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Abstract—Requirements-related scenarios capture typical examples of system behaviors through sequences of desired interactions
between the software-to-be and its environment. Their concrete, narrative style of expression makes them very effective for eliciting
software requirements and for validating behavior models. However, scenarios raise coverage problems as they only capture partial
histories of interaction among system component instances. Moreover, they often leave the actual requirements implicit. Numerous
efforts have therefore been made recently to synthesize requirements or behavior models inductively from scenarios. Two problems
arise from those efforts. On the one hand, the scenarios must be complemented with additional input such as state assertions along
episodes or flowcharts on such episodes. This makes such techniques difficult to use by the nonexpert end-users who provide the
scenarios. On the other hand, the generated state machines may be hard to understand as their nodes generally convey no domain-
specific properties. Their validation by analysts, complementary to model checking and animation by tools, may therefore be quite
difficult. This paper describes tool-supported techniques that overcome those two problems. Our tool generates a labeled transition
system (LTS) for each system component from simple forms of message sequence charts (MSC) taken as examples or
counterexamples of desired behavior. No additional input is required. A global LTS for the entire system is synthesized first. This LTS
covers all scenario examples and excludes all counterexamples. It is inductively generated through an interactive procedure that
extends known learning techniques for grammar induction. The procedure is incremental on training examples. It interactively
produces additional scenarios that the end-user has to classify as examples or counterexamples of desired behavior. The LTS
synthesis procedure may thus also be used independently for requirements elicitation through scenario questions generated by the
tool. The synthesized system LTS is then projected on local LTS for each system component. For model validation by analysts, the tool
generates state invariants that decorate the nodes of the local LTS.

Index Terms—Scenario-based elicitation, synthesis of behavior models, scenario generation, invariant generation, labeled transition
systems, message sequence charts, model validation, incremental learning, analysis tools.
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SCENARIOS are widely recognized as an effective means for
requirements elicitation, documentation, and validation
[11]. They support an informal, narrative, and concrete style
of description that focuses on the dynamic aspects of
software-environment interaction. Scenarios are therefore
easily accessible to practioners and stakeholders involved in
the requirements engineering process [30].

The context of this paper is a project aimed at automating
the production of Web applications from end-user scenar-
ios. In this project, behavioral models need to be obtained
from scenarios as an intermediate product for generating
code fragments that populate a predefined architecture for
the application.

A scenario is a temporal sequence of interactions among
system components. The word system refers here to the
software-to-be together with its environment. A system is
made of active components, called agents, that control
system behaviors. Some agents form the environment,
others form the system-to-be. An interaction in a scenario
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originates from some event synchronously controlled by a
source agent instance and monitored by a target agent
instance. A scenario episode is an interaction subsequence
that achieves some objective (generally left implicit). Positive
scenarios describe typical examples of desired interactions,

whereas negative scenarios describe undesired ones.
This paper addresses the problem of synthesizing a state

machine model of the system from scenarios submitted by
end-users. For end-user involvement, we need to put strong

requirements on the synthesis process.

e Theinput to the generation algorithm should be a set
of end-users scenarios and end-user scenarios only.
Such users are most likely to be unable to provide
additional input such as state assertions along
scenario episodes or flowcharts on such episodes.
The scenarios should, moreover, be expressed in
some simple, “box-and-arrow” form.

e Both positive and negative scenarios should be taken
into account. Our experience in a variety of require-
ments engineering projects over the years showed
that negative scenarios are quite common among the
examples provided by stakeholders.

e Scenarios are inherently incomplete (like examples
or test data are). The generation algorithm should
support the elicitation of additional, “interesting”
positive/negative scenarios that are not originally
provided by the end-user.
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e The synthesis of state machine models from scenar-
ios should be incremental; the models should be
incrementally refinable as further scenarios become
available.

e In view of possible overgeneralizations and incom-
plete/inconsistent scenarios, the synthesized state
machine models should be understandable for
validation and correction by the analyst before code
generation starts.

e The generated models should be well-structured for
high-quality code generation, in particular, through
one state machine per software agent.

Various efforts have been reported in the literature to
generate behavior models from scenarios. We review them
briefly with respect to the above requirements.

Uchitel et al. developed a technique for generating one
labeled transition system (LTS) for each agent of a message
sequence chart (MSC) specification [29]. Their approach
requires additional input, namely, a high-level message
sequence chart (hMSC) that specifies how the MSC
scenarios are to be flowcharted. In our experience, such
hMSC may become quite complex for nontoy systems.
Adding a new MSC in the specification may require some
nontrivial refactoring of the original hMSC [20]. Asking
end-users to provide a correct and complete hMSC as input
thus seems unrealistic. The LTS synthesis algorithm does
not take negative scenarios into account. Moreover, the
synthesized LTS are not easily understandable by humans
as their states are labeled by numbers only.

Whittle and Schumann proposed a technique for gen-
erating UML statecharts from sequence diagrams that
capture positive scenarios—and positive scenarios only
[31]. Their technique requires scenario interactions to be
annotated by pre and postconditions on global state
variables expressed in the Object Constraint Language
(OCL). In a similar spirit, Kruger et al. proposed a technique
for translating MSCs into statecharts [15]. Their technique
also requires state information as additional input (in this
case, through MSC conditions). It is unclear in both
approaches whether end-users are able to provide such
additional information.

Mikinen and Systd developed an interactive approach
for synthesizing UML statecharts from sequence diagrams
that capture positive scenarios [23]. Their so-called Mini-
mally Adequate Synthesizer (MAS) uses grammatical
inference and asks the user trace questions in order to
avoid undesirable generalizations. (A trace question is a
path in the state machine local to a specific agent.) MAS
focuses on single agents; generalization must therefore be
done independently for each software agent. Trace ques-
tions may be quite hard to understand by end-users as they
do not show global system behaviors. Overgeneralization
may frequently occur in view of the built-in assumption
that trace events with the same label lead to the same
component state (unless a counterexample is specified). To
eliminate such poor generalization, the user has to under-
stand and validate the agent’s generated state machine and
provide state machine traces as counterexamples to indicate
undesired behaviors and restart the generalization process.

Van Lamsweerde and Willemet developed an inductive
learning technique for generating goal specifications in
linear temporal logic (LTL) from positive and negative
scenarios expressed in MSC-like form [17]. Biichi automata
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could then be generated from the LTL specifications using
known algorithms; the resulting state machines would,
however, be very hard to understand for validation.
Moreover, as in [31], the user has to provide pre/
postconditions of scenario interactions.

Other efforts have been devoted to producing SDL
specifications from MSCs (e.g., [9]). The techniques pro-
posed there require complex forms of MSC as input to the
synthesis process. Such MSCs cannot be considered as
scenarios expressed at requirements engineering time by
end-users. No negative information is exploited.

This paper presents techniques, supported by a tool, that
meet the above requirements for state machine generation
from end-user scenarios.

Our approach takes both positive and negative scenarios
as input. We synthesize an LTS covering all positive
scenarios and excluding all negative ones. The synthesis
procedure extends grammar induction techniques devel-
oped in [26], [4]. Our inductive learning procedure is
interactive and incremental on training instances, which
makes it possible to integrate missing scenarios and
scenario corrections on-the-fly. It requires no additional
state or flowchart information. The original set of scenarios
is incrementally completed by asking the user scenario
questions that are generated during synthesis. A scenario
question consists of showing the user a specific scenario and
asking her to classify it as positive or negative. The
synthesized LTS is then transformed into a parallel
composition of finer LTS—one LTS per agent.

To enable validation and documentation of the resulting
behavior model, state invariants are generated as node
decorations from fluent definitions to be provided by the
analyst. Fluents are state predicates whose truth values are
determined by the occurrences of initiating and terminating
events [5]; they provide a nice interface between goal
specifications and goal operationalizations [16] and can
easily be identified from goal formulations.

The paper is organized as follows: Section 2 presents some
required background on scenario specifications, labeled
transition systems, fluents, and grammar induction.
Section 3 presents an overview of the various steps supported
by our tool. Section 4 details the process of synthesizing LTS
models and generating scenario questions. Section 5 details
the fluent-based invariant generation procedure. The entire
approach is illustrated in Section 6 on a nontrivial case study,
a mine pump control system [13], [14].

2 BACKGROUND

To make the paper self-contained, this section introduces
some basic material on message sequence charts (MSC),
labeled transition systems (LTS), fluents, and grammar
induction. A simple train system fragment will be used
throughout the paper as a running example to illustrate the
various techniques. The system is composed of three agents:
a train controller, a train actuator/sensor, and passengers.
The train controller controls operations such as start, stop,
open doors, and close doors. A safety goal requires train
doors to remain closed while the train is moving. If the train
is not moving and a passenger presses the alarm button, the
controller must open the doors in an emergency. When the
train is moving and the passenger presses the alarm button,
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rPositive Scenario

Train Controller ‘ Train Actuator/Sensor l | Passenger |
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Fig. 1. Positive scenario for a train system.

the controller must stop the train first and then open the
doors in an emergency.

2.1 Scenarios as Message Sequence Charts

A simple MSC language is used for representing end-user
scenarios. An MSC is composed of vertical lines represent-
ing timelines associated with agent instances and horizontal
arrows representing interactions among such agents. A
timeline label specifies the type of the corresponding agent
instance. An arrow label specifies some event defining the
corresponding interaction. Every arrow label uniquely
determines the source and target agent instances that
control and monitor the event in the interaction, respec-
tively. The event is synchronously controlled by the source
agent and monitored by the target agent.

An MSC timeline defines a total ordering on incoming/
outgoing events, whereas an entire MSC defines a partial
ordering on all events. To allow end-users to submit their
scenarios, we limit the input language to be a very simple
one, leaving aside more sophisticated MSC features such as
conditions, timers, coregions, etc.

Fig. 1 shows a MSC capturing the following scenario:
“The train is started by the controller; the latter then waits for
external stimuli. A passenger presses the alarm button; the alarm
is propagated to the controller; the latter then stops the train and
opens the doors in an emergency.”

Scenarios are positive or negative. A positive scenario
illustrates some desired system behavior. A negative
scenario captures a behavior that may not occur. It is
captured by a pair (p,e), where p is a positive MSC, called
precondition, and e is a prohibited subsequent event. The
meaning is that once the admissible MSC precondition has
occurred, the prohibited event may not label the next
interaction among the corresponding agents.

Fig. 2 shows a negative scenario. The MSC precondition
is made of the interaction start; the prohibited event is open
doors. Prohibited events in negative MSCs appear below a
(red) dashed line in our tool. The scenario in Fig. 2 is used to
express that the train controller may not open the doors
after having started the train (without any intermediate
interaction).

The semantics of MSCs used in this paper is the one
introduced in [29]. As this semantics is defined in terms of
labeled transition systems and parallel composition, we
come back to it in Section 2.2, where LTS are introduced.

2.2 State Machines as Labeled Transition Systems
A system is behaviorally modeled as a set of concurrent
state machines—one machine per agent. Each agent is
characterized by a set of states and a set of transitions
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Fig. 2. Negative scenario for a train system.

‘ Train Controller |

between states. Each transition is labeled by an event. The
state machines in this paper are a particular class of
automata called labeled transitions systems [21].

A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where Q) is a
finite set of states, ¥ is an alphabet, ¢ is a transition function
mapping @ x ¥ to 29, gy is the initial state, and F is a subset
of @ identifying the accepting states. The automaton is
deterministic if, for any ¢ in @ and any e in ¥, §(¢, e) has at
most one member.

In a labeled transitions system (LTS), all states are accepting
states, that is, the sets () and F' are the same. An LTS is
therefore simply denoted by a 4-tuple (Q,%,6,q). The
alphabet ¥ corresponds to the set of event labels of the LTS.
In an LTS, if a state g has no outgoing transition with label /,
no event with label [ can occur when the system is in state g.

A finite execution of an LTS (Q, %, 6, go) is a finite sequence
of events (ey,...,e,), with ¢; € ¥, accepted by the LTS from
its initial state. Such an execution is said to finish in state q if
the LTS is in state ¢ after having performed that event
sequence from the initial state. Prefixes of a finite execution
are finite executions as all LTS states are accepting states.

Complex systems can be modeled through parallel
composition of LTS components [24]. The parallel composi-
tion of two LTS P and @, denoted by P||Q, models their
joint behavior. The composed model behaves asynchro-
nously, but synchronizes on shared events. A system
composed of agents ay,...,a, modeled by LTS 4,,..., A4,
is thus modeled by the LTS A;||... | A,.

The semantics of MSCs can be defined in terms of LTS
and parallel composition [29]. An MSC timeline defines a
total order on its input and output events. Therefore, it
defines a unique finite LTS execution that captures a
corresponding agent behavior. Fig. 3 shows the LTS
behavior corresponding to the Train Controller agent in
Fig. 1 The semantics of an entire MSC can similarly be
defined in terms of the LTS modeling the entire system. As
MSCs define partial orders of their events, we need to
consider MSC linearizations of such partial orders [1]. A
linearization defines a total order of events and represents
one temporal behavior of the system. In the context of end-
users scenarios, we consider finite MSCs, that is, MSCs with
finite sets of linearizations. An MSC linearization defines a
finite execution of the system’s LTS. An entire MSC then
defines a finite set of such executions. Positive MSCs define
desirable executions, whereas negative MSCs define

@ start m alarm prop d G\ emergency stop o emergency open @
\_/ N \_/

Fig. 3. Finite LTS execution for the Train Controller agent in the Positive
Scenatrio in Fig. 1.
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Fig. 4. The prefix
S+ = {\, a, bb, bba, baab, baaaba}.

tree acceptor build from

rejected ones. (To simplify the presentation, the MSC
examples in this paper have one linearization only.)

2.3 Interfacing Event-Based and State-Based
Models through Fluents
Miller and Shanahan define fluents as “time-varying proper-
ties of the world that are true at particular time-points if they have
been initiated by an event occurrence at some earlier time-point,
and not terminated by another event occurrence in the meantime.
Similarly, a fluent is false at a particular time-point if it has been
previously terminated and not initiated in the meantime” [25].
A fluent Fl is a proposition defined by a set Initm of
initiating events, a set T'erm; of terminating events, and an
initial value InitiallyF; that can be true or false. The sets of
initiating and terminating events must be disjoint. The
concrete syntax for fluent definition is the following [5]:

fluent Fl =< InitFl, TermFl > initially Initiallyp;.

In our train example, the safety goal “Doors shall remain
closed while the train is moving” suggests two fluents:
moving and doorsClosed. The former is defined as follows:

fluent moving =< {start}, {stop, emergency stop} >
initially false.

2.4 Grammar Induction

Inductive learning aims at finding a theory that generalizes a
set of observed examples. In grammar induction, the theory
to be learned is a formal language and the set of positive
examples is made of strings defined on a specific alphabet.
A negative sample corresponds to a set of strings not
belonging to the target language. When the target language
is regular and the learned language is represented by a
deterministic finite state automaton (DFA), the problem is
known as DFA induction.

2.4.1 DFA Identification in the Limit

Identification in the limit is a learning framework in which an
increasing sequence of strings is presented to the learning
algorithm [6]. The strings are randomly drawn and
correctly labeled as positive or negative. Learning is
successful if the algorithm infers the target language in
finite time after having seen finite samples. This framework
justifies why successful DFA learning needs both positive
and negative strings. Gold showed that the class of regular
languages cannot be identified in the limit from positive
strings only [6]. In practice, convergence in finite time
toward an exact solution is often bargained with reasonably
fast convergence toward a good approximate solution [18].
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Fig. 5. A lattice of partitions defining quotient automata.

2.4.2 The Search Space of DFA Induction

DFA induction requires efficient search through the space
of possible generalizations. To characterize the search space,
we need to recall some links between finite automata and
regular languages.

Let ¥ denote a finite alphabet, u, v, w denote strings over
¥, and let A denote the empty string. A string u is a prefix of
v if there exists a string w such that uw = v. A language L is
any subset of the set ¥* of strings over X.

A string u is accepted by an automaton if there is a path
from the initial state to some accepting state such that u is
the concatenation of the transition symbols along this path.
The language L(A) accepted by an automaton A is the set of
strings accepted by A. For any regular language L, the
canonical automaton A(L) is the minimal DFA accepting L,
that is, the DFA having the smallest number of states and
accepting L. The automaton A(L) is known to be unique up
to state renumbering [7].

A positive sample S + can be represented by a prefix tree
acceptor PT'A(S+) as depicted in Fig. 4 (accepting states
there are represented by double circles); PT'A(S+) is the
largest DFA accepting S + exactly. Learning an automaton
A by generalizing a positive sample can be performed by
merging states from PTA(S+). Such generalization is
defined through a quotient automaton, constructed by
partitioning the states of A.

Consider, for example, the automaton A represented at
the top of Fig. 5. Let m = {{0,2}, {1}} be a partition defined
on its state set Q = {0,1,2}. Its quotient automaton with
respect to the partition 7, denoted A/, is represented on
the right. Any accepting path in A is also an accepting path
in its quotient automaton. In other words, merging states in
an automaton generalizes the language it accepts. As a
quotient automaton corresponds to a particular partition,
the set of possible generalizations which can be obtained by
merging states of an automaton A is defined by a lattice of
partitions. Fig. 5 presents all quotient automata that can be
derived from the automaton at the top.

Learning a language L aims at generalizing a positive
sample S+ under the control of a negative sample S —,
with S+ C L and S— C X*. This is made possible if S + is
representative enough of the unknown language L and if
the correct space of possible solutions is searched through.
These notions are stated precisely hereafter.

Definition 2.1 (Structural completeness). A positive sample
S+ of a language L is structurally complete with respect to



1060

an automaton A accepting L if, when generating S + from A,
every transition of A is used at least once and every final state
is used as accepting state of at least one staring.

Rather than a requirement on the sample, structural
completeness should be considered as a limit on the
possible generalizations that are allowed from a sample. If
a proposed solution is an automaton in which some
transition is never used while parsing the positive sample,
no evidence supports the existence of this transition and
this solution should be discarded. The following theorem is
proven in [3] to characterize the search space of the DFA
induction problem.

Theorem (DFA search space). If a positive sample S+ is
structurally complete with respect to a canonical automaton
A(L), then there exists a partition of the state set of PT A(S+)
such that PTA(S+)/m = A(L).

To summarize, learning a regular language L can be
performed by identifying the canonical automaton A(L) of
L from a positive sample S + . If the sample is structurally
complete with respect to this target automaton, it can be
derived by merging states of the PTA built from S+. A
negative sample S — is used to guide this search and avoid
overgeneralization. Finding the minimal DFA is an
NP-complete problem [7].

2.4.3 The RPNI Algorithm and Its Convergence

The RPNI algorithm explores a very small fraction of the
entire search space with the guarantee of finding the correct
DFA when the learning sample is rich enough [26]. The
convergence of RPNI on the correct automaton A(L) is
guaranteed when the algorithm receives a sample as input
that includes a characteristic sample of the target language
[4]. A proof of convergence is presented in [27] in the more
general case of transducer learning. Some further notions
are needed here.

Definition 2.2 (Short prefixes and suffixes). Let Pr(L)
denote the set of prefixes of L, with Pr(L) = {u|3v,uv € L}.
The right-quotient of L by u, or set of suffixes of w in L, is
defined by L/u = {v|uv € L}. The set of short prefixes Sp(L)
of L is defined by Sp(L)={zx € Pr(L)|-3u € ¥* with
L/u=L/xand u < x}.

In a canonical automaton A(L) of a language L, the set of
short prefixes is the set of the first strings in standard order,
each of which leads to a particular state of the canonical
automaton. Consequently, there are as many short prefixes
as states in A(L). In other words, the short prefixes uniquely
identify the states of A(L). The set of short prefixes of the
automaton of Fig. 6 is Sp(L) = {\, b}.

Definition 2.3 (Language kernel). The kernel N(L) of the
language L is defined as N(L) = {za|x € Sp(L),a € %,
xa € Pr(L)} U{A}.

The kernel is made of the short prefixes extended by one
letter and the empty string. By construction Sp(L) C N(L).
The kernel elements represent the transitions of the
canonical automaton A(L) since they are obtained by
adding one letter to the short prefixes that represent the
states of A(L). The kernel of the language defined by the
automaton of Fig. 6 is N(L) = {X, a, b, ba, bb}.
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Fig. 6. An automaton A with SP(L) = {\,b} and N(L) = {\, a, b, ba, bb}.
The sample S = (S+, S—) with S+ = {\, a, bb, bba, baab, baaaba} and S =
{b,ab, aba} is characteristic for A.

Definition 2.4 (Characteristic sample). A sample S =
(S+,5-) is characteristic for language L and the RPNI
algorithm if it satisfies the following conditions:

l. VYeze N(L),ifxe L, thenz € S+ else Ju € ¥* such

that zu € S +.
2. VexeSp(L), VyeN(L) if L/x#L/y then
JueX* such that (zu € S+ andyu € S—) or

(xu € S — and yu € S+).

Condition 1 guarantees that each element of the kernel
belongs to S+ if it also belongs to the language or,
otherwise, is the prefix of a string of S + . This condition can
be seen to imply the structural completeness of the sample
S + with respect to A(L). In this case, the DFA search space
theorem guarantees that the automaton A(L) belongs to the
lattice derived from PTA(S+). When an element x of the
short prefixes and an element y of the kernel do not have
the same set of suffixes (L/xz # L/y), they necessarily
correspond to distinct states in the canonical automaton.
In this case, Condition 2 guarantees that a suffix « would
distinguish them. In other words, the merging of a state
corresponding to a short prefix « in PT'A(S + ) with another
state corresponding to an element y of the kernel is made
incompatible by the existence of zu in S + and yuin S — or
the converse.

One can verify that S=(S+,5-), with S+ =
{\, a, bb, bba, baab, baaaba} and S— = {b,ab,aba}, forms a
characteristic sample for the language accepted by the
canonical automaton in Fig. 6.

3 OVERVIEW OF THE APPROACH

Fig. 7 shows the various steps of our approach as seen by
users. We outline them first before providing the technical
details in the next sections. In the first step, the end-user
introduces positive and negative scenarios. In the second
step, the tool synthesizes a LTS for the global system which
covers all positive scenarios and excludes all negative ones.
The generalization process is guided by scenario questions
asked to the end-user and generated during the incremental
synthesis process. The synthesized LTS is then projected to
obtain each local agent LTS. In the third step, fluent
definitions are provided by the analyst as optional input
for generating state invariants to document and validate the
generated LTS.

(Step 1) Submitting an initial set of positive and
negative scenarios. The end-user has to provide a
nonempty set of scenarios (positive and/or negative) as
initial input to the process. All scenarios must start in the
same initial state. Fig. 8 presents typical end-user scenarios
for the train example. The initial scenario collection there
contains three positive scenarios and one negative.

(Step 2) Generating scenario questions and synthesiz-
ing agent LTS. The tool incrementally generates and refines
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Fig. 7. Generating annotated state machines from end-user scenarios.

state invariant generation

a global LTS for the system that covers positive scenarios
and excludes negative ones. The generalization process is
guided by scenarios generated during synthesis as ques-
tions to the end-user. The user just needs to classify those
generated scenarios as being positive or negative. For the
initial scenarios in Fig. 8, the tool generates three scenario
questions while producing a first LTS sketch. These
questions are shown in Fig. 9. Scenario questions are
composed of a prefix and a suffix. The prefix is an already
admissible behavior. The suffix must be accepted or rejected
by the end-user. The prefix and suffix of a question are
separated by a dashed line labelled with a question mark.
The first scenario asks the user if the train controller can
start after having started and stopped the train. The user
should accept this scenario. The second question can be
rephrased as follows: “if the train starts and a passenger presses
the alarm button, can the controller then open the doors in
emergency and close the doors afterward?” This scenario should
be rejected as the train should not move with open doors.
The third question asks the user if the passenger can press
the alarm button in the initial state. The end-user might
accept this scenario. Once they are accepted or rejected, the

-Positive Scenario 1

Train Controller | | Train Actuator/Sensor | I Passenger |
open doors
close doors
start
stop
start
=]

rNegative Scenario 1

| Train Controller | | Train Actuator/Sensor | | Passenger l
[ start |

l open doors i( l

Fig. 8. End-user’s positive and negative scenarios for a train system.
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generated scenarios are added to the scenario collection as
positive or negative ones, respectively.

Finally, the synthesized LTS is projected on each agent to
obtain its LTS. Fig. 10a shows the generated Train
Controller LTS at the end of this process.

(Step 3) Generating state invariants to document the
generated state machines. For validation and documenta-
tion purposes, each state of the generated LTS may be
decorated with a state invariant that holds at any time this
state is visited. If this option is taken, fluent definitions are
to be provided by the user from goal formulations. The user
here is no longer the end-user, but the analyst who wants
the state machines to be made comprehensible for doc-
umentation and validation before code generation. For the
train controller, three fluents might be identified from goal
formulations:

o fluent moving = <{start}, {stop, emergency stop} >
initially false,
o fluent doors_open = <{open doors, emergency open},
{close doors}> initially false,
o fluent alarmed = <{alarm propagated}, {emergency
open}> initially false.
The decorated state machine is shown in Fig. 10b. If the
analyst finds problems with the generated state machines,
she can do the following;:

e If the state machine is overgeneralized, she should
provide a negative scenario and restart the LTS
synthesis process.

e If the state machine is incomplete, she may 1) change
the state machine by hand (e.g., by adding a
transition) or 2) add new positive scenarios and
then restart the LTS synthesis process. Alternative 1)
can result in inconsistencies between the LTS and the
end-user’s scenario collection; the analyst should
therefore raise the problem to the end-user and
modify the latter accordingly.

rPositive Scenario 2

Train Controller I [ Train Actuator/Sensor I | Passenger I

start

< alarm pressed

alarm propagated
emergency stop >
EMErGency open __ nJ

rPositive Scenario 3
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Fig. 9. Scenario questions generated to the end-user during the LTS synthesis process.
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Fig. 10. Generated LTS of the Train Controller: (a) before decoration
and (b) decorated with state invariants.

4 SYNTHESIZING LABELED TRANSITION SYSTEMS
FROM END-USER SCENARIOS

This section describes our technique for synthesizing
labeled transition systems (LTS) from simple message
sequence charts (MSC) without any extra information such
as hMSCs or state assertions. Our algorithm extends an
efficient automaton induction algorithm known as RPNI
[26] to make it interactive through scenario questions.
Section 4.1 explains how LTS synthesis can be achieved
through automaton induction and why such interaction is
needed in our context. The synthesis of a global system LTS
is detailed in Section 4.2. The projection of this LTS on the
agents forming the system is explained in Section 4.3. The
properties of our approach are then discussed in Section 4.4.

4.1 LTS Synthesis as a Grammar Induction Problem
As introduced in Section 2.4, a regular language can be
learned through automaton induction techniques. LTS are a
particular class of automata that contain only accepting
states. A positive (respectively, negative) MSC timeline
defines a unique execution of the LTS associated with the
corresponding agent. It therefore defines an accepted
(respectively, rejected) string of the regular language
represented by the agent LTS. In a similar way, a positive
(respectively, negative) MSC linearization defines an
accepted (respectively, rejected) string of the regular
language generated by the LTS of the global system. The
latter language will be denoted by L(S) in the sequel.

Any prefix of a finite LTS execution is a valid LTS
execution as LTS contain only accepting states. Therefore,
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Input: A non-empty initial scenario collection Se = (S4,5—)

Output: An automaton A consistent with an extended
collection Sc¢ = (S+.5-)

A «— Initialize(Sy)

while (q,¢') < ChooseStatePairs(A4) do

Apew — Merge(A, q.q')

if Compatible(A ey, S—) then

ok « true

while () — GenerateQuestion(A, Apeyw) do
if CheckWithEndUser(()) then

| Sy —SyuQ

else
S_—S_uQ@
ok « false
break

if ok then
L A~ Anelu

return A

Fig. 11. An interactive adaptation of the RPNI induction algorithm.

any prefix of a positive MSC linearization is an accepted
string of L(.S). Such a linearization thus provides a finite set
of positive strings of L(S). In a similar way, as the prefix of
a negative MSC is a positive MSC, a negative MSC
linearization provides one rejected string and a finite set
of accepted strings of L(S5).

Our choice of an RPNI-based technique to overcome the
absence of additional state information about the submitted
scenarios is motivated by the following observation: If the
end-user scenario collection contains a characteristic sample
according to L(S), an RPNI-based algorithm will ensure
that L(S) can be learned in polynomial time. The learned
system LTS can then be projected on each agent, using
standard automaton algorithms, in order to obtain their
respective LTS.

In practice, the initial scenario collection might not
provide a characteristic sample for the considered system
(see the importance of negative strings in Definition 2.4).
For example, an initial scenario collection with no negative
example cannot be characteristic for any nontrivial system
—that is, any system for which the target automaton
contains at least two states (Condition 2 in Definition 2.4
states that the merging of those states should be made
incompatible by at least one negative scenario). To over-
come the problem of poor generalization when dealing with
such limited training sets, we extend the RPNI algorithm so
that it generates additional scenarios and asks the end-user
to classify them as positive or negative. The learned system
will cover all positive scenarios and reject all negative ones,
including the interactively generated/classified ones.

4.2 Interactive Synthesis of the System LTS

Our interactive RPNI-based synthesis algorithm is given in
Fig. 11. The algorithm takes a scenario collection as input
and produces an LTS of the global system as output. The
completion of the initial scenario collection with classified
scenarios that were generated during synthesis is another
output of the algorithm. The input collection must contain
at least one positive or one negative scenario. The generated
LTS covers all positive scenarios in the final collection and
excludes all negative ones.
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The induction process can be described as follows: It
starts by constructing an initial LTS covering all positives
scenarios only, ie., the latter does not introduce any
generalization of the system behaviors described by the
positive scenarios. The system is then successively general-
ized under the control of the available negative scenarios
and newly generated scenarios classified by the end-user.
This generalization is carried out by successively merging
well-selected state pairs of the initial LTS, i.e., by succes-
sively computing quotient LTS from the initial one (see
Section 2.4). The induction process is such that, at any step,
the current quotient LTS covers all positive scenarios and
excludes all negative ones, including the interactively
classified ones. In the sequel, an LTS will be said to be
compatible with respect to a set of scenarios if it covers all
positive scenarios in that set and excludes all negative ones.
By extension, two states will be said compatible for merging
(respectively, incompatible) if the quotient LTS which results
from their merging is compatible (respectively, incompatible)
with the current set of scenarios.

Following the algorithm given in Fig. 11, the Initialize
function returns an initial candidate LTS solution built from
S+ . Next, pairs of states are iteratively chosen from the
current solution. The quotient automaton obtained by
merging such states, and possibly some additional states,
is computed by the Merge function. The compatibility of this
quotient automaton with the learning sample is then
checked by the Compatible function using available negative
scenarios. When compatible, new scenarios are generated
through the GenerateQuestion function and submitted to the
end-user for classification (CheckWithEndUser). Scenarios
classified as positive are added to the initial collection.
When a generated scenario is classified as negative, it is
added as negative example; the generation of the current
solution is ended and the candidate quotient automaton is
discarded. Otherwise, when all generated scenarios are
classified as positive, the quotient automaton becomes the
current candidate solution. The process is iterated until no
more pairs of states can be considered for merging. The
learned LTS is then returned as output of the algorithm.

This interactive algorithm has a polynomial time complex-
ity in the size of the learning sample. Whenever a quotient
automaton is considered compatible and the end-user
classifies all generated scenarios as positive examples, the
states that were merged remain merged forever. In other
words, there is no backtracking in the induction process. This is
a key feature explaining the time complexity of the algorithm.

We now have a closer look at the algorithm by detailing
its various functions.

(Initialize) The Initialize function returns the initial
solution built from S+ as prefix tree acceptor PT'A(S+)
constructed from positive MSCs. The PTA built from the
positive sample in Fig. 8 is shown on top of Fig. 12.
According to the modeling hypothesis discussed before, all
PTA states are accepting states. As mentioned before, we
assume here that all scenarios are starting in the same
system state.

(ChooseStatePairs). The candidate solution is refined by
merging well-selected state pairs. The ChooseStatePairs
function determines which pairs to consider for such
merging. It relies on the standard lexicographical order
“<” on strings. Each PT'A(S+) state can be labeled by its
unique prefix from the initial state. Since prefixes can be
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o0 =0 =0 =00
start
@ a.pressed //;\\ a.propagated f/;\\ e.stop /1/:)\\ e.open @ ﬁ
stop N A\ A4

Merging g=3 and g’=0

@ apressed @ a.prop d @ e.open @ close @ /

Merging 2 and 6
(for determinization)

Merging 5 and 9
(for determinization)

/

. e.stop . e.open
. a.propagated . e.open close

Fig. 12. Typical steps implemented by the Merge function. From the current Solution A, states 3 and 0 are merged. The resulting NFA is converted
into a deterministic quotient automaton A,,.,. Labels e.stop, e.open, a.pressed, and a.propagated are shorthand for emergency stop, emergency

open, alarm pressed, and alarm propagated, respectively.

sorted according to that order, the states can be ranked
accordingly. For example, the PT A states in Fig. 12 are
labeled by their rank according to this order. The algorithm
considers states g of PT'A(S+) in increasing order. The state
pairs considered for merging only involve such state ¢ and
any state ¢’ of lower rank. The ¢ states are considered in
increasing order as well.

(Merge) The Merge function merges the two states (¢, ¢)
selected by the ChooseStatePairs function in order to
compute a quotient automaton, that is, to generalize the
current set of accepted behaviors. In the example of Fig. 12,
we assume that states 0, 1, and 2 were previously
determined not to be mergeable (through negative scenarios
initially submitted or generated scenarios that were rejected
by the user). Merging a candidate state pair may produce a
nondeterministic automaton. For example, after having
merged ¢ =3 and ¢’ =0 in the upper part of Fig. 12, one
gets two transitions labeled start from state 0, leading to
states 2 and 6, respectively. In such a case, the Merge
function merges the latter states and, recursively, any
further pair of states that introduces nondeterminism.

We call the operation of removing nondeterminism
through such a recursive merge determinization. This
operation guarantees that the current solution at any step
is a DFA. It does not remove nondeterminism to build an
equivalent DFA as standard algorithms [8] since it produces

an automaton which may accept a more general language
than the NFA it starts from.

When two states are merged, the rank of the resulting
state is defined as the lowest rank of the pair; in particular,
the rank of the merged state when merging ¢ and ¢ is
defined as the rank of ¢’ by construction. If no compatible
merging can be found between ¢ and any of its predecessor
states according to <, state g is said to be consolidated (in the
example, states 0, 1, and 2 are consolidated).

(Compatible) The Compatible function checks whether the
automaton A, correctly rejects all negative scenarios. As
seen in Fig. 11, the quotient automaton is discarded by the
algorithm when it is detected not to be compatible with the
negative sample.

(GenerateQuestion) When an intermediate solution is
compatible with the available scenarios, new scenarios are
generated for classification by the end-user as positive or
negative. The aim is to avoid poor generalizations of the
learned language. The notion of characteristic sample drives
the identification of which new scenarios should be generated as
questions. Recall from Section 4.2 that a sample, i.e., a set of
available scenarios, is characteristic of a language L, that is,
of a set of event sequences accepted by a global LTS, if it
contains enough positive and negative information. On one
hand, the required positive information is the set of short
prefixes Sp(L) which form the shortest histories leading to
each system state. This positive information must also
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Fig. 13. Scenario question submitted to the end-user by the interactive
synthesis algorithm.

include all elements of the kernel N (L), which represents all
system transitions, that is, all shortest histories followed by
any admissible event. If such positive information is
available, the PTA (as well as any machine generalized
from it by merging states) is guaranteed to contain the
global LTS states and transitions. On the other hand, the
negative scenarios provide the necessary information to
make incompatible the merging of states which should be
kept distinct. A negative scenario which excludes the
merging of a state pair (¢,¢') can be simply made of the
shortest history leading to ¢’ followed by any sulffix, i.e., any
valid continuation, from state g.

Consider the current solution of our induction algorithm
when a pair of states (¢,¢') is selected for merging. By
construction, ¢ is always a consolidated state at this step of
the algorithm (that is, ¢ € Sp(L)). State ¢ is always both the
root of a tree and the child of a consolidated state. In other
words, ¢ is situated at one letter of a consolidated state, that
is, ¢ € N(L). States g and ¢’ are compatible according to the
available negative scenarios; they would be merged by the
standard RPNI algorithm. In our extension, the tool will
first confirm or deny the compatibility of ¢ and ¢ by
generating scenarios to be classified by the end-user. The
generated scenarios are constructed as follows:

Let A denote the current solution, L(A) the language
generated by A, and A,.,, the quotient automaton computed
by the Merge function at some given step. Let z € Sp(L) and
y € N(L) denote the short prefixes of ¢ and ¢ in A4,
respectively. Let v € L(A)/y denote a suffix of ¢ in A.

A generated scenario is a string zu such that
U € L(Apew) \ L(A). This string can be further decomposed
as zvw such that zv € L(A). A generated scenario zu is thus
constructed as the short prefix of ¢’ concatenated with a suffix
of gin the current solution, provided the entire behavior is not
yet accepted by A. Such a scenario is made of two parts: The
first part zv is an already accepted behavior, whereas the
second part w provides a continuation to be checked for
acceptance by the end-user. When submitted to the end-user,
the generated scenario can always be rephrased as a question:
After having executed the first episode (xv), can the system continue
with the second episode (w)?

Consider the example in Fig. 12 with selected state pair
q=3,¢ =0. As ¢ is the root of the PTA, its short prefix is
the empty string. The suffixes of ¢ here yield one generated
question, see Fig. 13, which can be rephrased as follows:
When having started and stopped the train, can the controller
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restart it again? One can see that the first episode of this
scenario in Fig. 12 is already accepted by A, whereas the
entire behavior is accepted in A,.,.

The suffixes selected by our tool for generating questions
are always the entire branches of the tree rooted at ¢. The
aim is to help the end-user to more easily determine
whether the generated scenario should be rejected. The
boundary between the first (xv) and second (w) episodes of
this scenario can be determined by comparing A and A,..;
some states get new outgoing transitions during the
derivation of the quotient automaton—see, e.g., the new
transition label start appearing on state 5 at the bottom of
Fig. 12. Such a new transition identifies the first event of w.
Given a selected suffix v = vw of g, v is composed of the
transitions folded up during the determinization process,
whereas w is the unfolded part of the branch. No scenario
has to be generated whenever w is empty, that is, when the
entire branch is folded up.

As the formulated behavior is not yet in A but will be in
Apew, a generated scenario could be viewed as a measure of
language generalization by the merging of ¢ and ¢'. Our
interactive RPNI extension controls such generalizations
when the sample is not characteristic.

(CheckWithEndUser) The end-user is asked to classify
generated scenarios as examples of positive or negative
behavior of the system; the scenario collection is completed
accordingly. For the scenario question in Fig. 13, the user
should provide a positive answer, thereby classifying this
scenario as a positive example of system behavior.

The compatibility of ¢ and ¢ in the system LTS gets
confirmed when the user classifies as positive all scenarios
generated at this step in the algorithm; A,., is then
considered a good intermediate LTS solution and becomes
the new current solution. The algorithm then continues
with another state pair.

If one generated scenario is classified as a negative
example, the generation procedure ends that solution path.
The goal is to avoid merging of incompatible states and one
single counterexample is sufficient to avoid such poor
generalization. When a scenario gets rejected, the first event
in its second episode is used as a prohibited event of the
negative example. In case this prohibited event appears
later in the second episode, the user may change the
position of the boundary between the accepted and rejected
episodes, to change the counterexample or make it more
specific (see the Change button in Fig. 13). In all cases, the
generated scenarios are added to the scenario collection
once they are classified (see the algorithm in Fig. 11).

The final result of the induction algorithm is guaranteed
to be compatible with all scenarios received, including those
classified by the end-user. Compatibility with the positive
scenarios is ensured by construction of the initial PTA and
subsequent merges, which can only generalize the accepted
set of behaviors (see Section 2.4). At each step of the
algorithm, the new solution is only kept if it rejects all
current negative scenarios, as checked by the Compatible
function, and if all new scenarios are classified as positive
by the end-user.

4.3 Projecting the Global System LTS on Agents

Fig. 14a shows the train global LTS obtained by the
synthesis algorithm. The LTS for each agent forming that
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open

a.pressed

Fig. 14. (a) Synthesized LTS of the global train system. (b) Train
Controller LTS.

system are generated from this global LTS using standard
automaton algorithms [8].

The projection of the system LTS on a specific agent
proceeds in three steps:

1. Each event not monitored or controlled by the agent
is replaced by a special empty event ¢ and
eliminated.

2. The resulting NFA is converted into an equivalent
DFA.

3. The resulting LTS is minimized to yield the minimal
deterministic LTS representing the behavior of this
agent.

Fig. 14b shows the resulting LTS for the Train Controller.

An earlier version of our tool was based on an alternative
approach where a high-level Message Sequence Chart [10]
was generated first as an intermediate product before LTS
generation. The generated high-level Message Sequence
Chart (hMSC) in this approach has exactly the same
admissible behaviors as the synthesized LTS. We initially
took that approach for two reasons: 1) The agent LTS can
then be generated from this hMSC using known techniques
[29] and 2) an intermediate hMSC may sometimes provide a
valuable global view of the system for validation by the
analyst. The synthesis approach presented in the paper has,
however, been preferred for much greater simplicity.

4.4 Discussion

This section addresses three issues raised by our LTS
synthesis technique: the adequacy of the synthesized
behavior model, the presence of implied scenarios, and
the number of scenario questions interactively generated.

4.4.1 Adequacy of the Synthesized Model

Unlike deductive inference, inductive inference from
examples is known to be logically not sound. The inferred
system model may be undergeneralized or overgeneralized.

Overgeneralization occurs when the synthesized system
LTS covers undesired behaviors. This may occur when
states were merged by the algorithm while they correspond
to distinct states of the system, that is, some system states
may not have been adequately identified. Although
scenario generation is based on characteristic samples, such
situations may arise when the sample is sparse due to a
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limited number of generated scenario questions. One
possible way of fixing this is to add the undesired behaviors
being covered as new negative examples to the scenario
collection and restart the incremental synthesis algorithm.

Undergeneralization occurs when desired system beha-
viors arenot covered by the system LTS. This may occur when
the scenario collection is not structurally complete; some
system transitions may not have been adequately identified.
One possible way of fixing this is to add the missing desired
behaviors as new positive examples to the scenario collection
and restart the incremental synthesis algorithm.

The union of the set of initial end-user scenarios, the set
of answers to scenarios questions, and the set of such
additional desired/undesired examples is converging to-
ward a characteristic sample for the algorithm. Keeping
classified scenarios in an updated collection thus contri-
butes to the algorithm’s convergence toward an adequate
behavior model. It also prevents the same scenario from
being resubmitted during the following cycles of the
incremental synthesis.

Under and overgeneralizations should be detected
before they can be fixed. This may be achieved through
model checking [21], [5], model animation [22], or model
validation using the LTS decoration algorithm presented in
the next section.

4.4.2 Handling Implied Scenarios

The set of behaviors of the parallel composition of each
agent LTS is not necessarily the same as the set of behaviors
of the synthesized global LTS. Implied scenarios may result
from the parallel composition of agents acting on local
information [28]. In our example, implied scenario analysis
would result in new questions to the user such as: “Can the
passenger push on the alarm twice?” Nondesired implied
scenarios should be detected and excluded. The interested
readers may refer to [28] and [20] for details on implied
scenario analysis.

4.4.3 Reducing the Number of Submitted Questions

According to the definition of a characteristic sample, our
RPNI-based strategy is optimistic; two states are considered
compatible for merging if there is no suffix to distinguish
among them. This can lead to a significant number of
scenarios being generated to the end-user, to avoid poor
generalizations, when the initial sample is sparse and not
characteristic for the system LTS.

To overcome this problem, our tool implements an
optimized strategy known as Blue Fringe [19]. The
difference lies in the way state pairs are considered for
merging. The general idea is to first consider state pairs
for which compatibility has the highest chance being
confirmed by the user through positive classification. The
resulting “please confirm” interaction may also appear
more appealing to the user.

Fig. 15 gives a typical example of a temporary solution
produced by the original algorithm. Three state classes can be
distinguished in this DFA. The red states are the consolidated
ones (0, 1, and 2 in this example). Outgoing transitions from
red states lead to blue states unless the latter have already been
labeled as red. Blue states (4 and 5 in this case) form the blue
fringe. All other states are white states.

The original ChooseStatePairs function considers the low-
est-rank blue state first (state 4 here) for merge with the
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Fig. 15. Consolidated states (red) and states on the fringe (blue) in a
temporary solution.

lowest-rank red state (0). When this choice leads to a
compatible quotient automaton, generated scenarios are
submitted to the end-user (in this case, a scenario equivalent
to the string {alarm propagated, emergency stop, emergency
open}). The above strategy may lead to multiple questions
being generated to avoid poor generalization. Moreover, such
questions may be nonintuitive for the user, e.g., the alarm
propagated event is sent to the train controller without having
been fired by the alarm pressed event to the sensor.

To select a state pair for merging, the Blue-Fringe
optimization evaluates all (red, blue) state pairs first. The
ChooseStatePairs function now calls the Merge and Compatible
functions before selecting the next state pair. If a blue state
is found to be incompatible with all current red states, it is
immediately promoted to red; the blue fringe is updated
accordingly and the process of evaluating all (red, blue) pairs
is iterated. When no blue state is found to be incompatible
with red states, the most compatible (red, blue) pair is
selected for merging through an adapted version of the
Compatible and Initialize functions. Initialize now returns an
augmented prefix tree acceptor PT'A(S+, S—). It stores the
prefixes of all positive and negative strings, with accepting
states being labeled as positive or negative. The Compatible
function now returns a compatibility score instead of a
Boolean value. The score is defined as —1 when, in the
merging process for determinization, merging the current
(red, blue) pair requires some positive accepting state to be
merged with some negative accepting state; this score
indicates an incompatible merging. Otherwise, the compat-
ibility score measures how many accepting states in this
process share the same label (either + or —). The (red, blue)
pair with the highest compatibility score is considered first.

The above strategy can be further refined with a
compatibility threshold « as an additional input parameter.
Two states are considered to be compatible if their
compatibility score is above that threshold. This additional
parameter controls the level of generalization since increas-
ing o decreases the number of state pairs that are
considered compatible for merging; it thus decreases the
number of generated questions.

In the train example of this paper, the original RPNI-
based algorithm in Section 4.2 learns the system LTS
correctly by submitting 20 scenarios to the end-user (17
should be rejected and only three should be accepted). With
the interactive Blue-Fringe optimization, the same LTS is
synthesized with only three scenarios being submitted (one
to be rejected and two to be accepted).

The number of generated questions can be further reduced
by integration of system knowledge or legacy components.
Domain properties and legacy components can be modeled
as state machines. As the states of the PTA capture global
system states, defined as tuples of simultaneous LTS states

1067

of the various agents, adding partial state information in
the PTA allows an equivalence relation to be defined on
states. Any generalization which would result in merging
nonequivalent states according to this relation can be
discarded. This ensures both consistency with system
knowledge and search space reduction, which speeds up
the learning process and decreases the number of scenario
questions. An example of legacy component integration is
presented in Section 6. Some preliminary work on
integrating goal specifications [16] in the learning process
suggests that goals are another highly effective source for
drastic pruning of scenario questions.

5 GENERATING STATE INVARIANTS FROM FLUENT
DEFINITIONS

State invariants on a state machine are assertions on a
specific state which hold every time that state is visited. The
annotation of state machines with such invariants provides
multiple benefits:

e The understandability and documentation of the
state machine is improved.

e The invariants can be shown to the analyst for
validation and error detection.

e State invariants can be used by analysis tools for
more efficient analysis [12].

e Invariants can be used by code generators to
improve the quality of the generated code. When
the entire code of the application cannot be fully
generated, the generated fragments must be read-
able by developers. The choice of variables in the
generated code, their names, and property annota-
tions may then be quite useful.

An algorithm for generating state invariants for SCR
state machines is presented in [12]. This algorithm cannot be
applied here as the semantics of SCR state machines differs
from the semantics of LTS state machines. Consider a state
machine with state ¢ and no outgoing transition with label /.

e According to the semantics described in [12], if the
system is in state g, an event with label [ can occur;
the system then remains in the same state g.

e With the LTS semantics, no event with label [ can
occur when the system is in state ¢.

This section presents an algorithm for generating state
invariants from fluent definitions. We use fluents, as
introduced in Section 2.4, rather than pre and postcondi-
tions on event occurrences. The reasons are the following:

e Fluents turn out to be simpler to use; they allow the
analyst to focus on one single state variable at a time
and thereby annotate LTS incrementally.

e Invariant generation requires less input information;
only the counterpart of postconditions has to be
defined, transition preconditions are provided by
the state machine.

e Conflicts may arise when the pre/postconditions
are incompatible with the state machine. Con-
sider two consecutive events, evl and ev2, in an
LTS execution. The postcondition post(evl) and
the precondition pre(ev2) cannot be inconsistent;
in other words, a conflict arises when
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post(evl) A pre(ev2) — false, meaning that either
the state machine or the pre/postconditions are
incorrect.

e Fluents provide a nice interface between goal
specifications and goal operationalizations [16]; their
definition can be derived in a systematic way from
goal specifications provided by goal models.

The algorithm implemented by our tool decorates each
state of the input LTS with a conjunction of fluent values
that holds in that state.

For our train example, three fluents are emerging from
goal specifications:

o fluent moving = <{start}, {stop, emergency stop} >
initially false,
o fluent doors_open = <{open doors, emergency open},
{close doors}> initially false,
o fluent alarmed = <{alarm propagated}, {emergency
open}> initially false.
The decoration of the initial state will be:

—moving A ~doors_opened A —alarmed.

Section 5.1 discusses the decoration of LTS states with
single fluents. Section 5.2 then shows how state invariants
are formed from single decorations.

5.1 Decorating States with Single Fluents

We first discuss how fluent values can decorate a node on a
single LTS path. Then, we consider the general case of node
decoration for a node pertaining to multiple paths.

5.1.1 Fluent Values for a Node on a Single Path
A fluent Fl is true after a finite LTS execution ¢ ending in
state ¢ if and only if one of the following conditions holds [5]:

1. Fl holds initially and no terminating event has
occurred in o.
2. Some initiating event has occurred in o with no
terminating event occurring since then.
The following recursive version of this definition is
useful for our generation algorithm.
A Fluent Fl is true after a finite LTS execution o ending
in state ¢ if and only if one of the following conditions
holds:

1. o is empty and FI holds initially.

2. The last event of ¢ belongs to the initiating events.

3. The last event e of o does not belong to the
terminating events and the fluent is true after o,
where 0 = < o’,e > .

5.1.2 Fluent Values for a Node on Multiple Paths

The value of a fluent in an LTS node is not necessarily
either true or false. There may be two LTS executions o
and oy reaching a state ¢ such that the value of the fluent F{
after oy is true and the value of the fluent Fl after o, is false.
For example, consider the train controller LTS (Fig. 10) and
the fluent

emergency =< alarm propagated, start > initially false.

The value of the fluent at the initial state after the LTS
execution oy =< start,stop > is false. The value of the
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if decor(source) # bottom then
if event € Initp; then
L newVal — true
else
if event € Termp; then
L newVal — false
else
L newVal «—decor (source)

decor (target) < sup(decor (target), newVal)

Fig. 16. Propagation rule of the decoration algorithm.

fluent at the initial state after the LTS execution oy =<
alarm propagated, emergency open, close doors > is true.
The value of emergency at that state will therefore be set
to top, meaning that the value of the fluent can be true or
false at that state depending on the path being followed. It is
also possible that a state is unreachable from the initial
state. In that case, the value of Fl at that state will be set to
bottom. The possible values of a fluent in some state thus
belong to a lattice Bool,,s defined as follows:

top
: true/ \false
BoOl s L i
bottom
Given an LTS model (Q,%,6,q) and a fluent

Fl =< Initp, Termp; > initially Initiallyp, the output of
our algorithm is a function decor: @ — booly,s defined as
follows:

decor(q) =
"true/ iff F'lis true for all LTS executions
reaching state ¢
'false' iff Fis false for all LTS executions
reaching state ¢
"top’ iff F'l is true for some LTS executions
reaching state g and false for others
'bottom’  iff state q is not reachable from the initial state.

The idea behind the algorithm is the following: At each
step, every state has a decoration. At the beginning, in every
state, the fluent value is initialized to bottom except for the
initial state where the fluent is initialized to the initial value
provided by its definition. The algorithm propagates fluent
values in the state machine according to a rule derived from
the recursive characterization of these values. This propa-
gation rule is shown in Fig. 16, where source € @, event € %,
target € 6(source, event), and sup is the supremum function
in the lattice Boolys, for instance, sup(true, false) = top and
sup(bottom, true) = true.

The algorithm applies this propagation rule for each
transition until a fixpoint is reached where no state
decoration changes if the propagation rule is applied on
each transition once again.

The algorithm for one fluent is given in Fig. 17. It keeps
track of the set ToExpl of states that have been updated and
where the propagation should be applied. The algorithm
stops when the set ToExpl is empty, that is, there is no state
that must still propagate its value.

The algorithm terminates because the set ToExpl will
eventually be empty as a state can change his decoration at
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Input: A LTS (Q,X%,6,q0)
A fluent Fl = (Initp;, Termg) initially Initiallyp,
Output: decor: Q — bool s
foreach q € Q do
| decor(g)« bottom

ToExpl — {qo}

decor(qp) <« Initiallyp;

while ToEzpl # () do

source < getOne (ToExpl)

ToExpl — ToExpl \ {source}

foreach (target, event) such that target € §(source, event) do
if event € Inity; then

L newVal — true

//A decoration function

else
if event € Termp; then
. newVal — false
else
| newVal «—decor (source)

new Decor — sup(decor (target), newVal)
if newDecor # decor(target) then
| ToEzpl « ToEzplU {target}

| decor(target)«— newDecor

return decor

Fig. 17. LTS decoration algorithm.

most twice: from bottom to either true or false and from true
or false to top. The reason is that the lattice is finite and the
decoration can only go up in the lattice in view of the
supremum operator.

Fig. 18 illustrates the two first steps of our algorithm for
the fluent moving = <{start}, {stop, emergency stop}> initially
false on the Train Controller state machine. The value of the
fluent at each state and after each step is shown in Table 1.

(Step 0) We initialize the values of moving at bottom for
each state except for the initial state where we initialize
moving to its initial value.

(Step 1) Only state 0 is in ToExpl. We propagate its value
to all his successors states. It has three outgoing transitions
toward statel, state3, and state4. The fluent value of state0
and state2 thus remains the same. For statel, the newVal
equals true because start belongs to the initiating events and
therefore moving will equal sup(bottom, true) = true. There-
fore, we add statel to the set ToExpl. For state3 and state4,
the events alarm propagated and open doors do not belong to
the initiating or terminating events. The fluent values of
state3 and state4 are sup(bottom, false) = false. We thus
add state3 and state4 to ToExpl.

(Step 2) We choose one element in ToExpl. Here, we
choose statel. Statel has two outgoing transitions.
Because stop is a terminating event, moving at state0
equals sup(false, false) = false. Because the decoration of
state0 has not changed, we do not add state0 to ToExpl.
Alarm propagated does not belong to the initiating or
terminating events and, therefore, moving at state2 equals
sup(bottom, true) = true. We thus add state2 to ToExpl.

The process is continued until ToExpl is empty.

5.2 Forming the State Invariant
A straightforward way of obtaining the global invariant at
each state is to apply the algorithm of Fig. 16 once per fluent
and then take the conjunction of results. For example, the
fluent values for the initial state are
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start

State 0 > State 1
. stop )
moving = false [€ moving = bottom
A
alarm propagated
A4
open|doors
State 2
alarm propagated | moving = bottom
close [doors
emergency stop
\4 v
Stafe 4 | _emergency open State 3
moving = bottom [ moving = bottom

(a)

!

State 0

moving = false
A

start
stop

> State 1
moving = true

alarm propagated

A4
State 2

alarm propagated | /moving = bottom

\ emergency stop
A4 v

State 4 State 3

moving = false moving = false

!

open| doors

close |doors

emergency open

A

(b)

start "
State 0 » State 1
. < stop )
moving = false [® moving = true
A
alarm propagated
A
open|doors A

State 2

alarm propagated moving = true

close [doors
emergency stop
v v

State 4 State 3

moving = false [~ moving = false

emergency open

(©

Fig. 18. Executing the algorithm for fluent moving. (a) After initialization
(Step 0). (b) After having propagated the value of fluent at state0 (after
Step 1). (c) After having propagated the value of fluent at state1 (after
Step 2).

{moving = false, doors_opened = false, alarmed = false}.

The state invariant is formed by taking the conjunction of
all fluent values in that state. The top values do not appear
in this conjunction as they do not give any information
about the values of the corresponding fluents. The state
invariant at the initial state is thus

—moving A ~doors_opened A —alarmed.



1070
TABLE 1
Values of Fluent Moving after Each Step
of the Decoration Algorithm
Step | ToExpl State0 State1 State2 State3 State4
false bottom bottom bottom bottom
1 {0} false true bottom false false
2 {1,3,4} false true true false false
3 {3,4,2} false true true false false
4 {4,2} false true true false false
5 {2} false true true false false

The algorithm implemented in our tool is an equivalent,
optimized version where the value of all fluents is
calculated within a single loop.

6 CASE StubpY: A MINE PumP CONTROL SYSTEM

This section shows our tool in action on a nontrivial
benchmark. We consider the following simplified problem
statement for the Mine Pump exemplar [13]: “Water
percolating into a mine is collected in a sump to be pumped out
of the mine. The water level sensor detects when water is above
and below a specific level. A pump controller switches the pump
on when the water goes above this level and off when it goes below
this level. To avoid the risk of explosion, the pump must be
operated only when the methane level is below some critical level.”

Fig. 19 shows three scenarios initially submitted to the
tool by stakeholders—two positive and one negative. As
mentioned before, the tool has the built-in assumption that
all submitted input scenarios start in the same initial state
(this assumption is commonly made by the other ap-
proaches to state machine synthesis from scenarios.) The
submitted scenarios thus implicitly specify that both the
water level and the methane level are initially low.

To illustrate the integration of legacy components, we
assume that the methane sensor is an external component
specified by the LTS shown in Fig. 20.

From this input, the tool generates a first scenario
question, shown in Fig. 2la. This scenario should be
rejected by the end-user; in view of the common initial
state with low water, the pump controller may not switch
the pump on when the water level is low. This scenario is
added as a negative scenario to the initial collection. Its
precondition contains the events signal critical methane and
signal not critical methane and its prohibited event is switch
pump on.

The next scenario then generated by the tool is shown in
Fig. 21b. This scenario is to be accepted by the user; if the
water level is high and the pump is running, the controller
should switch the pump off when the methane level
becomes critical and should switch the pump on when
the methane level is no longer critical.

The third and last scenario question requires a negative
answer. The synthesis already terminates after those three
questions as the integration of the legacy component allows
the generation of two scenarios violating the methane
sensor LTS to be avoided. Fig. 22 shows the synthesized
system LTS.

The tool then projects the synthesized system LTS on
each agent. Fig. 23 shows the LTS for the pump controller,
where the predicates annotating nodes there are to be
replaced by numbers.
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Water Sensor ‘ ‘ Methane Sensor ‘ [ Pump Controller l ‘ Pump Actuator l ’ Pump ‘

signal high wwater

switch pump on

signal Iqw water

switch pump off

turn pump off

signal high water

switch pump on I

(a)

l ‘Water Sensor ‘ l Methane Sensor ‘ ‘ Pump Controller ‘ ‘ Pump Actuator ‘ ‘ Pump ‘

signal critical methane
signal high water

signal not critical methane

switch pump on
turn pump on
signal critical methane I
switch putmp off I
turn pump off s
signal not critical methane
switch pump on I
turn pump on s

(b)

Negative Scenario

‘ ‘Water Sensor ‘ ‘ Methane Sensor ‘ ‘ Pump Controller ‘ ‘ Pump Actuator ‘ ‘ Pump ‘

signal critical methane
signal not critical methane

signal critical methane

Y R aRE U RIS ERTEEEE S AR REREEEEEE

switch pump on [; l\

(©)
Fig. 19. Three initial scenarios of the mine pump.

The analyst enters the picture at this point. For better
understanding of the generated LTS and its validation, she
may enter the following fluent definitions as input to the
invariant generation process:

o fluent PumpOn = <{turn pump on}, {turn pump off} >

initially false.

o fluent HighWater = <{signal high water}, {signal low

water}> initially false.

o fluent CriticalMethane = <{signal critical methane},

{signal not critical methane}> initially false.

These fluents define the state of the pump, of the water
level, and of the methane level in terms of their initiating/
terminating events. They are typically identified from goal
operationalizations [16].

The invariant generator then decorates each agent LTS
with node annotations as shown for the pump controller
LTS in Fig. 23.

signal not critical methane

| Criticalhethane

.—D CriticalMethane

signal critical methane

Fig. 20. LTS of the methane sensor.
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[ Accept interaction ?

[

Acceptable behavior ?

‘Water Sensor Methane Sensor Pump Controller Pump Actuator

Pump

signal critical methane .

signal not critical methane (|

switch pump on B

signal critical methane
switch pump off

signal not critical methane
switch pump on

‘ Yes || Mo ‘change U Cancel ‘

(a)

Fig. 21. Two scenarios generated by the tool.
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[ Accept interaction ?
% Acceptable behavior 7

Water Sensor Methane Sensor Pump Controller Pump Actuator Pump

switch pump on_.
turn purmp on

signal criical methane .

| signa high water

switch pump off
turn pump off

signal not critical methane

switch purmp on
turm pump on .

‘ Yes ‘ No Change | | Cancel

(b)

turn off

high water

critical
not critical @

high water

turn off

Fig. 22. Synthesized system LTS for the mine pump. Event labels are shorthand for the events presented in the scenarios of Fig. 19.

e

swnch pump off
ICriticalMethane ~ Highvater * lPumpOn

ICriticalMethane * HighWater PumpOn

sngnal low water
ICriticalMethane * HighvWater * PumpOn

V\\SWW

W

signal not critical methane

lCrmcalMethane * High\Water * IPumpon

signal critical methane

signal cfitical methane

Signal not cr‘ithm methane

- signal high water - i switch pump off - i
CriticalMethane * Highvater ~ PumpOn CriticalMethane * Highater * IPumpOn CriticalMethane * HighWater * PumpOn

Fig. 23. Synthesized annotated LTS of the pump controller.

7 CONCLUSION

Scenarios are concrete vehicles frequently used for eliciting,
illustrating, and validating system requirements and design
models. However, they are just partial examples of desired
or undesired behavior. The required properties are left
implicit and must be inferred. The behavior models are only
partially covered and need to be synthesized.

The contribution of this paper is twofold.

e A new approach has been presented for synthesizing
behavior models from simple forms of scenarios.
Compared with other synthesis approaches, our
approach does not require additional input to the
synthesis process, such as state assertions along
episodes or flowcharts on such episodes. Positive
and negative scenarios are both taken into account.
New scenarios are generated as questions for further
elicitation and for control over the generalization
process. The synthesis process is incremental and
does not require all scenarios to be provided from the
beginning. The global system model is guaranteed to
cover all positive scenarios and exclude all negative

ones, whereas the projection of this model on system
agents may introduce, as in other approaches,
undesirable implied scenarios that result from the
parallel composition of the system agents.

e A new fixpoint algorithm has been described for
generating state invariants on labeled transition
systems so as to make such models easier to
understand and validate—especially as they are
automatically generated from scenarios.

The tool implementing both contributions has been used
on several nontrivial case studies and example benchmarks
from the literature; it proved to be quite effective in
synthesizing LTS models through scenario-based interac-
tion only. For example, a state machine for an ATM system
is generated in [31] from four scenarios annotated with pre
and postconditions. Our tool generates the same state
machine from the same four input scenarios, but without
any annotation, with only one scenario question (to be
rejected by the user). In [23], the MAS tool takes one single
scenario for an alarm clock system as input. MAS first
interacts four times with the user through trace questions
on the state machine generated for the so-called control unit
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agent. The resulting state machine appears to be over-
generalized; the user therefore must further submit a
counterexample. Three more trace interactions are then
required before the final state machine is generated. On this
clock example with the same input scenario, our tool
generates one single scenario question. This question
corresponds to the counterexample that the user had to
provide by herself in [23]. We generate it and express it in a
simple MSC form. Since the single input scenario is not
structurally complete, the state machine generated by our
tool is not complete. Adding one more positive scenario
makes our tool generate the same state machine as in [23]
without any further question. In addition, the tool generates
the state machines for each agent.

Our LTS synthesis technique extends a known learning
algorithm from the literature on grammatical inference [26],
[4] to make it incremental and generate scenario questions.
The convergence of this algorithm is guaranteed when the
learning sample is rich enough [27]—said in scenario terms,
when the scenario collection is characteristic. This shows
the importance of positive as well as negative scenarios. The
positive scenarios help in learning a system LTS by
providing a constraint on minimal coverage of behaviors;
on the other hand, the negative scenarios help in learning
the correct system by constraining such coverage not to be
too wide. Our extension of this algorithm is aimed at
overcoming the limitation of not having a characteristic
scenario collection from the beginning. Additional scenarios
are generated during LTS synthesis to be classified by the
end-user as positive or negative. Those scenario questions
are generated so as to converge toward a characteristic
scenario sample for the learned system. This ensures
convergence of the learning process while providing a
natural way of eliciting further scenarios and their under-
lying requirements. As discussed in Section 4.4 and
Section 6, various optimizations of this interactive induction
algorithm help reduce the number of scenario questions
without sacrificing its convergence.

Our approach raises several issues. Multiple users may
submit inconsistent scenarios. As with other approaches,
inconsistencies may propagate to the synthesized model.
Our approach is also highly sensitive to classification errors.
Accepting a scenario question instead of rejecting it, for
example, will obviously result in inadequate models being
synthesized (this problem is common to learning-by-
examples techniques).

Our tool makes the assumption that all submitted
scenarios start in the same initial system state (this
assumption is used in other approaches as well). For real-
sized systems or multiuser elicitation, such an assumption
seems unrealistic. If two end-users specify scenarios
separately, they might not choose the same initial state.
Our algorithm should be adapted to support this problem.

The generated state machines are “flat” LTS. Transform-
ing them into hierarchical machines with sequential and
parallel decomposition within single agents would be
useful, in particular, for generation of more structured
code. The generated fluent decorations might help in such a
structuring process.

In addition to existential scenarios, we would like to
explore the use of universal scenarios [2] in our approach.
Existential scenarios illustrate what may occur; universal
scenarios state what must occur. The addition of universal
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scenarios would allow us to constrain the induction process,
automatically reject induced solutions that are incompatible
with the information provided by obligations, and thus
further reduce the number of scenario questions.

We are currently experimenting with our approach to
synthesize behavior models for Web applications from end-
user scenarios of interaction with such applications. It turns
out that the state space gets much larger in this context, which
may result in too many scenario questions being generated to
the end-user. Constraining the search space through addi-
tional input information is one obvious solution to this
problem. Such additional information, to be provided by the
analyst (not the end-user), may include LTS models of legacy
components to be integrated (as already suggested in Section
6). The latest version of our tool also takes system goals [16], to
be achieved by the synthesized models, to further constrain
the search space. Preliminary experiments suggest some
drastic improvement. This is not too unexpected; as a goal
captures a set of scenarios, the number of scenarios questions
decreases accordingly.
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