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Abstract. Process models are increasingly recognized as an important asset for 

higher-quality healthcare. They may be used for analyzing, documenting, and 

explaining complex medical processes to the stakeholders involved in the pro-

cess. Models may also be used for driving single processes or for orchestrating 

multiple ones. Model-driven software technologies therefore appear promising. 

In particular, process enactment provides software-based support for executing 

operational processes. A wide variety of possible enactment schemes are avail-

able in medical environments, e.g., to maintain daily medical worklists, to issue 

warnings or reminders in specific process states, to schedule tasks competing 

for resources, to provide on-the-fly advice in case of staff unavailability, and so 

forth. Such variety of possible process enactments calls for a common concep-

tual framework for defining, comparing, classifying, and integrating them. The 

paper introduces such a framework and describes a number of patterns for pro-

cess execution and enactment based on it. These patterns result from a simple 

generic, goal-oriented model of medical process execution aiming at clarifying 

the role of software within the process and its environment. The patterns are il-

lustrated on two real, non-trivial case studies. 

1 Introduction 

Process support is often advocated as a means for achieving higher-quality healthcare 

[8, 20]. In particular, medical guidelines capture evidence-based practices for han-

dling specific diseases [13]; clinical pathways provide a patient-centric view of medi-

cal treatments involving multi-disciplinary teams, such as cancer treatments [28]. 

Models in this context enable the analysis, documentation and explanation of medical 

processes; they provide the basis for automated process support. Many languages and 

techniques are available for process modeling and analysis [17, 18], including UML 

activity diagrams [23], YAWL [31], BPMN [24], Little-JIL [34, 4, 5], and g-

HMSC [9, 10]. 

Enactment techniques appear promising for process support in medical environments. 

Process enactment is commonly defined as the use of software to support the execu-

tion of operational processes [25, 12, 30]. In model-driven enactment, a high-level 

process model is used as input for execution support. An execution semantics of the 

modeling language must then be provided. For instance, YAWL has an execution 
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semantics in terms of Petri nets [31]. The Business Process Execution Language 

(BPEL) similarly complements BPMN while focusing on web service invocation [1].  

Various process enactment schemes are available in medical environments, e.g., to 

dynamically maintain medical worklists, issue warnings or reminders in specific pro-

cess states, schedule tasks competing for resources, or provide on-the-fly medical 

advice.  

Our experience in a variety of medical environments suggests that specific model-

driven enactment schemes are effective in specific contexts only. For example, one 

scheme may appear appropriate for supporting daily operations in a radiotherapy de-

partment while less appropriate for enforcing the clinical pathway for stroke treat-

ment. In the former case, the model may focus on daily tasks to be handled by medi-

cal staff within a single department; in the latter case, the model may focus on highly 

time-critical tasks to be coordinated among multiple departments.  

In order to better understand the fundamental nature of medical process enactment 

and integrate the diversity of possible enactment schemes, the paper introduces a con-

ceptual framework for process execution and enactment. This framework is based on 

a goal-oriented, multi-view model of process execution that highlights the role of 

specific agents, including software, in executing medical processes. The model is 

parameterized on tasks; it separates the operational process being executed within 

some environment from the software supporting such execution. More specifically, 

this model integrates a goal model underlying process execution, a companion struc-

tural model relating all concepts involved in the goal model, and a behavior model 

derived from the goal model that highlights execution states and transitions on which 

software enactors may be anchored.  

The proposed framework may be used for defining, comparing, classifying or inte-

grating various enactment strategies. In particular, patterns are defined in this frame-

work as common forms of process execution and enactment. The framework is in-

tended for process analysts and software engineers to reason about the introduction of 

software enactors for process support. 

The paper is organized as follows. Section 2 summarizes some background material 

used in the next sections. Section 3 describes our multi-view model for process execu-

tion and enactment. Section 4 analyzes generic assets used in medical task perfor-

mance together with common patterns of process execution and enactment; these 

assets and patterns are obtained by instantiating the multi-view model on specific 

tasks. Section 5 briefly discusses two real medical case studies we were involved in 

that illustrate some of these patterns.  

2 Background:  Modeling Medical Processes 

Guarded High-level Message Sequence Charts (g-HMCS) are used in the paper for 

modeling medical processes. The g-HMSC language is a simple flowchart-style for-

malism for modeling multi-agent processes involving decisions on process variables 

[9]. An agent is an active system component playing a specific role in the considered 

process. Agents cooperate to satisfy the medical objectives assigned to them [19]; 

they can be humans, devices or software.  



The g-HMSC language is used for formal analyses while being close to the informal 

sketches provided by medical stakeholders [10]. As Fig. 1 suggests, a g-HMSC model 

is a directed graph with three types of nodes. 

 A task node captures a process task, that is, a work unit performed by collaboration 

of agent instances involved in the process. It is represented by a box. The arcs con-

necting task nodes specify how these nodes must be composed sequentially.  

A task may be refined in another g-HMSC. A non-refined task (or leaf task) is 

specified through a scenario showing the temporal sequence of interaction events 

among agent instances. Leaf tasks are considered here as black-box execution units 

under responsibility of a specific agent. The latter is called task performer. When 

multiple agents are involved in the same task, available mechanisms for refining 

agents, tasks, and their underlying objectives should be used for capturing multiple 

performers [19]; lack of space prevents us from considering this further here. 

 A decision node captures a process decision. The latter states specific conditions 

on process variables [10] for tasks along outgoing branches to be performed.  

 Initial and terminal nodes represent the start and end of the (sub-)process. 

A g-HMSC task may be annotated with additional information such as its precondi-

tion for application, its minimum/maximum duration, the resources required, and so 

forth [10]. 

3 Modeling Process Execution and Enactment 

Section 3.1 introduces a generic goal model for process execution in a multi-agent 

setting together with a structural model interrelating the concepts involved in it. Sec-

tion 3.2 discusses a corresponding behavior model highlighting execution states of 

process tasks together with transitions among those states. These transitions define the 

specific places at which software agents can be introduced for process enactment. 

3.1 A goal model for process execution 

This section aims at clarifying what a medical process enactor should actually be 

doing and why it should do so. A generic goal model is built for this; its instantiation 

provides the basis for defining execution strategies and enactment patterns. 

 

Fig. 1.   A simple g-HMSC process model for cancer radiotherapy 



A goal-oriented model integrates the intentional, structural, functional, and behavioral 

facets of the target system in a multi-agent setting [19]. It allows, among others, re-

quirements on cooperating agents to be derived from high-level goals. 

Fig. 2 (a) shows the goals (in parallelograms) underlying the execution of a medical 

process, how they are AND-refined into subgoals (through AND-arrows), and how 

they are assigned to agents (in hexagons). Fig. 2 (b) provides a structural model (as a 

UML class diagram) showing how the concepts appearing in the goal model are inter-

related. Precise definitions for the goals in Fig. 2 are given in Fig. 3. 

The root goal of process enactment states that “all task instances must eventually be 

performed”. (As we capture process executions, we are mostly concerned with task 

instances; “task performance” is often used as a shortcut for “task instance perfor-

mance”. Fig. 2 shows a refinement-by-milestones [19] of this root goal: 

 a first subgoal requires the need for performing a specific task to be known 

by its performer; 

 once the need is known, the task shall eventually be performed. 

The first subgoal is further refined. A divide-and-conquer refinement [19] is used: 

 potential task performers shall be informed of the task performance need; 

 one of these shall be selected as performer; 

 agent selection and information shall not be undone. 

The latter subgoal is set as an assumption to simplify matters. “Informed” and “se-

lected” mean that if a task is performed then its performer knew that it was needed 

and that it was the one responsible for the task, respectively. The divide-and-conquer 

strategy is taken to cover various process execution scenarios, e.g. “selecting then 

informing” or “making all candidates informed and then selecting among them”. In 

any case, a state must eventually be reached where the performer is both selected and 

informed.  

The second subgoal of the root goal in Fig. 2 is refined as follows: 

 the task performance shall first be started; 

 it shall eventually be completed when started. 

The goal model in Fig. 2 calls for further clarifications. 

 The tasks to be performed there correspond to instances of leaf tasks in the process 

model; the structuring of the process model through task refinements has no impact 

on process executions. 

 The goals of the generic model for process execution in Fig. 2 should not be con-

fused with the objectives underlying process tasks. For example, the process model 

in Fig. 1 has underlying objectives such as Achieve [Treatment Prepared When Patient 

Registered] or Maintain [Patient Registered Before Radiotherapy]. The latter objectives are 

structured and refined in a specific goal model complementing the g-HMSC task 

model. Synergetic links exist between the treatment-specific and generic goal 

models; there are however not the primary focus of this paper. 

 As specified in Fig. 2, the goal of a task being actually performed is assigned to the 

task performer. This requires the medical objective underlying the task to be real-

izable by the agent, that is, the agent must have the capabilities of monitoring the 

conditions to be evaluated and of controlling the conditions to be established ac-

cording to this objective [19]. Agents playing the Performer role might be the tar-



get patient, members of the medical staff (e.g., nurse, oncologist), medical devices 

(e.g., pump, radiotherapy machine) or available software (e.g., patient record sys-

tem).  

 The three other leaf goals in Fig. 2 should be further refined to specify how task 

performers and software enactors cooperate in order to satisfy them. Various alter-

native refinements lead to various enactment patterns, see Section 4. 

 The model is deliberately kept simple for the purpose of this paper. It can easily be 

extended for capturing multiple task performers, through the agent/goal refinement 

mechanism [19], and exceptions, through obstacle analysis [19]. 

3.2 A behavior model for process execution 

The various execution milestones identified in our generic goal model lead to the 

behavior model captured as a UML state diagram in Fig. 4. Three main execution 

states are identified. 

─ Created: Every task instance enters this state as soon as a new process instance is 

started. As a process may involve multiple decisions, some task instances might 

not be performed in practice even though they conceptually exist. 

 

Fig. 2.   (a) Generic goal model and  (b) Structural model for process execution 

Achieve [Task Performed When Needed]:  Every task instance whose performance is needed 

shall eventually be performed by an instance of the responsible agent, called performer, under 

specific timing and resource constraints. 

Achieve [Task Need Known By Performer]:  For every task instance whose performance is 

needed, the performer shall eventually know this task instance is needed. 

Achieve [Performers Informed Of Task Needs]:  Every need for task performance shall eventual-

ly be known by at least one candidate performer. 

Achieve [Performer Selected When Task Need]:  For every task instance whose performance is 

needed, the actual performer shall eventually be selected among possible candidates.  

Maintain  Information and Selection]:  Once selected a performer shall remain selected until the 

task is performed. Once informed a performer shall remain informed of the task performance 

need until the task is performed. 

Achieve [Task Started When Need Known]:  When the performer knows the need for performing 

a task instance, it shall eventually start that task so as to meet the corresponding timing and 

resource constraints. 

Achieve [Task Completed When Started]:  Every task instance whose performance has been 

started shall eventually be completed successfully. 

Fig. 3. Specifications for the goals in Fig. 2 (a) 



─ PerformanceNeeded: Every task instance is in this state when its performance need 

is confirmed (in a way to be made further precise). This state is further decom-

posed in a way consistent with the goal model. 

─ Performed: Every task instance whose performance has been completed by its 

performer ends up in this state.  

This behavior model is generic on tasks to be performed. Its transitions are therefore 

not labeled with events and/or actions; they are simply identified by a number. The 

guards there are derived from the goal model [19]; additional guards may be intro-

duced when instantiating the model.  

The state transitions in this behavior model yield the various places where software 

enactor agents may be introduced to drive the medical process. These transitions are 

discussed successively, focusing on when the transition gets fired and how enactment 

software may be involved. This paves the way to enactment patterns in Section 4. 

(1)  A task instance gets created as soon as a process instance is started. Model-

driven enactors typically use the process model to create task instances for fur-

ther driving, thereby firing this transition. 

(2a)  The need for task performance gets confirmed; the information and selection 

subprocesses of a task performer start accordingly. This transition gets fired as 

soon as a process agent knows that performing a medical task is needed. The 

agent might be the patient deciding to go for consultation, the doctor prescribing 

some medical test, etc. In such cases, software enactors mostly help tracking cor-

responding needs. They might also help firing this transition by introducing ef-

fective need identification means. 

(2b) Task performance is not required; execution ends up immediately. This transi-

tion accounts for task instances that conceptually exist but are not executed due 

to process decisions.  

(3a) The performer gets informed of the need to perform the task. Various situations 

may correspond to this transition getting fired. The performer might be the one 

who identified the need –in which case he/she/it gets automatically informed. 

Alternatively, the agent might be informed by a specific request –such as a 

phone call, for example. Software enactors might help firing this transition by 

introducing effective information means. 

 

Fig. 4.   States and transitions in the execution of a task instance 



(3b) The performer gets unaware of the need to perform the task. This transition is 

introduced to account for exceptional situations where, e.g., performers forget 

about their task commitments. Software enactors might help avoid this transition 

from getting fired by introducing effective remembering means. 

(4a) The performer gets selected among possible candidates. This transition is fired 

as soon as the agent instance to actually perform the task is known. In simple 

situations with only one candidate or a predetermined selection result, the transi-

tion gets fired automatically without requiring any kind of support. Otherwise, 

software enactors might help firing this transition by introducing effective selec-

tion means. 

 (4b) The selected performer gets unselected. This transition is introduced to account 

for exceptional situations where, e.g., selected performers suddenly get unavail-

able –introducing the risk of tasks being not performed or performed too late. 

Enactors might be introduced to detect such situations and mitigate their conse-

quences. 

 (5) The task performance gets started under the necessary condition that the per-

former is both selected and informed. In our framework, the responsibility of 

starting a task is assigned to its performer. A trigger condition should capture 

when the transition gets fired, e.g., “as soon as the performer is available” or “at 

some predefined moment”. Software enactors may help performers here. 

 As seen before, effective remembering and selection means help keeping 

the guard satisfied for tasks whose performance is needed. 

 Prioritizing means may help selecting which task instances to perform 

among those having their transition currently enabled. 

(6) The performer completes task performance. Here again, the responsibility for 

task completion is assigned to the performer. Software enactors may assist here 

in achieving the task’s post-condition (e.g., automated checklists) or in detecting 

task instances whose performance has started but has not been completed yet. 

(7) As the task has been completed its performance is no longer needed. This transi-

tion captures that the performing agent gets informed that the completed task is 

no longer needed. In many cases, this transition is automatic; it results from the 

performing agent being aware of task completion. When software enactors are 

involved, the transition is required for enactors to be informed of tasks being no 

longer needed, e.g., to remove them from task lists or to determine subsequent 

tasks to be performed. This may prove challenging as a feedback loop is re-

quired from performers to enactors [7, 3]. An explicit feedback requires per-

formers to inform enactors; an implicit one uses some monitoring means. 

4 Patterns of process execution and enactment 

The intentional, structural and behavior models of process execution in Section 3 

allow us to identify patterns commonly found for getting tasks performed under spe-

cific timing and resource constraints. When software enactors are introduced, such 

patterns may be called enactment patterns. An execution/enactment pattern relies on 



specific task performance assets. Section 4.1 reviews such assets by instantiation of 

the concepts introduced in Section 3.3 –such as information means, remembering 

means or trigger condition. Assets are not necessarily independent from each other; 

patterns for using them together may therefore be identified. Section 4.2 lists various 

examples of how assets may be combined in such patterns. 

4.1 Task performance assets 

The firing means for the successive state transitions in Section 3.3 are instantiated 

with a particular focus on software enactors. The process in Fig. 1 is used as a running 

example for illustrating various cases. 

Need identification means: How is a task known to be needed? 

Symptoms or accidents may cause patients to enter a medical process. In Fig. 1, the 

Surgery task might be needed because of a patient feeling some specific pain. The 

need for performing a task may also result from a medical decision or a diagnosis 

made by some medical actor. For example, after the First Aid task in Fig. 1, cancer 

suspicion may raise the need for further diagnosis with appointments being made 

accordingly. 

Software-aided diagnosis therefore falls into this category of process enactment [16]. 

Patient monitoring systems inside or outside the hospital might be seen as enactors 

too for the same reason [3, 15, 32]. 

Another source for identifying task needs is provided by medical guidelines. Rule-

based or procedural process models formalizing guidelines may be used as assets for 

driving processes through dedicated enactors [22]. In such cases, the execution se-

mantics of the modeling formalism prescribes how the software can infer which task 

is needed in the current process state. 

Information means:  How does the performer know that the task is needed? 

Various information means are available for informing potential performers of tasks 

to be performed.  

─ Direct or indirect requests (e.g. phone calls, messages) are a usual way of inform-

ing performers of tasks to be done. For example, the Appointment Making task in 

Fig. 1 might simply consist in asking someone at the department’s welcome desk. 

─ Calendars are another means for keeping track of tasks to be performed. For can-

cer treatment, for example, nurses or assistants may fill in the radiotherapist’s e-

calendar with specific dates for the Diagnosis task (see Fig. 1). The patient may al-

so keep track of the dates of her Radiotherapy treatments in her own calendar. 

─ Registration lists are sometimes used for recurrent task instances. A registration list 

might be filled in by nurses or assistants to inform radiotherapists and oncologists 

of the patients to be discussed at the next multidisciplinary Staff Meeting task in-

stance (see Fig. 1). 

─ Worklists may also be used for keeping track of tasks to be performed and inform-

ing agents about these. They might be physical ones or managed by software. For 

example, the medical staff might know that a new Emergency task instance in 

Fig. 1 is needed by looking at the physical waiting queue. The Treatment Prepara-



tion task might rely on a digital worklist for organizing the preparation of pre-

planned radiotherapy treatments. 

Automated worklists are frequently mentioned in the literature; they originate from 

agenda management systems [14, 21]. Most workflow management systems actu-

ally depend on such lists for enacting process models, see e.g. [34, 2, 33]. 

Remembering means:  How does the performer remember that the task is needed? 

Most information means may also be used as remembering means –in particular, cal-

endars, registration lists and worklists. 

─ Reminders are also commonly used in medical practice [16]. They can be easily 

automated for tasks whose performance time is known in advance –e.g., from the 

Diagnosis appointment known from the medical e-agenda (see Fig. 1). When effec-

tive identification and information means are available, more complex reminding 

schemes can be implemented. For example, a reminder to participate to the next 

Staff Meeting task might be automatically sent to the Radiologist only under the 

condition that at least one of her patients appears on the registration list. 

Selection means:  How is the performer selected among candidates for the task? 

In situations where the assignment of tasks to performer instances is not necessarily 

obvious, various selection strategies are available. 

─ The first-available-performer strategy accounts for situations where a pool of per-

former instances process tasks as the flow is going. This strategy is commonly used 

when a worklist is used as information means –e.g. as in the Emergency task, or in 

the Treatment Preparation task that might involve a pool of physicists acting ac-

cording to a digital worklist (see Section 5.1). 

─ Static allocation assigns tasks to performers on a pre-established basis. For exam-

ple, chemotherapy treatments might be organized according to a pre-established 

assignment of beds to nurses. 

─ Dynamic allocation assigns tasks according to resource availability and other con-

straints. Performer instances do not decide which task instances they perform. 

Software may be used here for enactment and sometimes for task performance. 

The automated scheduling of Radiotherapy Treatments according to available 

treatment machines is an example of this. 

Selection means are not intended to make dynamic choices among agent instances 

based on their respective role or capabilities; this is achieved at modeling time 

through the introduction of different agents with specific roles, capabilities, and re-

sponsibility assignments [19]. 

Prioritizing means:  How are task instances selected for performance? 

While selection means prescribe how performers are selected, prioritizing means 

prescribe in what order the latter perform tasks among those needed. Prioritizing 

means are commonly used when task instances compete for resource availability. 

─ First-In-First-Out: This static strategy is often used in combination with pure 

queue-based worklists –see, e.g., the Appointment Making task in Fig. 1. Registra-

tion lists sometimes implement this strategy as well. 



─ Highest-Priority-First: This dynamic strategy is also frequently used in combina-

tion with worklists and registration lists –e.g., to account for urgency in the Emer-

gency task or in Staff Meeting discussions. Software enactors might be introduced 

here as well. For example, instances of the Treatment Preparation task in Fig. 1 

might be dynamically prioritized in a worklist according to known dates for the 

corresponding Radiotherapy Treatment. 

─ Automated Scheduling: Prioritization with dynamic performer allocation under 

complex constraints may require an online or an offline scheduler. This software 

enactor computes what tasks are to be performed first, either on the fly (online) or 

ahead of time (offline). 

Trigger conditions:  What makes tasks getting started? 

In correlation with the information, remembering, selection and/or prioritizing means, 

task instances occur at a specific time and/or for specific reasons. Provided the re-

quired resources are available and the task’s precondition is met, the following condi-

tions may trigger task performance. 

─ As-Soon-As: When a request or a worklist is used as information means, tasks are 

sometimes performed as soon as the selected performer instance is available. This 

might for example be the case for the Appointment Making task in Fig. 1.  

─ Highest-Priority: When prioritization means are used, a task may start as soon as it 

gets the highest priority. The First Aid and Treatment Preparation tasks in Fig. 1 are 

typical examples of this. 

─ Fixed-Time: Many medical tasks simply occur at some fixed, predetermined time. 

In Fig. 1, the Diagnosis task might occur according to a predetermined appoint-

ment. Radiotherapy Treatments similarly follow a pre-established schedule. Staff 

Meeting instances generally occur at a specific time slot every week. 

4.2 Combining performance assets: process execution/enactment patterns 

Fig. 5 shows a number of typical patterns obtained when performance assets are com-

bined. Those patterns provide a way of explaining why tasks are actually performed 

in practice and how software enactors may support process execution. The list of 

identified patterns is obviously not exhaustive. 

Request-driven: This pattern refers to situations where a task is performed on request, 

as soon as its performer is available, and in a first-in-first-out order. It might capture 

how tasks are performed at a welcome desk or how requests issued by bedridden pa-

tients are handled. The Appointment Making task in Fig. 1 follows this pattern. 

Appointment-driven: This pattern refers to tasks such as Diagnosis or Consultation. 

For such tasks, calendars are used by performers to agree and remember fixed-time 

appointments. Most often, the performer is statically known as in the case of Consul-

tation with a specialist. Support for e-calendars accessible to medical staff is then an 

effective form of enactment. 



Meeting-driven: This pattern refers to tasks such as Staff (see Fig 1) or Support Group 

Meetings. Such meetings occur at a fixed, recurrent time –e.g., once a week. Registra-

tion lists are used to track which patients must be discussed or need be present. Au-

tomating such lists and the registration process results in effective information and 

remembering means. 

Priority-driven: Automated worklists correspond to a well-known kind of model-

driven process enactment. An associated pattern uses priorities to decide which task 

instances must be performed first among those in the worklist. This pattern is compat-

ible with all assets for performer selection. However, it assumes that performers are 

immediately available after having performed a task. The pattern is therefore better 

suited for automated performers such as medical devices. Hospital pharmacy automa-

tion provides a good example of use. 

Resource-driven: This pattern is a variant of the previous one. It also relies on 

worklists as information means. Task performance is not driven by priorities here but 

by the availability of scarce resources such as the performer itself; the tasks are per-

formed as soon as the required resources get available. The pattern is compatible with 

various prioritizing and selection means. The Treatment Preparation task in Fig. 1 is 

an example of application (see also Section 5.1). 

Scheduling-driven: This pattern is frequently used when multiple instances of a task 

compete for scarce and/or costly resources. The dynamic allocation of those resources 

using available scheduling techniques is an effective enactment strategy in such cases. 

The scheduling of sessions on radiotherapy machines typically relies on this pattern 

(see Section 5.1). The determination of patient appointments under complex resource 

and time constraints may also benefit from this pattern (see Section 5.2). The schedul-

ing may involve real-time slots decided ahead of task performance. In such cases, the 

pattern also relies on calendars and fixed-time appointments.  

5 Case studies 

This section briefly reports on two quite different instantiations of the multi-view 

model in Section 3 and patterns in Section 4. These instantiations capture the effective 

 

Fig. 5. Combining assets:  process execution and enactment patterns 

 



enactment of complex processes in real medical environments. Section 5.1 refers to a 

software-managed daily worklist for the preparation of radiotherapy treatments. Sec-

tion 5.2 outlines a tool for automated scheduling of appointments for chemotherapy 

treatments. Both examples are taken from real medical projects we were involved in 

at the UCL university hospital in Brussels. 

5.1 Automated worklist for preparing radiotherapy treatments 

Fig. 6 shows a simplified process model for the preparation of radiotherapy treat-

ments. A patient enters the process once her cancer has been confirmed by earlier 

diagnosis. The process starts with an administrative Registration task. In particular, 

the dates of the treatment on a specific therapy machine are scheduled at registration 

time. The reason is that radiotherapy machines are heavily contentious resources. A 

scheduling-driven enactment pattern is therefore used for determining the treatment 

dates and machines allocated for the Radiotherapy Treatment task. 

This yields a specific problem for the Treatment Preparation task. For a given patient, 

radiotherapy preparation has a strict deadline of 14 days due to specific constraints 

not discussed here. The Treatment Preparation task is decomposed into subtasks han-

dled by medical staff. (These subtasks are not detailed here for lack of space.) None 

of these subtasks requires the patient to be present; some require a physicist, others an 

assistant, and others a radiotherapist. For a given set of patients to be treated, with 

corresponding process instances, a daily problem is to avoid rescheduling radiothera-

py sessions dynamically (to save costs). The preparation must therefore be organized 

so as to meet all deadlines and constraints. 

An effective enactment solution consists of using an automated worklist for the 

Treatment Preparation subtasks, according to the resource-driven pattern. A software 

enactor implementing this pattern is used daily at the radiotherapy department of the 

UCL university hospital. 

─ The information means are given by the automated worklist itself. All tasks to be 

performed are known by the multi-disciplinary team. The worklist is however fil-

tered by medical role. 

─ Various selection means are possible with this pattern. Here, static allocation on a 

per-patient basis is used for tasks handled by medical assistants. In contrast, physi-

cists are selected according to the first-available-performer strategy. 

 

Fig. 6. Simplified radiotherapy process Fig. 7. Simplified chemotherapy process 



─ The actual performance of tasks is driven by resource availability. In the ideal case, 

a subtask is performed as soon as a performer is available (trigger condition) pro-

vided the task gets the highest priority (prioritizing). Priorities are carefully deter-

mined according to: (a) the deadline imposed by scheduling on treatment ma-

chines, and (b) statistics about the time taken by each subtask. 

─ To push the currently implemented approach further, a prototype tool was devel-

oped for model-driven enactment. A g-HMSC model of the Treatment Preparation 

subprocess was used to fill in and dynamically maintain the worklist automatically 

(identification means). 

In terms of the state diagram in Fig. 5, transitions (2a), (2b) and (7) require some ded-

icated treatment through collaboration between medical staff and the software enac-

tor. Transition (7) requires medical staff to explicit mark tasks as done in the worklist. 

This allows the enactor to remove these and replace them by successor tasks accord-

ing to the process model –thereby firing transitions (2a) and (2b). 

5.2 Scheduling chemotherapy treatments 

A process model for simple chemotherapy-based cancer treatment is sketched in 

Fig. 7. While apparently similar to the previous one, the enactment solution we are 

developing is fairly different here.  

Cancer is treated through a series of several sessions (or cycles) of chemotherapy 

treatment over a few months. Various treatment plans are available according to the 

kind of cancer, the patient’s age, the drugs to be used, and so forth. For instance, a 

FEC chemotherapy cycle for treating breast cancer takes about 21 days [26]. On the 

first day of each cycle, the patient goes to hospital for an injection of FEC chemother-

apy drugs (Delivery task in Fig. 7). Then, she has no chemotherapy for the next 20 

days (Rest Period in Fig 7). Four to six similar cycles are followed. Depending on the 

treatment plan, the Delivery task takes from a few minutes to a few hours. Subtasks 

include a consultation with an oncology assistant, drug preparation by the hospital’s 

pharmacy, and drug injection by a nurse in some bed (to be determined). These Deliv-

ery subtasks are all driven by resource availability. 

Unlike the previous case study, the problem here is not to help with the organization 

of those subtasks per se. Instead, the date of each Delivery task instance should be 

determined for the entire patient population –taking into account that different pa-

tients follow different treatment plans requiring different resources such as nurses, 

assistants, or beds; the latter are available in limited number.  

The date of the first treatment is determined during the Registration task. Dates for the 

next treatments are determined at the end of each Delivery task. Some flexibility is 

provided to the patient for picking up those dates. For the treatment to be successful, 

however, the length of each cycle must be kept as close as possible to the one pre-

scribed in the treatment plan. 

A software enactment solution is currently being developed in our research group in 

collaboration with a medical team at the day care department of the UCL university 

hospital. It consists in scheduling drug Delivery task instances among patients over 

time so as to meet various types of constraints (detailed hereafter).  



─ An electronic calendar is used as information means. It lets both medical staff and 

patients know when each Delivery instance takes place. 

─ Prioritizing is achieved using constraint-based local search technology [11]. Our 

scheduler generates Delivery dates for each patient so as to meet the following: 

 the corresponding process model, in particular, the time bounds on the various 

treatment cycles;  

 resource availability constraints; 

 a target criterion on a safety-critical process quality indicator. More specifical-

ly, the Relative Dose Intensity (RDI) indicator captures how close the dose ac-

tually delivered to a patient over time is to the optimal dose intensity. Roughly, 

the higher the RDI the closer the actual treatment is to the optimal treatment 

plan prescribed by the evidence-based process model. 

The scheduler continuously computes “best” date proposals and fills in the e-calendar. 

The proposal for the next delivery date is accepted or adapted by the patient at the end 

of each Delivery task instance, in agreement with the medical assistant and nurse. 

When the proposed dates are changed in the calendar, the impact of the change on the 

resulting RDI is shown as feedback to patients, assistants and nurses to possibly warn 

them about the consequences of the change on the treatment effectiveness. 

6 Conclusion 

The paper presented a goal-oriented multi-view model for reasoning about medical 

process execution and enactment. Task performance assets and process execu-

tion/enactment patterns were identified by instantiation of this generic model. The 

objective was by no means to define yet another process modeling or execution lan-

guage. Rather, the proposed framework provides abstract support for process analysts 

and software engineers to reason about medical process executions and anchor soft-

ware enactors on the process. Even though the g-HMSC process modeling language is 

incidentally used, our conceptual framework does not really depend on a particular 

modeling language. Similarly, it does not presuppose any particular execution seman-

tics.  

The richness, variety and complexity of medical environments provide evidence that 

human-intensive processes are first and foremost executed on the field [7]. For soft-

ware enactors to be effective, a fine understanding of the process environment appears 

a prerequisite. Experience with execution/enactment patterns suggests that they are 

worth reusing. Further understanding of the nature of medical process execution 

should yield more patterns and increase their effectiveness. 

As mentioned before, the simple conceptual framework in this paper may easily be 

extended to capture multiple agents cooperating to the same task; the available mech-

anisms for refining goals, agent, assignments and tasks may be used for this [19, 9, 

10]. Resources and their capabilities should also be brought explicitly into the frame-

work [27]. Exceptions need to be more thoroughly considered [29]; currently, only 

cases of tasks being forgotten or performers being unavailable are covered. Systemat-

ic obstacle analysis [19] against leaf goals in our multi-view execution model would 

integrate exceptional situations where tasks are cancelled, resources are unavailable, 



task pre- or postconditions are violated, and so forth. This would result in a more 

comprehensive and robust behavioral model with new corresponding states and tran-

sitions. New software enactors could then be plugged in for those transitions, and new 

patterns identified accordingly. For instance, anchoring the detection of deviations 

from the normal process [6] would require transitions capturing tasks being forgotten 

or cancelled. 

Process modeling requires the underlying process goals, expectations on human 

agents, and requirements on medical devices to be structured in a process-specific 

goal model. The execution/enactment patterns in practice depend on such goals and 

their potential obstacles. Future work should therefore be devoted to the synergetic 

links between the process model and its companion goal model on the one hand, and 

their relation to the generic execution framework and enactment patterns outlined here 

on the other hand. 
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