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INTRODUCTION

χ2(2n) confidence intervals are classical and useful tools to bound failure rates and MTBF times of Poisson failure processes. However, in most standards and textbooks the derivation of the bounds is not made explicit. This casts a doubt on the nature of the underlying assumptions which should be verified to make valid use of these bounds. 

This note tries to fill this gap, as there seems to be a need to clarify these points. The derivation below also provides an intuitive meaning that may be useful when statements based on χ2(2n) confidence intervals of Poisson failure processes are made.

DERIVATION OF THE BOUNDS

A natural way to start is to consider - as in the IEEE std 352 1975 [1] - a number (possibly one) of identical components being tested, and to let T(n) be the time from the start of the test to the time at which the nth (possibly first) failure is observed. 

If one can assume that the failure rate remains constant over the life of a component, that all components are identical and behave independently, then the failure process is a Poisson process. The probability that a component fail during any time interval ]t,t+dt] is equal to λdt, and an estimate of the failure rate λ is given by: 

  (° = n/T(n)                                                                       (1)

Note that, under the above assumptions of independence and time-independent failure rate, it does not matter whether one considers several components that fail once or a single component that fails more than once at the same rate.

The derivation of χ2 confidence intervals for the estimate (1) works as follows. Let the random variable t(n) be the time interval from the start of the test to the nth failure. T(n) is an observation of this variable.

In a Poisson process, if n is fixed, the time t(n) from the start to the nth event has a probability density function equal to

 fn(x)=e-λx λn xn-1/(n-1)!                                              (2)

for x(0, and zero otherwise. In other words, the probability that t(n) takes a value in the interval ]x,x+dx] is given by fn(x)dx. A proof of this classical result can be found in a.o. ([2], part 1, page 66). The density (2) is sometimes referred to as that of a Γ(n,λ) distribution.

If n failures are observed, and T(n) is the time measured until the nth failure, then λ*, the (1-α)100% confidence upper bound on λ°, can be defined as the value of λ such that 
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i.e. such that the probability that t(n) be less or equal to T(n) is (1-α), α being small compared to one. Equation (3) becomes:
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e-λ x λ*n xn-1/(n-1)! = 1-α.                                          (4)

The integrand in the left-hand side can be made to depend on one variable only by letting

y= 2λ*x.                                                                 (5)

Thus, dy=2λ*dx, and, by replacement, the equality that must be satisfied becomes
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e-y/2 yn-1 dy / 2n(n-1)! = 1-α ,



         (6)

or, if we let v = 2n,
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    e-y/2 yv/2 - 1 dy / 2v/2 (v/2 - 1)! = 1-α .                          (7)

The left hand side of (7) is equal to the Prob (y ( 2λ*T(n)), where y is a random variable with a χ2(v) probability distribution function of v=2n degrees of freedom. 

The upper limit of the integral in (6) or (7) is also the upper 100α% point of this χ2 distribution: the value χ21-α(2n) tabulated in various tables which satisfies 

Fχ2(2n)(χ21-α(2n))=Prob(y(χ21-α(2n)) = 1-α
                             

Thus, 

2λ*T(n) = χ21-α (2n),

and the (1-α)100% confidence upper bound is given by

λ* = χ21-α (2n)/2T(n) .                                                    (8)

The lower confidence bound can be found in a similar way. It is defined as the value of λ such that
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i.e. such that the probability that t(n) be equal or larger than T(n) is (1-α). One can rewrite (9) as
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or,  
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from which one obtains that the (1-α)100% confidence lower bound λ** is given by

λ** = χ2α(2n)/2T(n) . 

CONCLUSIONS

 The χ2 confidence intervals that bound Poisson failure rates and MTBF are directly derived from the Poisson distributions and Γ(n,λ) functions. Thus, no assumptions are needed in addition to those required to assume a Poisson failure process (constant failure rate, independency and zero probability of more than one event in any single small time interval).

Expressions (3) and (8) provide intuitive meaning to what the bounds are. 
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