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Abstract
Requirements engineers need to make sure that the
requirements models and specifications they are
building do accurately capture what stakeholders really
want. Requirements animation has been recognized to
be a promising approach to support this. The principle
is to simulate an executable version of the requirements
model and to visualize the simulation in some form
appealling to stakeholders. Most animation tools
available to date simulate operational models. Such
models in general do not directly reflect the objectives,
constraints and assumptions stated declaratively by
stakeholders. It is also not possible to focus the
animation on particular portions of a complex model
relevant to some specific concern.
The paper describes a tool aimed at overcoming such
limitations by animating goal-oriented requirements
models. The tool automatically generates parallel state
machines from goal operationalizations, instantiates
those machines to specific instances created by users at
animation time, executes them from concurrent events
input by multiple users, monitors property violations at
animation time, and visualizes concurrent simulations
in terms of animated scenes in the domain.

1. Introduction
Animation is a well-established technique for checking
whether software specifications meet the real intents
and expectations of stakeholders. It consists in showing
how an executable model of a software-based system
behaves in response to external events and user inputs.
Typically, an executable model is built from the
software specifications; the software behavior is
simulated by executing that model; the simulation is
visualized on a textual or graphical model
representation by highlighting the current model
element being executed. Animation thus allows

modellers to show the presence of problems, not their
absence.

We will call simulation the execution of a model and
animation the visualization of a simulation in some
graphical form. Much work has been done in this area
since the idea was originally proposed [2]. The
contributions mainly differ by (a) how far the model is
from the underlying requirements, (b) how far the
visualization is from phenomena within the software
environment, (c) how the simulation works (through
direct execution of the model or preliminary translation
to some executable form), and (d) how interactive and
controlled the simulation can be.
For example, the model may be formulated in some
prototyping language [1] and may even reuse program
fragments [20].  An operational model may also be
formulated at several levels of abstractions where
interaction consists in asking whether specific
behaviors can happen [3]. At a more abstract level, the
model may be specified in equational sub-sets of state-
based languages such as Z, VDM or B, and then either
interpreted directly or translated into some logic or
functional programming language – e.g., [16, 33, 37,
24, 13, 39]. As behavior is the primary focus of
animation, many efforts have been devoted to explicit
event-based descriptions [29] and state-machine models
[11, 18, 23, 14, 38, 30, 31]; see also [36] for a
comprehensive comparison of commercial tools
emanating from this research. In particular, the
animators described in [15, 38, 30] allow both control
of the simulation through events in the world (such as
pushing a control panel button) and visualization of the
simulation through phenomena in the world (e.g., new
values displayed on a plane altimeter). Other types of
model may be animated as well; for example, the tool
described in [17] animates specifications of the
obligations and permissions of the various agents
making the system.

Even though progress in this area is impressive the
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current state of the art in requirements animation is
limited in several respects. Such limitations provide the
motivation for our work.

• Animation of design behaviors: many animation tools
help exploring the solution  space by animating design
models of the “machine”. As in [14, 17, 38], we are
interested instead in exploring the problem space in
the “world” [19, 34] in order to check whether a
requirements specification is adequate with respect to
the stakeholders’ real needs.

• Distance between the animated model and its
underlying requirements: most animation tools
presuppose the availability of some executable model
that correctly “implements” declarative requirements
generally left implicit. Building an operational model
from a declarative one may be a difficult, error-prone
task (as illustrated in [6]); little support is provided
for this.

• Unfocussed animation: while compositional
animation is sometimes supported [30], we are not
aware of tools able to animate particular model
portions that are relevant to some specific concern or
implement some underlying goal. Unfocussed
animation may be a problem especially in the case of
complex models.

• Lack of property checking: while most model
checking tools allow traces to be animated during
exploration, animators in general do not detect
violations of desirable prperties on the fly during
animation. Exceptions include [14, 17]; such tools
however provide no support for suggesting what
properties should be checked and how such
properties are inter-related within a declarative
model.

• Lack of roundtrip animation: animators that execute
model translations in general provide no means for
pointing out inadequacies back in the original model.

This paper describes an animation tool aimed at
addressing the above limitations altogether. The key
features of our animator are the following.

• The executable model being animated is a set of
parallel state machines generated automatically from
goal operationalizations. The latter are produced
systematically from goal refinement graphs using
semantics-preserving derivations [26].

• The animation is goal-oriented; it is focussed on the
set of behaviors to achieve some goal(s) selected by
the user from the goal model. Such goals define the
scope of the animation. The scope may cover small
or large portions of the behavior model dependent on

whether the goals selected in the goal refinement
graph are fine-grained or high-level, respectively.
During model building, scoping allows incremental
animation of partial models associated with specific
goals; during analysis of entire models, it allows the
animation to be restricted to some specific
concern(s).

• The animator may detect violations of goals, domain
properties or assumptions thanks to a fully reworked
version of our runtime goal monitor [8]; the latter
operates here at animation time, in full
synchronization with the simulation, and no longer
requires event traces to be recorded and analyzed.

• Stakeholders may decide on the configuration of
instances of agents and entities to be animated by
creating/deleting  such instances at animation time.

• The animator visualizes simulation runs both in terms
of  UML state diagrams and animated scenes in the
world (the latter visualization is based on the
technology developed for LTSA [30]).

• Various forms of parallelism and interaction are
supported. At the product level, animations of various
domain objects may proceed in parallel (as in [30]).
At the process level, multiple stakeholders may
interact with the animator to input concurrent events
(as in [17] but stakeholders may now be distributed
over the internet).  The animator may react to single
events, replay pre-recorded scenarios, and proceed
through traces forward or backwards.

• The animator is integrated in the FAUST formal
analysis suite [35], a toolset that currently also
includes a goal model checker; it is implemented in
Java on top of the Objectiver environment supporting
the KAOS goal-oriented RE method [32, 22].  

The paper is organized as follows. Section 2
summarizes some material on goal-oriented RE used in
the sequel. Section 3 outlines the client-server
architecture of our animator. Section 4 presents the
server side by describing the techniques used to
generate parallel state machines from goal
operationalizations, instantiate them for simulation, and
execute them. Section 5 briefly discusses the animation
actors on the client side. Section 6 presents the
animation watchdog whose role is to monitor property
violations during the simulation. Section 7 describes the
techniques used for synchronizing state machine
executions with visualizations as animated statecharts
and domain scenes.
A demo of the animator in action on the train control
system used as a running example in this paper can be



downloaded at http://www.cetic.be/~faust/Animator.html . The
system involves multiple trains moving along a circular
single-track set of blocks with multiple stations, block
signals, railroad crossing gates and cars.

2. Some Bits of Goal-Oriented RE
Our requirements models comprise four sub-models: a
goal model, an object model, an agent model and an
operation model; these models are elaborated
methodically, see [22].
A goal is a prescriptive statement of intent about some
system (existing or to-be) whose satisfaction in general
requires the cooperation of some of the agents forming
that system. Agents are active components, such as
humans, devices, legacy software or software-to-be
components, that play some role towards goal
satisfaction. Some agents thus define the software
whereas the others define its environment. Goals may
refer to services to be provided (functional goals) or to
quality of service (non-functional goals). Unlike goals,
domain properties are descriptive statements about the
environment, such as physical laws, organizational
norms or policies, etc.

Goals are organized in AND/OR refinement-
abstraction hierarchies where higher-level goals are in
general strategic, coarse-grained and involve multiple
agents whereas lower-level goals are in general
technical, fine-grained and involve fewer agents [4, 5].
In such structures, AND-refinement links relate a goal
to a set of subgoals (called refinement) possibly
conjoined with domain properties; this means that
satisfying all subgoals in the refinement is a sufficient
condition in the domain for satisfying the goal. OR-
refinement links may relate a goal to a set of  alternative
refinements.

Goal refinement ends when every subgoal is realizable
by some individual agent assigned to it, that is,
expressible in terms of conditions that are monitorable
and controllable by the agent [25]. A requirement is a
terminal goal under responsibility of an agent in the
software-to-be; an expectation  is a terminal goal under
responsibility of an agent in the environment.
Goals prescribe intended behaviors; they are optionally
formalized in a real-time temporal logic [4]. Keywords
such as Achieve, Avoid, Maintain are used to name goals
according to the temporal behavior pattern they
prescribe.   

Fig. 1 shows a goal model fragment for a train control
system. The leaf goal Maintain[DoorsClosedWhileMoving]
may be annotated with the following temporal logic

assertion stating that in every future state the train doors
shall be closed when the train is moving:

∀ tr: Train : tr.Moving  ⇒ tr.doorsState = ‘closed’
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WhileMoving
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     GoSignal

SignalSet
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BlockSpeed
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Figure 1:  Portion of a goal graph for train control

Goals refer to objects which may be incrementally
derived from goal specifications to produce a structural
model of the system (represented by UML class
diagrams). Objects have states defined by the values of
their attributes  and associations to other objects. They
are passive (entities, associations, events) or active
(agents). Agents are related together via their interface
made of object attributes and associations they monitor
and control, respectively [34]. In the above
formalization of the goal DoorsClosedWhileMoving, Moving
and doorsState are attributes of the Train entity declared
in the object model. If the goal DoorsClosedWhileMoving
is assigned to the TrainController agent, the latter must be
able to monitor the attribute Moving and control the
attribute doorsState of trains.
A goal specification prescribes a set of intended system
behaviors, where a behavior is defined as a temporal
sequence of system states.
Goals are operationalized into specifications of
operations to achieve them [4, 26]. An operation  is an
input-output relation over objects; operation
applications define state transitions along the behaviors
prescribed by the goal model. In the specification of an
operation, an important distinction is made between
(descriptive) domain pre/postconditions and
(prescriptive) pre-, post- and trigger conditions required
for achieving some underlying goal(s):
• a pair (domain precondition, domain postcondition)

captures the elementary state transitions defined by
operation applications in the domain;

• a required precondition for some goal captures a
permission to perform the operation only if the
condition is true;

• a required trigger condition for some goal captures
an obligation to perform the operation if the condition
becomes true provided the domain precondition is



true (to produce consistent operation models, a
required trigger condition on an operation implicitly
implies the conjunction of its required preconditions);

• a required postcondition defines some additional
condition that any application of the operation must
establish in order to achieve the corresponding goal.

For example, the operation OpenDoor is among the
operationalizations of the goal DoorsClosedWhileMoving;
it may be partially specified as follows:

Operation OpenDoors
Input tr: Train;  Output tr: Train/doorsState

DomPre tr.doorsState = ‘closed’
DomPost  tr.doorsState = ‘open’

ReqPre for DoorsClosedWhileMoving :
  ¬ tr.Moving

ReqTrig for RapidExit&Entrance:
  AtStation (tr) ∧ ¬ tr.Moving

A goal operationalization is a set of such
specifications. For example, the operationalization of
our goal DoorsClosedWhileMoving includes specifications
of all operations impacting on the satisfaction of this
goal, that is, the DomPre, DomPost, ReqPre, ReqTrig and
ReqPost conditions for the operations OpenDoors,
CloseDoors, StartTrain and StopTrain; these operations
impact on goal satisfaction as their specification
captures changes of values of the state variables Moving
and doorsState appearing in the goal specification.
We assume in this paper that operationalizations have
been derived from goal specifications. For every goal
specification pattern, inference rules are available for
the formal derivation of a correct and complete set of
DomPre, DomPost, ReqPre, ReqTrig and ReqPost
conditions on operations to achieve the corresponding
goal [26]. Goal monitoring at animation time may be
used to check whether the operationalization is actually
correct and complete, see Section 6.

3. Architecture of the FAUST Animator
Fig. 2 outlines the client-server architecture of our
distributed multi-user animator. The animation server
comprises two pairs of components: one for simulation
of goal operationalizations and the other for monitoring
of property violations. On the simulation side, a state
machine compiler generates goal-based state machines
(GSM) from the operation and object models retrieved
through queries on the specification repository. The
server’s simulation engine executes those state
machines in parallel during animation. On the
monitoring side, another compiler generates claim
machines from real-time temporal logic specifications
of the goals, domain properties or assumptions to be

monitored; the monitoring engine executes those claim
machines during animation.

Simulation
Engine

Monitoring
Engine

Message Broker

GSM Visualizer

Specification
Repository

State Machine
Compiler

Claim Machine
Compiler

goal model
 operation
& object
models

GSM
descriptions

claim machine
descriptions

Animation Server Animation Actor  #1

model fixes

Domain Visualizer

Control Panel MgrMonitor Reporter

Trace Navigator

Instance Manager

Animation Actor  #2

View Manager

Figure 2: Animator architecture

The client, called animation actor, is integrated in the
Objectiver front end [32]. It supports various features
such as the selection of the goals from the goal model
that define the animation scope, the creation of object
instances to be animated within that scope, the selection
of properties to be monitored during animation, the
initialization of the animation, the visualization of the
corresponding state machines during their execution,
the visualization of the corresponding scenes in the
world, event entry, and the saving, reload and replay of
animation scenarios. Also on the client side, a monitor
reporter logs all animation events about properties
being monitored and signals any violation.
Following the event-based architectural style, the server
and its clients communicate via a message broker;
synchronization between them is ensured by event
broadcast and notification protocols.

4. Simulating Goal Operationalizations
Within the server, goal operationalizations are first
compiled into GSM state machines. The simulation
engine then instantiates these machines and executes
their instances through a GSM virtual machine based on
a lazy behavior scheme [6] (see the NextState function
below). The GSM virtual machine also provides
services for the animation actors to interact with the
simulation. This overall picture is now made further
precise.

4.1. Goal-based  state machines
Our GSM simulation formalism has been chosen to be
(a) traceable back to the goal/operation specification
language, (b) expressive enough to reflect KAOS
models, (c) executable, (d) compositional and amenable
to parallel animations, and (e) statechart-like to allow



visualizations of simple UML state diagrams [11].

Let V  denote a set of state variables v of type TY(v). A
state s of v is defined by a function s: V →  TY(V) . Let
State(V)  denote the set of all possible states of V.  A
state machine M over a set of state variables V is  a
transition system composed of the following items:
- a set Var(M) of state variables such that Var(M)  ⊆ V;
- a set Init(M) of initial states (Init(M)  ⊆ State(Var(M) );
- a set Trans(M)  of transitions each taking the form of a

tuple
<src, Grd, ev, Trig, Oe , tgt>

where src  and tgt are the transition’s source and target
states, respectively, Grd is a guard condition, ev is a
triggering event, Trig is a trigger condition and Oe is
a set of output events.

Let G denote a set of goals and OP(G) denote an
operationalization of the goals in G. A GSM state
machine with intentional scope G is a state machine
over the set of variables appearing in OP(G).
GSM machines may be composed to run in parallel.
Inter-machine communication and synchronization is
achieved through event broadcast.

4.2. Generating GSMs from goal operationalizations

The generation rules used for mapping a goal
operationalization OP(G) to GSM machines with scope
G are based on the semantics of goal operationalization
[26]. For lack of space we only mention the main ones
here.

• Rule 1: Every entity or agent from the object model
referenced in OP(G) is mapped to a GSM machine.

• Rule 2 : For each such entity/agent, we call behavioral
attribute (or behavioral association) any attribute
(association) whose state is specified in OP(G) to
change by application of some operation; a
behavioral attribute/association defines a state
variable local to the associated GSM (in case of an
attribute) or shared with other GSMs (in case of an
association). Every behavioral attribute or association
of an entity/agent referenced in OP(G) is mapped to a
concurrent substate of the corresponding GSM.

• Rule 3: Every non-behavioral attribute/association
referenced in OP(G) is mapped to an internal variable
of the corresponding GSM.

• Rule 4: Every operation op specified in OP(G) is
mapped to a state transition in the GSM(s) associated
with its codomain; this state transition is
characterized by the following items:

- a source state defined by op’s DomPre,
- a target state defined by op’s DomPost ∧ ReqPost,

- a triggering event labeled by op’s name
- a guard defined by op’s ReqPre,
- a trigger condition defined by op’s ReqTrig.

Fig. 3 illustrates the use of these GSM generation rules
for the train control example introduced in Section 2.
The arrow there indicates generation of the right-hand
part (a statechart fragment) from the left-hand part (a
portion of the goal, object, and operation models
represented here in textual format). The attributes
doorsState and Moving of the Train entity from the object
model are seen to be behavioral (see the specification of
operations OpenDoors and StartTrain), and result in
concurrent substates of the statechart associated with
the Train entity. The attribute Speed appears from the
specification to be non-behavioral and will result in an
internal variable of that state machine (not shown in
Fig. 3). The state machine transitions in the right-hand
part of Fig. 3 are derived from operations referencing
Train in their Output clause; they are annotated by
information derived according to Rule 4 from the
specifications of the corresponding operations. Note
that the generated state machines are “first-order” in
that they are parameterized on instance variables. Other
information may be generated such as output events
associated with a transition; this is not detailed here.

  Transition  OpenDoors (tr:Train)
     sourceState tr.doorsState = ‘closed’
     targetState tr.doorsState = ‘open’
     Guard  ¬ tr.Moving
     trigCond  AtStation (tr) ∧ ¬ tr.Moving

Goal Maintain[DoorsClosedWhileMoving]
     FormalSpec ∀ tr: Train
               tr.Moving  ⇒ tr.doorsState = ‘closed’
 ...

Entity Train
     Has doorsState, Moving, Speed
 ...
Operation OpenDoors

     Input tr: Train ;  Output tr: Train/doorsState

     DomPre tr.doorsState = ‘closed’
     DomPost tr.doorsState = ‘open’
     ReqPre for  DoorsClosedWhileMoving:

     ¬ tr.Moving

ReqTrig for  RapidExit&Entrance:
                         AtStation (tr) ∧ ¬ tr.Moving

Operation StartTrain
     Input tr: Train ;  Output tr: Train
     DomPre ¬ tr.Moving
     DomPost tr.Moving
     ReqPre for DoorsClosedWhileMoving:

tr.doorsState = ‘closed’
 ...

OpenDoors

closed

TrainState

open

truefalse

doorsState

StartTrain
Moving

...

Figure 3:  From goal operationalizations to GSM machines

4.3. Instantiating and executing GSM machines
The GSM machines generated within some goal scope
at compile time are instantiated at animation time
according to the entity/agent instances created by
animation actors. First-order assertions on variables are
propositionalized on the fly according to these
instances. The GSM instances are executed by the GSM
virtual machine using the NextState function.
The NextState function controls the traversal of GSM
instances under a lazy behavior scheme, that is, a



transition is fired only when it is really obliged to do so
– because a triggering event occurs or one of the
transition’s required trigger conditions becomes true.
This choice has been made to remove agent non-
determinism [6]. The simultaneous occurrence of
multiple events on different transitions, corresponding
to triggering events or trigger conditions becoming true,
results in concurrent activation of these transitions; the
NextState function controls such parallelism. It also
handles clock ticking for the animator’s stepwise
execution.
We outline the definition of the NextState function
without providing all details for lack of space. The
definition relies on the following quantities. Let T
denote a set of transitions, CS a global configuration of
states and E a set of events.

• Triggered(E) is the set of transitions that are
triggered by an event e in E;

• Obliged(CS) is the set of transitions that are triggered
by the satisfaction of trigger conditions in
configuration CS;

• Enabled(T, CS) is the set of transitions in T whose
source state is in CS;

• Permitted(T, CS) is the set of transitions whose guard
is satisfied in configuration CS;

• Consistent(T) is the maximal set of transitions in T
whose target states are not conflicting with each other
(that is, their instantiated target state predicates are
not inconsistent with each other);

• EvGenerated(T) is the set of output events generated
when all transitions in T are executed;

• newConfig(T, CS) is the new global configuration
produced by executing all transitions in T from
configuration CS.

The lazy behavior NextState function is then defined as
follows.

NextState (E, CS):

T =  Triggered (E) ∪ Obliged (CS) ;

T’ = Enabled (T, CS) ∩ Permitted (T, CS) ∩ Consistent (T);

if T’ ≠ ∅  then
E’ = EvGenerated (T’);
CS’ = newConfig (T’, CS);
NextState (E’, CS’);

endif
return

According to the NextState function, two transitions
found to be inconsistent with each other are both
discarded; there will thus never be multiple subsets of
transitions with nonconflicting target states. A more

liberal strategy of keeping one of them while discarding
the other could be adopted at the price of some
arbitrariness on the selection of which transition to keep
[27]; in cases where our strategy is felt too restrictive
the user of the animator may control a more liberal,
non-arbitrary selection by moving the animation one
step back and removing only one of the conflicting
transitions.

5. Interacting with the Simulation
The animation actor in Fig. 2 is a collection of services
allowing users to access the animation server over the
net and interact with the model being executed on the
server. Communication and synchronization is based on
an event send/notify mechanism (see Section 3). This
section outlines some of the services provided by the
actor.

To simulate GSMs within some goal scope, the
participating actors of the animation session need to
define an instantiation scheme, e.g., two instances tr1,
tr2 for the Train entity. This is done through the actor’s
Instance Manager.
Each animation user (actor) may have some specific
view on the system; for example, the view of a train
conductor might be restricted to specific attributes and
associations relevant to her; the attribute gateState of the
RailroadCrossing entity would be relevant in that view
whereas the attribute Speed of the Car entity might not.
This corresponds to the view concept in KAOS [21]
and is supported by the View Manager. When the scope
associated with the generated GSMs comprises several
goals, the View Manager may also be used to restrict
the focus of the animation further on some specific goal
within that scope.
Thanks to the Trace Navigator, users may also walk
through animation scenarios forward or backwards, and
save them as scenarios for later replay.
Advanced users may also edit commands in a
Simulation Command Language (SCL) and send them
to the server. SCL is a script language that can be used,
e.g., to create  scenarios to be executed by the server,
save such scenarios for later rerun, etc. SCL primitives
include SET  or GET the current value of some state
variable, GO to launch multiple events in parallel, and
trace rerun primitives such as GONEXT, GOBACK,
RESET, RUN. For example, the following SCL script
expresses a scenario where train instance #1 enters a
station block, stops at station #1, open doors and then
tries to start without closing doors:

[LeaveBlock(vh:=Train@1,bl:=Block@3)]GO
[EnterBlock(vh:=Train@1,bl:=StationBlock@1)]GO



[Stop(vh:=Train@1)]GO
[OpenDoors(tr:=Train@1)]GO
[Start(vh:=Train@1)]GO

The end-user, of course, does not use SCL; she submits
input events and provides animation scenarios by
interaction through input event panes or domain-
specific control panels.
The animation actor provides other services for, e.g.,
control panel management, and an API for interfacing
with the GSM simulator, monitor, and visualization
engines.

6. The Animation Watchdog: Monitoring
Property Violations at Animation Time

During animation of a requirements model, the user
may want to know whether some specific properties are
being violated. Our animation watchdog accepts a list
of properties to be monitored and issues a warning
when a property from that list is being violated (the
warning is specific to that property). The watchdog is
intended mainly for two different types of use:

• to debug incorrect goal operationalizations, when the
property being monitored is a requirement (as defined
in Section 2), by pointing out inadequate pre-,
trigger-, or post-conditions;  or, similarly, to debug
incorrect goal refinements, when the property being
monitored is a coarser-grained goal;

• to monitor whether the history of environmental
events input to the animator conforms to assumptions
on the environment’s behavior, when the property
being monitored is an expectation (as defined in
Section 2) specified in the goal model or a domain
property or hypothesis specified in the object model.

Our watchdog is a fully reworked version of a general-
purpose monitoring tool we built before for
goal/obstacle monitoring [8]. The current version is
more efficient as it monitors traces containing relevant
events only; such traces are handled on the fly without
need for trace storage and analysis.

The idea is to represent temporal logic specifications by
claim machines (CM) and execute such machines in
parallel and synchronously with our GSM machines in
order to detect possible mismatches at some point
during their parallel execution. Our CM machines have
to meet the following requirements.

• Accept the KAOS goal specification formalism, that
is, a full first-order linear temporal logic equipped
with real-time constructs (see, e.g., [21]).

• Handle finite-length traces (as observation time is
always bounded), in chronological order and without

backtracking.

• To ensure cheap monitoring, log and maintain a
minimal amount of  relevant information for trace
checking; avoid explicit state polling; be event-
oriented.

Trace checking algorithms are generally based on
variants of the tableau algorithm and generate
deterministic finite state automata [28, 9, 7, 12]; they
meet most of our requirements except for quantifiers
and real-time constraints.  We therefore designed an
extension based on deterministic time automata with
some specific instantiation mechanism for their
execution. We just sketch the idea here; technical
details are outside the scope of this paper.
A claim machine (CM) is a finite automaton
representing a first-order, real-time, linear temporal
logic assertion as follows.

• A CM state is labelled with an assertion representing
the obligation to be fulfilled on the rest of the trace. It
may have an internal clock set to some initial value
when entering the state and decreased while staying
in that state.

• A CM transition is labelled with an assertion
representing the guard condition for the transition to
be activated. The disjunction of transition guards
from a given state must yield true  while their pairwise
conjunction must yield false . CM states in general
have a cycling transition (exceptions include the false
state and states associated with the temporal “next”
or “previous” operators).

Fig. 4 shows the claim machine for our goal
DoorsClosedWhileMoving  (the outer universal quantification
is left implicit). The automaton simply loops in the
invariant state unless it gets broken.

 o (tr.Moving → tr.doorsState = ‘closed’)

 ¬ tr.Moving
 ∨ tr.doorsState = ‘closed’

false

tr.Moving ∧ ¬  tr.doorsState = ‘closed’

Figure 4:  Claim machine for DoorsClosedWhileMoving

Consider now the real-time goal Achieve
[CrossingGateClosedWhenTrainApproaching], specified as
follows:
   ∀ tr: Train, cb: CrossingBlock

On (tr, prev(cb)) ⇒  ◊=d cb.gateState = ‘closed’

where On is an association between trains and blocks
and prev is a function yielding the previous block. The



claim machine for this goal is shown in Fig. 5. It has an
initial state waiting for a train to be on a block
preceding a crossing block. The intermediate state is
clocked and waits either for gate closing (in which case
it goes back to the initial state) or for clock expiration
(in which case a violation is detected).

¬ On (tr, prev(cb))
∨ cb.gateState = ‘closed’

On (tr, prev(cb)) ⇒  ◊≤T  cb.gateState = ‘closed’

◊=T cb.gateState = ‘closed’  ∧

On (tr, prev(cb)) ⇒ ◊≤T cb.gateState = ‘closed’

false

 cb.gateState ≠ ‘closed’
∧ clock ≤  T

 On (tr, prev(cb))
∧ cb.gateState ≠ ‘closed’

clock > T

cb.gateState = ‘closed’
∧ clock ≤ T

Figure 5: Claim machine for GateClosedWhenTrainApproaching

Efficient deployment of several claim machines is
achieved using a transition-based encoding of time
automata that avoids explicit state representation – as
used in some intrusion detection systems that are able
to tackle large amount of data in real-time [10].

The generation process takes two other dynamic issues
into account for greater efficiency:

• the reconstruction of state information based on
observed transitions (e.g., from a transition guard @P,
the predicate P is inferred on the target state),

• the progressive instantiation of parameterized
automata to handle quantification. For example, an
automaton instance for the goal DoorsClosedWhileMoving
will dynamically get started the first time an event
referencing a new train is observed. For the goal
CrossingGateClosedWhenTrainApproaching , an automaton
will be generated for each occurring combination of
train/crossing events.

The compiled claim machines are thus passed to the
Monitoring Engine (see Fig. 2) where they are
dynamically instantiated according to the entity/agent
instances created by the animation actors at animation
time. The instantiated CMs are then run concurrently
with the GSM instances; they keep synchronized with
the latter by listening to GSM transition events.
Property violation is notified when a CM false  state is
reached.

7. Synchronizing Simulations and Domain
Visualizations

Simulations are easier to follow by stakeholders and
analysts when convenient graphical visualizations are

provided. We first present the visualizations supported
by our animator and then discuss the key issue of
synchronizing multiple visualizations with GSM
executions in a consistent way.

7.1. Visualizing simulations
Two types of graphical representation of GSM runs are
provided:

• animated UML state diagrams;

• animated scenes in the world.
Simulation visualization is made flexible by letting the
user select the appropriate combination of GSMs to be
displayed.
Fig. 6 shows three state diagrams for the Train instance
Train#1, composed in parallel, in which the current state
is highlighted for each of them. These concurrent
substates correspond to Train#1’s On association,
doorsState attribute and Moving attribute, respectively.
The state assertions and transition guards may be
viewed just by dragging the cursor over the
corresponding states and transitions, respectively.

Figure 6:  Visualization of Train#1’s concurrent substates

The two lower right images in Fig. 7 are snapshots of
corresponding scenes in the world that in particular
exhibit the state of the railroad crossing and train doors,
respectively.

7.2. Keeping simulations and visualizations
consistent

To keep our multiple visualizations synchronized with
GSM executions, we could have defined and then
hardcoded the necessary mapping between them for
each model considered. This turns out to be tedious and
error-prone. In order to avoid such manual hardcoding,
we have developed a tool for interactive specification
and generation of mapping/synchronization schemes
that ensure consistency.

Back to Fig. 7, a mapping/synchronization snapshot is
suggested between GSM instances Train#1, Gate#1 and



Car#1 on the left part and their visual counterparts on
the right part, namely, concurrent substates of a UML
statechart (upper right part) and two domain-specific
visualizations (lower right part): a bird’s eye view of a
railroad crossing and a view of the doors of a train car.
Note that those different snapshot representations are
consistent; the train is moving with its doors closed, the
railroad crossing gate is closed, and the car is stopped
and waiting.
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movingstopped
StartTrain

CloseDoors

StopTrain

Gate#1
OpenGate

closed open

CloseGate

Car#1

movingstopped
StartCar

StopCar

Gate#1

Car#1

Train#1

Figure 7:  Synchronizing animations

At scene specification time, the definition of a mapping
requires some domain-specific mapping rules to be
specified between each GSM entity/agent, state and
transition on the one hand and their visual counterpart
in the world on the other hand. Such mapping rules
have to be defined both at the class and instance levels
as suggested in Fig. 8. For example, the Train GSM
class with openDoors and closeDoors transitions needs to
be instantiated before a complete mapping may be
defined for animating Train#1’s doors opening and
closing. Train instance Train#1 needs to be mapped to a
specific DoorsAnimation#1 so that openDoors/closeDoors
transitions are mapped to animated doors
opening/closing of this train instance.
At scene animation time, an event-based integration
mechanism is provided for synchronizing GSM
executions with their visual counterpart. The mapping
tool listens to simulation events and dispatches them to
each visual animation that has registered for them.
These events are then translated into corresponding
visual actions according to the specified mapping rules
(see lower part of Fig.8 from right to left). To keep the
visualizations synchronized with the simulation, each
animated transition must be synchronized with the
corresponding transition in the simulation; the latter is
instantaneous whereas the former have some duration.

The mapping rules must thus also involve events
indicating the end of an animated transition for every
simulation transition. The mapping tool listens to such
events; any new simulation transition is blocked until
the end events have been received from all animated
transitions. This achieves the required consistency
between GSM simulations and their animations. In
addition, a compatible initial state must be provided for
every GSM instance and its various visualizations so
that they all start in states consistent with each other.
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Figure 8:  Mapping GSMs to visualisations

7.3. Controlling simulations from environment input
Our mapping tool has been designed to listen also to
visual events in the environment (e.g., pressing a button
to open Train#1’s doors) and translate them into
transition requests for the simulation engine using
contextual information (e.g., the doors are closed).
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Figure 9:  Interacting with world visualizations

Fig. 9 illustrates this; see steps 1-7 from upper left part
to right. Clicking on closed doors of Train#1 (step 1)
sends an openDoor request captured by the mapping tool
(step 2), resulting in an OpenDoors transition request on
Train#1 (step 3), sent to the simulation engine in the form
of a SCL script. As explained in Section 4, the
NextState function is then applied (step 4); in case of
transition firing the simulator produces an event
indicating that Train#1’s GSM instance has made the



transition to the Open state (step 5). The latter event is
captured by the mapping tool which translates it into a
call to the Open() command of the corresponding world
visualization (step 6). When the visual transition is
finished, an event is sent indicating that the doors are
open (step 7).
To make our mapping/synchronization tool as
independent of specific technologies as possible, we
have defined a simple meta-model of graphical
animation toolkits based on notions such as animated
graphical classes, static scenery elements, commands
and events. This model needs to be specialized for some
specific graphical technology to be used. Our current
implementation is based on SceneBeans [30].

7.4. Instantiating domain visualizations with the
mapping

As seen in Section 5, our animator makes it possible to
create multiple entity/agent instances dynamically at
simulation time. This feature should ideally be
propagated in world scenes, e.g., to explore animations
with 2 train instances and 4 blocks in the domain first
and then with 3 train instances and 5 blocks next. This
turns out to be non-trivial with technologies such as
SceneBeans as it requires dynamic composition of
graphical animations from parts after the graphical
mapping and the number of instances have been
defined. This is one of the visualizer’s features we are
still working on.

8. Conclusion
The contribution of our requirements animator lies in
the unique combination of a number of distinguishing
features, namely,
• the generation of parallel state machines from goal

operationalizations to reduce the gap between
stakeholders’ requirements, often stated
declaratively, and an operational model whose
construction may be far from obvious;

• the goal-oriented animation of those portions of a
behavior model that achieve some goal(s) selected by
the user from the goal model – such focussed
animation is especially helpful for incremental model
building and for analysis of complex models;

• the ability to monitor, at animation time, violations of
goals, requirements on the software, expectations on
the environments, and domain properties;

• the ability to define configurations of simulated
objects dynamically at animation time;

• the visualization of animations as world scenes
within a multi-user, distributed environment.

Our animator is used typically downstream to its
companion goal model checker; the latter checks for
correctness of goal refinements and operationalizations,
and generates counter-example scenarios in case of
incorrectness [35]. Both tools are built on top of the
Objectiver goal-oriented RE environment that supports
model elaboration through a graphical editor and model
analysis through queries, traceability management, and
generation of the requirements document from the
model.

While we have extensive industrial experience with
Objectiver for several years, our experience in using the
animator has been limited to case studies so far. (The
one used in this paper is a composition of several non-
trivial benchmarks used in the literature.)  Note that
scaleability is a built-in feature of our animator as (a)
goal scoping restricts the animation to specific portions
of the behavior model, (b) such portions can still be
restricted by specifying relevant views that reduce the
number of state variables, and (c) the animation
involves a restricted number of object instances
selected by the user.

Our short-term plans include extensions to our current
domain visualizer to support dynamic domain
configurations and dynamic mapping to “interesting”
initial states in the domain. In parallel, we expect to get
feedback fairly soon from industrial projects to direct
future enhancements. Such feedback will in particular
help us assess which tool among the animator and the
goal model checker is better in what context.
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