to this soft goal. A score X
means that the option is estimated to satisfy the soft goal in X% of the
cases.

•  The last row of the matrix gives the overall score of each option as a
weighted summation of its scores with respect to each leaf soft goal:

totalScore (opt) =    ∑lsg (Score (opt, lsg) ×  Weight (lsg))

Table 3. Weighted matrix for evaluating alternative options against all leaf soft goals [26].

Importance Option scores
Leaf soft goals weighting Constraints

Acquired
By Email

Constraints
Acquired

FromE-Agenda

Constraints
Taken

ByDefault
AccurateConstraints 0.50 0.90 0.30 0.10

Fast
ConstraintAcquisition

0.30 0.50 0.90 1.00

MinimumReplanning 0.10 0.80 0.30 0.10
MinimumInteraction

ForGettingConstraints
0.10 0.50 1.00 1.00

TOTAL 1.00 0.73 0.55 0.46

Table 3 shows such quantitative evaluation for the options and soft goals evaluated
qualitatively in Table 1. In this evaluation, the soft goal AccurateConstraints is
considered relatively much more important than the soft goals
MinimumInteractionForGettingConstraints and MinimumReplanning (the latter having the
same level of limited importance). The first option, ConstraintsAcquiredByEmail, is
estimated to satisfy the soft goal AccurateConstraints in 90 % of the cases �as invited
participants are expected to directly express their own constraints. The 10%
remaining stand for participants confusing dates or having taken other commitments
in the meantime. Overall, this first option outperforms the others in view of the
relative weights assigned to each soft goal.

For this approach to work effectively, we need to be able to determine adequate
option scores against each leaf soft goal in the goal model. Note that the accuracy of
an individual score taken in isolation is not what matters the most. We can draw



meaningful comparative conclusions as long as all scores are set consistently, from
one alternative to the other, as a common basis for making comparisons.
Nevertheless, to avoid subjective estimations resulting in questionable decisions, the
scores should be grounded on domain expertise, experience with similar systems and
interpretations in terms of measurable phenomena in the system.

5.2 Deriving option scores from measures of soft goal satisficing

The goal model may be used to estimate option scores that are grounded on
measurable system phenomena. The general idea is to: identify gauge variables
referred to in the specification of the soft goals and their fit criterion; evaluate such
variables along the refinement tree of the various options; and derive options scores
from the values obtained.

Identifying and evaluating gauge variables. A gauge variable is a variable
associated with a specific leaf soft goal in the goal model. It may capture:

•  a quantity the soft goal prescribes to Improve, Increase, Reduce,
Maximize, or  Minimize;

•  the estimated cost of satisficing this soft goal;
•  the estimated time taken for satisficing it.

Consider the leaf soft goal MinimumInteractionForGettingConstraints in the meeting
scheduling system. Its specification was seen to be:

There should be as little interaction as possible with participants for getting their time
constraints.

   Fit criterion: There should be at most 4 interactions per participant to organize a
meeting.

The variable ExpectedNumberOfInteractions may be derived from this specification as
a gauge variable for this soft goal. It estimates the average number of interactions
between a participant and the scheduler to get the participant�s constraints. Note that
the full specification implicitly specifies an ideal target value (0) and an acceptability
threshold (4).

To support the evaluation of options based on soft goals grounded on measurable
phenomena, a gauge variable should meet the following requirements.

•  Soft goal measure: To enable comparisons of options with respect to soft
goals, the variable should provide some measure of the degree of
satisficing of its associated leaf soft goal.

•  Cumulative quantity: To enable accurate estimations of its values for the
different options, the variable should propagate additively along the AND-
trees refining these options in the goal model.

Fig. 4 explains what is meant by additive propagation. Let lsg denote a leaf soft
goal and gv a cumulative gauge variable associated with it. In view of the semantics
of goal AND-refinement, the value of gv at a parent goal G in the refinement tree of a
specific option is obtained by summing up the values of gv at the subgoals G1 and



G2. When a value for the variable at some subgoal makes no sense, we just ignore it
in the summation.

The merits of an option are obtained by upward propagation, along the option�s
refinement tree, of the cumulative values of the gauge variables measuring the
satisficing of the leaf soft goals in the goal model, starting from the option�s own leaf
subgoals. The reason for performing such up-propagation is that the values of gauge
variables will generally be more easily and accurately estimated for the finer-grained
leaf subgoals of the option.

Table 4 illustrates the evaluation of gauge variables by up-propagation from the
leaf subgoals in the various options. Each gauge variable there corresponds to a
quantity that the associated leaf soft goal in Table 3 prescribes to Maximize or
Minimize.

Table 4. Values of gauge variables for soft goal satisficing by alternative options [26].

Option values
Soft-goal gauge variable Constraints

Acquired
By Email

Constraints
Acquired

FromE-Agenda

Constraints
Taken

ByDefault
Expected Number of Correct

Free Half-Days per Week
9 3 1

Expected Constraint Acquisition
Time (in days)

3 1 0

Expected Number of Replannings 0.5 2 4
Expected Number of Interactions 2 0 0

For example, consider the gauge variable ExpectedNumberOfInteractions in Table 4,
associated with the soft goal MinimumInteractionForGettingConstraints in Table 3. The
estimated value �2� for this variable in the option ConstraintsAcquiredByEmail is
obtained by summing the value �1� for the subgoal ConstraintsRequested in Fig. 1 (one
interaction per requested constraints) and the value �1� for the subgoal
ConstraintsTransmitted (another interaction per returned constraints). The estimated
value �3� in the same column, for the same option and the gauge variable
ExpectedConstraintAcquisitionTime associated with the soft goal FastConstraintAcquisition,
results from �0� (time taken for the scheduler to request constraints) + �3� (estimated
average time, in days, for a participant to return her constraints). Each gauge variable
in Table 4 is derived from the specification and fit criterion of the corresponding leaf

Figure 4 –  Cumulative propagation of gauge variables [26]

G1

Quantitylsg (G) =  Quantitylsg (G1) + Quantitylsg (G2)
SatisfCostlsg (G) =  SatisfCostlsg (G1) + SatisfCostlsg (G2)
SatisfTimelsg (G) = SatisfTimelsg (G1) + SatisfTimelsg (G2)

G

G2

Quantitylsg (G1)
SatisfCostlsg (G1)
SatisfTimelsg (G1)

Quantitylsg (G2)
SatisfCostlsg (G2)
SatisfTimelsg (G2)



soft goal in Table 3; its values are obtained by up-propagation along the refinement
tree of the corresponding option from the estimated values at leaf nodes (see Fig. 4).

Deriving option scores from values of gauge variables. Once the overall gauge
values are obtained at the root of the refinement tree of each option by such up-
propagation, we can derive the scores of each option as follows.

Let Score (opt, lsg) denote the score of option opt with respect to the leaf soft goal
lsg. Let gV denote the value of the gauge variable associated with lsg, obtained at the
root of opt�s refinement tree by up-propagation from its leaf subgoals. Let gT denote
the ideal target value we would expect for this variable and gmax its maximum
acceptable value; gT and gmax are derived from lsg’s specification and fit criterion,
respectively. We then have:

Score (opt, lsg) =  1 � ( | gT � gV| ) / gmax

As we can see from this formula, the closer the gauge value to its ideal target
relatively to its maximum acceptable value, the closer the corresponding score to 1.
The more distant the gauge value from its ideal target relatively to its maximum
acceptable value, the closer the corresponding score to 0.

Table 5. Evaluation of alternative options against leaf soft goals based on gauge variables.

Importance Option scores

Leaf soft goals weighting gT gmax Constraints
Acquired
ByEmail

Constraints
Acquired

FromE-Agenda

Constraints
Taken

ByDefault
AccurateConstraints 0.50 10 10 0.90 0.30 0.10

Fast
ConstraintAcquisition

0.30 0 6 0.50 0.84  (0.90) 1.00

MinimumReplanning 0.10 0 4 0.87  (0.90) 0.50  (0.30) 0  (0.10)
Minimum

InteractionFor
GettingConstraints

0.10 0 4 0.50 1.00 1.00

TOTAL 1.00 0.74  (0.73) 0.55 0.45  (0.46)

Table 5 shows another weighted matrix for evaluating alternative options in our
meeting scheduling system. Compared to the matrix in Table 3,  this one is based on
such score derivation from the values of the gauge variables in Table 4. (The numbers
in parentheses refer to the corresponding rough estimations in Table 3.)

For example, Table 4 gave a value of �2� for the gauge variable
ExpectedNumberOfInteractions in the option ConstraintsAcquiredByEmail. This gauge
measures the degree of satisficing of the Minimize soft goal
MinimumInteractionForGettingConstraints. From the specification and fit criterion of this
soft goal, we get the values �0� for gT and �4� for gmax. As the value gV for this gauge,
obtained by up-propagation from the leaf nodes in the refinement tree of the option
ConstraintsAcquiredByEmail, is �2�, the score obtained according to the preceding
formula is �0.50�. Similarly, Table 4 gave a value of �9� for the gauge variable
ExpectedNumberOfCorrectFreeHalfDaysPerWeek in the option ConstraintsAcquiredByEmail.



This gauge measures the degree of satisficing of the Maximize soft goal
AccurateConstraints; a value X for this variable means that, among the 10 working half-
days in a week where a participant is stated to be free, X of these are half-days where
she is actually free. From the specification and fit criterion of this soft goal, we get
the values �10� for gT and �10� for gmax. As the value gV for this gauge, obtained by
up-propagation from the leaf nodes in the refinement tree of the option
ConstraintsAcquiredByEmail, is �9�, the score obtained according to the preceding
formula is �0.90�.

In comparison with Table 3, the numbers in Table 5 are not significantly different.
They result in the same comparative evaluation yielding the selection of the first
option ConstraintsAcquiredByEmail as best one. There are significant differences,
however, in the arguability of conclusions and the way we get to them through gauge
variables:

•  these conclusions rely on measures of degree of soft goal satisficing that
are based on system phenomena;

•  they are derived systematically from the specifications of the leaf soft
goals in the goal model.

We therefore gain increased confidence in the adequacy of our conclusions.
A more sophisticated approach to quantitative reasoning about alternative options

can be found in [31]. Quality variables are used there instead of gauge variables. They
are random variables with probability distribution functions. The analysis then is
more accurate but more heavyweight as a price to pay.

6. Conclusion

The evaluation of alternative system options is at the heart of the RE process. John
Mylopoulos has significantly contributed to the development of concepts, models and
techniques for this critical task.  The important role played by goal models, soft goals
as evaluation criteria, and propagation of positive/negative goal contributions are now
much better understood. Others have built upon his results and will continue to
explore the directions he has opened.

Beyond the work outlined in this paper, the RE community owes much to John for
his contribution to raising the technical standards in the field, his open-minded and
interdisciplinary attitude in research, his humility and friendliness in research
interactions, and the network of colleagues he has created worldwide.

Acknowledgement. The principle of using measurable fit criteria for quantitative
reasoning about soft goals results from joint work with Emmanuel Letier. Warm
thanks are due to the reviewer of this paper whose requests for clarification resulted in
the introduction of quantified links between option scores and soft-goal gauge
variables.
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