
IAEA Technical Meeting 

On Licensing Digital Instrumentation and Control Systems and Equipment in Nuclear Power 
Plants 

Espoo, Helsinki, Finland, 22-25 November 2005 

 

Towards a Deductive Approach for the Safety 
Justification of Computer Based Systems 

 
P.-J. Courtois1

 AVNuclear2, Brussels, Belgium 
 
 

Not only should the system be dependable,  
it should also be possible to demonstrate to the regulator 

that it is dependable 
(IAEA Safety Guide NSG1.1, §3.19) 

 
 

Abstract 
The objective of this on-going research work is to find ways to make the 
demonstration of the safety of a computer based system as deductive as possible; that 
is, to put in place concepts, principles and methods to structure and rationalize this 
demonstration. 
The findings so far are that the demonstration should at least be: 

Based on two prerequisites: validated dependability requirements, and preliminary 
black box system specifications, 
Hierarchical:  relying on four levels of evidence,  
Recursive: with mechanisms of claim expansion and delegation 
Inductive:  with layered arguments of backwards inferences, 
Model-Based: on four distinct but related layered families of models. 

 

1. Introduction 
 

When a programmable system with safety demands is on the verge of being 
introduced into service, those responsible are almost always haunted by the same 
doubts: is the system and its software sufficiently reliable? What can happen if, 
despite all precautions taken, it fails? Shall it be fail-safe…?  Not to raise these 
questions would of course be foolish. And yet looking for answers raises more issues:  
Of all the possible evidence and arguments, which one should we most rely upon?  

                                                 
1 Email: courtois@info.ucl.ac.be   
2 Rue Walcourt, 148, B-1070 Brussels 

 1



How can we decide whether there is enough evidence to justify the release of the 
software system? How should evidence be presented to independent assessment 
bodies or authorities?   
These questions are not new, even in nuclear engineering, see among others [2],[8].  
And yet, past lessons learnt and other good reasons (see for instance [12]) strongly 
advise us not to rely exclusively in those matters on common sense and engineering 
judgement. Safety is indeed an elusive system property that may thwart experienced 
expertises, especially when correctness of design is at stake.  There is a need for a 
rational, transparent, objective, and reproducible decision procedure to guarantee that 
the necessary level of dependability is attained. The work reported here fits in with 
this general objective.  
By necessity, the hardware and software of a complex software-based system is 
designed as a highly modular and hierarchically organised structure. The specification 
of the design and implementation is achieved through different refinement levels: 
specifications of the interface with the outside world are reified into the system 
architecture, the hardware and software design, implementation, and operation modes.  
A method which exploits the properties of this hierarchic reification structure is 
proposed here to construct safety arguments for a computer-based system. 
Recommendations are given as to how to organize the justification of initial 
dependability claims into a multi-level structure of claims, evidence and arguments. 
This multi-level structure rests in particular on the concepts of levels of evidence, 
claim (as distinct from requirement), claim conjunction, inference, expansion and 
delegation. Levels of evidence are shown to correspond to levels of causality.  To 
each level are also associated the corresponding system functions and undesired 
events susceptible to cause these functions to fail. 
An as yet unexplored albeit essential aspect of dependability cases is emphasized: the 
essential roles played by models. The availability of reified models is critical in the 
demonstration of dependability, in two different ways: they are indispensable to define 
safety and also to deliver proofs.  
This approach may complement assessment practices more oriented on rule-, design 
principle- or standard- compliance.  Benefits that can be brought to current practices 
are discussed.  In no way the paper intends to make believe that safety justification is 
simple.  On the contrary, the expansion of apparently simple claims is shown to be 
surprisingly complex.  Mastering this complexity is the concern. 
Over the years, our work has been partly supported by the European Union, within the 
context of the R&D projects PDCS (Predictably Dependable Computing Systems), 
DeVa (Design for Validation), and CEMSIS (Cost Effective Modernization of 
Systems Important to Safety) [11]. 
 

2. How to start a safety justification? The primary 
dependability claims 

 
We first have to define precisely what is meant by safety in the precise context in 
which the computer system is to be used.  Curiously enough, nuclear guidance on 

 2



safety critical computer systems in general devotes little or no attention to these first 
steps. 
By computer system, or more simply system, we mean here a computer with its 
processors, memories and communication hardware, and with its system and 
application software.  When we need to refer to the Instrumentation and Control 
system in which the computer system is embedded and operates, we shall talk of the 
computer-based system.  

2.1 Initial dependability requirements for the computer based 
system 

We have to start with a carefully validated definition and formulation of a complete 
and coherent set of dependability requirements for the computer-based system.  
Without such validated requirements, there would be no definition of the safety that 
must be claimed for the use of the computer system. This set of initial requirements 
should therefore receive the prior attention and approval of all parties involved, plant 
and safety engineers, and the regulator.   
A couple of examples may help to keep things concrete.  
In Tihange 1 (Belgium) nuclear plant, the SIP (Process Instrumentation System) is the 
input processing level of the Protection Logic System (PLS) of the reactor.  Signal 
acquisition, validation, voting and threshold comparison are among its main functions; 
it consists of four independent and data acquisition and processing channels. 
The SIP renovation and replacement by a digital system was completed in 2004. At 
the start of the project, some of the main dependability properties required for the new 
digital instrumentation were agreed upon: 
 
Functionality: The SIP I/O functional relations must conform to the 

original logic. 
Reliability claim: The SIP reliability and availability must remain at least 

as good as the original one.  
CMF:   The SIP software common mode failure (CMF) level 

must not be superior to the CMF level of the original 
SIP hardware being replaced. 

Single Failure: No single failure should cause the loss of a protection 
function. 

Auto-detection:  The SIP must detect its own failures (in particular, the 
coverages achieved by auto-tests and periodic tests must 
be shown complementary). 

Fail-safeness:   The SIP must be fail-safe. 
 
In some cases, only a couple of dependability properties need to be required.  For 
example, in the project CEMSIS [11], the dependability expected from a rotational 
nuclear material-handling machine is essentially captured by: 

“No rotation” requirement:  Rotation of the carousel never occurs while 
material is being transferred 

 3



Reliability requirement:  The probability of failure per demand should be less 
than 10-4 per handling operation 

 
These initial requirements concern the functionality of the system or the properties of 
its behaviour.  Ultimately, however, all requirements have to be mapped and 
translated onto specifications of the computer system design, implementation, 
maintenance and/or operation control.   
 

2.2 Formulation of primary dependability claims 
The next step is the derivation from the initial dependability requirements of what we  
call the primary dependability claims (or in short primary claims) of the computer 
system.  Primary claims are still independent of the actual implementation; they 
basically claim (i) that the system specifications are valid and (ii) that the system 
behaviour, as specified, is dependable, taking only into account the environment, 
replacement or upgrade constraints. 
Primary dependability claims are therefore of two sorts:  
  (i) A functional primary claim claims quality properties (correctness, 
completeness, coherency…) of the specifications of the functions expected from the 
computer system in a given context of constraints and anticipated hazards. The most 
simple and generic form of a functional primary claim is given in Figure 1. 
 (ii) A non-functional primary claim claims properties of the implementation, 
maintenance or use of the computer system. At this early stage, nonfunctional 
dependability properties of the implementation such as fail-safeness, reliability or 
availability cannot yet be mapped onto specific aspects of the lower design and 
implementation levels. So, non-functional primary claims take simple forms, as for 
example in Figure 2. 
.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

specification 
{under {environment constraints[i]}do 

   if condition [i] then action [k]; 
   if undesired events[i] then enter safe state S[j]} 
is valid. 
 
Comments:  
valid means correct, consistent, complete with respect to a dependability requirement 
constraints are those imposed by the environment (e.g. by physical constraints, existing systems and 
communication links, replacement constraints…)  
conditions are the operational conditions that the safety system has to deal with. 
actions are safety feature actuation, alarm generation, control… 
undesired events are anticipated events taking place at the plant-system interface, also at lower 
levels of the design and implementation, but not necessarily yet identifiable at this stage. 
safe state S is a system output state, which is dictated by the environment and defined here. 

Figure 1 

 

 4



2.3 Claims, Meta- and Extra-Requirements 
Primary claims, like system and design requirements, concern properties of the 
computer system specification or behaviour.  There are, however, important 
differences between the notions of claim and requirement.   

 
 

 
 
 
 
 
 

 

 

implementation of the specification is correct, fail-safe, 
maintainable…; 
 
probability of unsafe failure on demand  ≤ 10-x; 
 
availability ≥ min; 
 
response time ≤ T; 

Figure 2 

 
System architects and designers refer to system requirements and their specifications 
in the course of design.  They normally do not talk about claims at this stage.  One 
usually starts to make claims on a computer system when an application has to be 
made for licensing the system for a given usage, or when dealing with regulators, 
safety authorities or their technical support organisations, or when submitting the 
system to independent assessment.   
A requirement is essentially a statement specifying what the computer system is 
originally designed to do, while a claim is a statement addressing the appropriateness 
(i.e. properties) of these specifications and of the system behaviour for a given usage.  
More precisely, a claim is either a kind of meta-requirement or an extra-requirement.  
A claim is a kind of meta-requirement when it is a statement addressing a property 
that a (set of) computer system requirement specifications should have: e.g. validity, 
consistency, completeness, correct implementation, or maintainability in operation.  
A claim is a kind of extra-requirement when it is a statement addressing needs that 
were not explicitly part of the original computer system requirement specifications; 
such an extra-requirement can be a functional or a non-functional claim, depending on 
whether it claims the existence of extra functionality or property.  For instance, one 
may have to claim that a monitoring system is fit for operations in post accidental 
conditions.  It must then be claimed and shown to satisfy the design criteria - e.g. the 
single failure criterion and a maximum reaction time - required for these operations, 
although some of the system components may not have been originally specified and 
designed for this purpose.   
Claims and requirements may coincide in contents in the ideal situation when the 
safety justification is part of a development project and progresses along with the 
specifications and the design of the system.  

 5



Components of the shelf (COTS) and other pre-existing components used in systems 
important to safety are an important case where claims usually do not coincide with 
the original system specifications. 
A more subtle difference is that design requirements emphasize system functions 
while dependability claims also cover undesired events like threats or hazards.  For 
example, a functional specification for a monitoring system may be “to display the 
pressurizer coolant temperature and level values”, while a functional dependability 
claim may have to exclude silent failure modes for the same system and demand that 
“pressurizer coolant temperature and level values be displayed if and only if validated 
measurements are available”.  A computer system may satisfy its functional 
requirement specifications, and yet not necessarily satisfy a functional dependability 
claim.  
 

2.4 Coherency and Completeness 
It is essential that the set of primary claims be sound, consistent (no two claims 
contradicting each other) and complete (no essential claim missing).  This is one of 
the first great difficulties of the demonstration of safety. 
The primary claims are derived from the initial dependability requirements. The 
discussion of the soundness, completeness and consistency of these initial 
requirements is out of the scope of this paper.   These initial requirements must result 
from prior analysis; otherwise, there would be no definition of the dependability 
expected from the I&C computer-based system to start with, and thus no agreement on 
what should be justified.   
As for the primary claims, justifying their consistency and soundness may be 
relatively easy since the initial dependability requirements can be used as a reference 
to compare with.  Justifying the completeness of the conditions, events, and actions 
that must be taken into consideration can be much harder.  There are at least two 
pragmatic ways to help with this problem. 
First, an important point to keep in mind is that completeness is a model property; that 
is, a property that can only be demonstrated in relation to a well-defined pre-existing 
model.  For the primary claims, a model of the interface between the computer system 
and its environment is needed to precisely describe the environment items, conditions, 
actions, constraints, events and properties of interest.  Completeness of the set of 
primary claims can then be shown by comparison with sets of elements defined by this 
model.  The justification of completeness is transposed to the justification of a model; 
but the latter can be easier, more precise and less prone to errors.  The need for precise 
models in safety justification is discussed in section 5. 
Another important principle to remember is what R. P. Feynman coined a “principle 
of scientific thought that corresponds to a kind of utter honesty” [7].  Not only what 
supports the validity of the primary claims but also everything that may cast doubt on 
their completeness should be explicitly reported. Every potential event, condition or 
dependability issue that might have been eliminated from the primary claims by some 
experiment or some other argument should be documented so that independent 
reviewers can be aware of any aspect left aside and why. 
  

 6



3. How can we justify the primary dependability claims? 
3.1. Hierarchical Structured Justification 

A first key is to remember that any computer system hardware and software is highly 
modular and hierarchically organised. Its design and implementation specification is 
achieved through different refinement stages. Specifications of the interface with the 
outside world are reified into specifications of the system architecture, design, 
implementation, and operation modes. 
The second key is to realize that, similarly to this reification process, any primary 
claim is a property of the system specification or behaviour, which is inferred from 
different types of evidence to be claimed at different levels of the design and 
implementation. 
The third key is to note that a primary claim can be reified into subclaims on evidence 
to be provided by lower levels.  Like specifications, sub-claims can themselves be 
recursively reified onto lower levels. 
Making use of these three keys, the justification approach consists in decomposing 
every primary claim into its component subclaims at the first top level, and then either 
justify these subclaims with evidence available at this level, or to further reify the 
subclaim into subclaims on evidence to be provided by lower levels, and proceed in 
this way level by level down to the lowest. 

3.2. Levels of evidence 
What are these levels where evidence is to be found? 
The total supporting evidence for a primary dependability claim necessarily consists 
of evidence of one or more of four different kinds.  Without going into detail, let us 
say simply here that these four kinds result from the way computer systems are 
designed; they are also confirmed by experience. 

Intuitively, it is not difficult to see that a primary dependability claim needs to be 
supported by one or more of the following levels of evidence: 

level 1. Plant-computer system interface: evidence that the functional and non-
functional computer system specifications are valid, that they satisfy the 
dependability requirements and adequately deal with the environment/system 
constraints and undesired events; 

level 2. Architecture: evidence that the computer system architecture can support the 
functional and non-functional computer system specifications validated by 
evidence at level 1; 

level 3.  Design: evidence that the computer system is designed and implemented so 
as to perform according to the functional and non-functional specifications 
validated by evidence at level 1; 

level 4.  Control of operations: evidence that integration and operation of the 
computer based system in its environment preserves the primary claim and the 
environmental constraints during the whole lifetime.  This may include evidence 
that the computer-based system can be properly maintained and cannot display 
behaviours unanticipated by the specifications, i.e. that behaviours outside the 
design basis will be detected, controlled, and their consequences mitigated. 
 

 7



Examples of types of evidence at each level are: 
- At level 1: a regulation or a regulatory position asserting or justifying 

the validity of a computer system requirement specification; a safety 
analysis report. 

- At level 2: a statement from a certification body guaranteeing certain 
properties of a hardware/software platform; a (set of) test result(s)s; 
evidence of independency to support an architectural property such as 
redundancy or diversity. 

- At level 3: a (set of) module(s) or integrated test result(s); a conclusion 
of a code static analysis or failure mode analysis; defensive 
programming measures.  

- At level 4: maintenance procedures, periodic tests,  operator control 
interventions or  operational procedures guaranteeing a safe state or an 
invariant property; a (set of) pertinent operational feedback data. 

 

3.3. Claim expansion  
How should we use these levels of evidence to build a deductive argument justifying 
an initial dependability claim? The answer is essentially based on the fact that the four 
corresponding claim reification levels mentioned in section 3.1 are also levels of 
causality.   
To each level correspond specific system properties, functions and also undesired 
events.  The undesired events are those anticipated events susceptible to cause the 
functions at that level to fail or these properties to be invalidated.   
Moreover, a function or a property usually relies on functions and/or properties 
implemented at lower levels.  Functions and properties can thus fail also as a 
consequence of undesired events occurring at lower levels.   
The consequence is that the justification of a claim made at a given level for a 
property, a correct function implementation or a proper undesired event treatment 
rests on evidence provided at that same level AND on the implication (claims) that 
certain properties, functions and a proper treatment of undesired event proper exist at 
lower levels. Making such implications is similar to claiming that lower levels are 
somehow correct and free of unsafe failures.  Similar implications are made in 
hierarchical design. 
These implications mean that a claim on the dependability of a function or a property 
at a given level usually implies claims on evidence provided by lower levels. 
Therefore, any initial dependability requirement needs to be expanded into primary 
claims at the first level.  In turn every primary claim may need to be expanded into 
sub-claims at any of the three lower levels, and recursively, any such sub-claim may 
need to be further expanded into sub-claims at lower levels. 
Thus, a subclaim is a claim made at some level i, i=1,2,3 that evidence should exist 
and be provided at some lower level j, j>i. When necessary, we call this a delegation 
subclaim, or in short a delegation, denoted  α.clm[i,j], i < j.   α is a name identifying 
the evidence claimed at level i and which must exist at level j. 
Thus, as shown in Figure 3, an initial dependability requirement, a primary claim or 
sub-claim is the root of a tree of implications of depth at most four.  The intermediate 

 8



nodes of the tree are delegation subclaims and all end nodes (leaves) must be evidence 
components, otherwise the argument is not terminated. The tree of implications is the 
argument supporting the (sub)claim at the root. 
As a consequence, all subclaims at a given level 2,3 or 4 must originate directly or 
indirectly from a primary claim at level 1.  

3.4. Layered Arguments 
Concretely, an argument must in general consist of the following types of 
implications. 
Level 1:  Plant – Computer System Interface:  
Primary Claims: 
At this level, an initial dependability requirement needs to be expanded into a 
necessary and sufficient set of functional and non-functional primary claims.   
Evidence: 
The functional primary claims claim properties of the computer system functional 
specifications such as their validity, completeness, and compliance with the initial 
dependability requirement. They may also have to claim that the undesired events that 
can occur in the environment and the corresponding safe states are properly specified.  
Functional diversity may also have to be claimed at that level. All these functional 
primary claims must be exclusively supported by evidence of the same level 1.   
Delegation: 
The non-functional primary claims address properties of the implementation such as 
reliability, availability, correct, fault tolerant and fail-safe implementation of the 
specifications.  These non-functional primary claims must be exclusively supported by 
evidence at the lower levels of architecture, design and control. At level 1 these non-
functional primary claims actually infer properties of these lower levels; these 
properties are assumed satisfied at level 1 and their justification  is delegated by 
subclaims to  lower levels. 
Level 2:  Architecture  
Each delegation sub-claim made at level 1 on level 2 assumes properties of the 
architecture and must be supported by level 2 evidence and/or expanded into 
delegation sub-claims to lower levels. 
Evidence 
Evidence to support delegation subclaims on sensor and actuation devices, fault 
tolerance, redundancy, hardware diversity, physical separation, communication links 
and protocols, response times, mapping of software  on hardware architecture…   
Delegation 
Subclaims on protocol and system platforms, on software correctness, fault tolerance, 
fail safeness, time performances, self-diagnostics, on COTS behaviour…  
Level 3: Design 
Each delegation sub-claim made at level 1 and 2 on level 3 assumes properties of the 
design and must be supported by level 3 evidence and/or expanded into delegation 
sub-claims to level 4. 
Evidence 

 9



Evidence on application, communication and system software correctness, testability, 
performances, fail safeness…  
Delegation 
Subclaims on periodic tests, operator alarm and controls, in-service and maintenance 
procedures… 
Level 4: Operation and Control 
Each delegation sub-claim made at level 1, 2 and 3 on level 4 assumes properties of 
the control and must be supported by level 4 evidence. 
Evidence 
Evidence on operator, in-service  and maintenance procedures, periodic tests…; from 
operational feedback.  

 

*.clm i 

*.clm(i,i+3) conjunction 

Argument 

 
Claim expansion 

*.clm(i,i+1)

*.evd(i+3) 

*.clm(i+1,i+2
)

*.evd i 

*.evd(i+1) 

*.evd(i+2)

*.clm(i,i+1)

*.evd(i+3)

implication

Grey claim 

black claim 

white claim 

 
Figure 3 

 
As an example, Figure 4 shows the argument supporting the initial dependability 
requirement “no rotation” which was introduced in section 2; this requirement is 
denoted “norot.clm0” at the top of this figure. The expansion illustrates the 
complexity of the justification of an apparently simple claim. 
 

4. Argument Properties 
 

A sub-claim can therefore be of one of three different types. Using colours (see Figure 
3) to refer to these types more easily: 
� White: the subclaim is exclusively supported by evidence at the same level. 

 10



� Black: the subclaim is exclusively inferred from lower level by delegation sub-
claims, 

� Grey: the subclaim is supported by evidence at the same level and also by 
delegation sub-claims. 

A black or a grey subclaim is a “logical link “ across two levels of evidence: the level 
at which it is formulated and assumed true, and the level at which it is proven true.  
Or, in other words, a black or grey subclaim is a logical construct to relate the level at 
which evidence is found to be needed, and the level at which this evidence is actually 
provided. 
An initial dependability requirement can be considered as a black claim. 
At level 1, there is no grey claim. A primary claim is either white (i.e. functional) or 
black (i.e. non-functional).  
At intermediate levels 2 and 3 expansions are arbitrary and claims can take any 
colour. 
At the lowest level 4, subclaims must all be white. 
 

4.1 Safety Justification is a Reverse Inductive Process 
Safety justification appears to be a backward or reverse inductive process, rather than 
a direct inductive or deductive process3.  This is another difficult aspect of the 
demonstration of safety.  Criminal and police officers, as inspectors Maigret and 
Poirot, make direct inferences.  They start by collecting evidence, if possible in 
absence of any presumption, until enough is accumulated to argue that someone is 
guilty.  In safety justification, we have to start by stating what are the safety 
requirements and properties to justify, and only then construct arguments and identify 
what evidence is necessary.  It would be unacceptable and dangerous to work the 
other way round, as it would somehow mean adapting the safety claims to the 
available evidence.    
To paraphrase rules for specifying software requirements [9]: state the “safety issues” 
before answering them.  If this is not done, the available evidence may prejudice the 
safety claims so that the easily justified ones only are claimed. 

4.2 Single argument and conjunctive property 
The previous sections show that at any level i of an argument, a (sub)claim α is 
implied from a conjunction of evidence components υ,ω,... from the corresponding 
level i and/or from delegation subclaims β,γ,… on lower levels: 

α.clmi  ⇐  {υ.evd[i] ∧…ω.evd[i]}  ∧  {β.clm.[i,j]  ∧ γ.clm[i,k]  ∧…} 
where levels j, k,…> i. 

(eq 1) 

It is important to understand why the right hand side of this implication is always a 
conjunction (i.e. an AND) of (sub)claims and of evidence components.  A disjunction 
(OR) would mean that there are alternative arguments to support a subclaim and this 
possibility should be discarded for the sake of completeness.  One must indeed 

                                                 
3 It is for the sake of simplicity that the title of the paper refers to a “deductive” approach. 

 11



distinguish two cases.  Either one of the alternatives would be sufficient to support the 
claim.  In this case the safety justification would be simpler by just retaining that 
argument.  Or none of the alternative arguments is sufficient by itself (as for instance 
in a three leg argument).  Then, all these alternative arguments are necessary. In this 
case we must have a conjunction of antecedents in a single argument.   

As a concrete example, and to grasp the full significance of this conjunctive property, 
consider some deterministic4 claim at architecture level 2 that would assert that a 
processing unit is fail-safe in its output behaviour. 
This claim might be inferred from either one of two subclaims at design level 3:  
(i)  A subclaim that a failure mode and consequence analysis of the software of 

this processing unit has identified potential errors and has rightly concluded 
that the software failures are safe,  

(ii) A subclaim that a hardware maximum cycle timer and the self-tests of the 
processing unit trap potential errors caused by this unit and leave the system in 
a safe state. 

 
Then, three possibilities arise:  
1. Each of these two subclaims is shown with supporting plausible evidence to cover 

the whole set of potential errors.  In this case (in practice unlikely), only one claim 
(the most plausible one) is necessary. 

2. Neither the software FMCA analysis nor the hardware timer can be claimed to 
cover alone the whole set of potential errors, but the two subclaims justifiably (i.e. 
with supporting plausible evidence) complement each other by addressing 
complementary sets of potential errors.  This is clearly a conjunction of the two 
subclaims together with a sub claim and evidence on their complementarities. 

3. Each subclaim intends to cover the complete set of potential software errors, but 
with a certain degree of uncertainty (probability).  In this case, the two subclaims 
together are intended to re-enforce statistical confidence in the completeness of the 
coverage of potential errors, on the basis, for instance, that they use independent 
and different means of detection and protection.  In this case, the claim on the 
failsafeness of the unit must be stated as a probabilistic one, and must be clearly 
inferred from a conjunction of the two sub-claims, also expressed as probabilistic 
claims, together with a sub claim and evidence that the assumption of 
independence and complementarity is correct.  

 

Thus, when two or more subclaims – together – or two or more pieces of plausible 
evidence are intended to mutually re-enforce confidence, on the assumption that they 
are independent and of different nature, then claims and evidence are required to 
explicitly assert and justify this mutual re-enforcement, their independence and their 
differences. 

More generally, a primary claim or a subclaim is always supported by one argument 
only.  In particular, a sub-claim that appears in the right-hand side of more than one 
expansion must be supported with the same argument.  This univocal property is a 
necessary condition for the consistency of the safety justification, and also for 
allowing sub-claims to be reused with their arguments. 

                                                 
4 A similar example could be conceived with a probabilistic claim. 

 12



 

5 Models and Documentation 
It is wrong to think that Physics is about what Nature is. 

Physics is about what we have to say about Nature. 
Niels Bohr 

 
In physics and in engineering, models are simplified representations of reality that 
highlight some aspects and ignore others.  They are however indispensable as they 
enable us to analyse, to reason, to evaluate and to communicate about real world 
systems.  They can be source of misunderstandings and misinterpretations if they 
remain implicit or not properly defined. 
Models are essential in system and software development.  They are equally important 
for the demonstration of system safety; in at least four different practical ways: 
1. Safety, reliability, availability and other attributes of a system can only be 
apprehended by means of observations and by models, the latter being necessary to 
give meaning and purpose to the former, 
2. Models are necessary to formulate and define the semantics of claims, evidence, 
and arguments,  
3. Models are necessary to establish properties essential to safety such as 
completeness (cfr. Section 2.4),  
4. Models of the system and of the safety justification provide a necessary basis for 
defining and supporting the documentation required for the safety case. 
Surprisingly, models have been rather neglected by engineers and researchers working 
on computer system safety cases.  Exceptions perhaps are the following 
recommendations of the IAEA safety guide NSG 1.1 [1]: 

 
3.17. The requirements for and design of the software for systems important to safety 
should explicitly define all relations between input and output for each of the operating 
modes. The software design should be simple enough to permit consideration of all input 
combinations that represent all operating modes.  
 
5.14. There should be a precise definition of the system boundaries, i.e. of the interface 
between the computer based system and the plant. In particular, the interfaces of the 
system with the sensors and actuators, the operator, the maintainer and any other external 
system should be specified.  
 
7.14. Software requirements may be based on a model of the system to be implemented 
(Section 5, and Section 5 of Ref. [4]). In this case the model and its application should be 
well defined and documented with specification of the requirements. For example, 
control software is sometimes described using a finite state machine model. The use of 
the finite state machine model should be described so that the requirements for state 
transitions and functions specific to particular states can be properly understood. 

 

 13



5.1 The Four Layered Models 
The justification framework discussed in the previous sections gives indications on the 
models that would be needed and on the safety justification documentation that should 
be made available. 
As the four levels of reification at which claims and evidence must be formulated 
address quite different aspects of the system, a different model is needed for every of 
the four levels:  
a model of the interface between the system and its environment 
a model of the system architecture 
a model of the hardware and software design and implementation; 
a model of the system modes of use, operator and maintenance controls. 
 
At each level, the model must be a precise description of: 
� the assumptions and the constraints imposed on the system entities at the 

corresponding level; that is assumptions and constraints imposed by the plant 
environment (level 1), by the computer and other existing equipment 
architecture (level 2), by the hardware and software design and technology 
(in particular the COTS and the software platforms used) (level 3), and by 
operation controls and procedures in place (alarms, operator interactions, 
maintenance, periodic tests…) (level 4). 
 

� the functionality of the system, i.e. of the interactions required and expected 
from the system with its environment at that level, 
 

� the undesired events that may occur at each level; not only the normal 
behaviour of the environment, but also the hazards, accidents and failures 
that may affect the system environment, its hardware and software 
architecture, its implementation, and the operation control (e.g. the human 
operators) must be part of the design basis of a system important to safety.  
These "undesired events must be anticipated and must be part of the model at 
the corresponding level. 

 
Functional relations between environment and system state variables  provide a 
single and convenient modelling tool to represent these assumptions, constraints, 
system functions, and undesired event consequences.   
Four level models that use this approach are proposed and worked out in [6]. This 
modelling work cannot be described in detail here.  It is based on the seminal models 
developed by D.L. Parnas (see for instance [10],[9]). Relational models, already used 
in Darlington [10], work well for control systems.  It is shown in [6] how it can be 
applied to safety justification. Figure 5 gives a succinct view of the functional 
relations developed in [6] for each level, and a short description of the functional 
relations of these models is given in the appendix.   
Such models can constitute a solid basis for structuring the argumentation and 
documentation of safety cases. 
 

 14



5.2 Model Properties and Inter- Relations 
Thus, a safety justification turns out to be a logical analysis based on at least four 
types of models, which are quite different from each other.  This is another great 
difficult aspect of the safety demonstration. 
To carry out the arguments from the top level down to the lowest, these models 
cannot be independent from each other. To understand how they should be 
interrelated, the key point is to remember (cfr. Section 3.3) that a (sub)claim is part 
of an implication at two distinct levels.  A sub-claim is a right antecedent of an 
implication such as (eq 1) at some level and the left consequent of such an 
implication at some other level below.   In other words, a subclaim is made at some 
level and proved by evidence at some other level below. 
Therefore models at all levels must be consistent so as to provide the ability of 
formulating consistent claims and evidence at different levels. 
The models briefly sketched in the appendix illustrate the relations that must exist 
between them to carry over the arguments from the level 1 at which the primary  
claims are expressed, through the implementation levels down to the operator and 
maintenance control level.   
In terms of model theory concepts (see e.g. [4]), each model is an extension of an 
upper level model substructure and a substructure of the next lower level model 
extension.  Such a hierarchy has in particular the following model properties [4] 
between two adjacent levels: 

 (i) The domain of an extension contains the domain of its upper level 
substructure.   
 (ii) The functional relations of a substructure are the restrictions to its domain of 
the relations of its lower level extension; that is the relations of a substructure 
must also be relations in the lower level extension. 
 (iii) All free variables in a model extension are assigned values from the domain 
of the upper level substructure from which it is extended.  

 

6. Concluding Remarks 
 

The purpose of this stratified justification approach is to start from the initial safety 
requirements of an application and to demonstrate, in as simple a form as possible, but 
not simpler, their correct implementation at the different levels of a complex design.  
We do not claim that safety justifications are simple.  Proofs do not permit to ignore 
or even to leave implicit the complexity of the arguments.  Our objective is to try to 
document and control this complexity by means of structures and tools. 
The main technical features of the approach are: 

- The use of a four-layered structure for organising evidence, claims and 
arguments, models and safety case documentation. 
- Concepts and mechanisms for the construction of arguments: inductive 
expansion of claims, conjunctive implications, and delegation of evidence onto 
lower layers. 

Expected benefits are: 

 15



- The advantages of a goal/claim based approach; in particular to limit the 
required evidence to what is arguably necessary and sufficient; 
- Better structuring of arguments for restricting and backing up subjective expert 
judgement; 
- Easier independent verifications of arguments;  
- More natural and easy transformations of non-functional claims into functional 
ones; 
- Possibilities of assessing the weight of a particular component of evidence in the 
whole justification, 
- Modular re-use of arguments, of subclaims and sub-safety cases for integration 
of platforms, sub-systems and pre-existing software. 

The latter two advantages, not discussed in this paper, are investigated in [5].  
This safety justification approach attempts to give precedence to - and to focus on - 
the safety properties of the system behaviour, and by the same token to offer the 
possibility of being cost effective in terms of efforts and resources spent on the 
justification:  two objectives which meet priorities of both regulators and licensees.  
Meeting their priorities should hopefully also help to make their negotiations more 
supple and efficient. 
 

 

7. References 

1. IAEA Safety Guide N° NS-G-1.1 Software for Computer Based Systems 
Important to Safety. INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 
September 2000. 

2. IEC 643.  Application of Digital Computers to Nuclear Reactor Instrumentation 
and Control.  1st edition, 1979. 

3. Courtois P.-J., Parnas D.L. Documentation for Safety Critical Software.  IAEA 
Specialists’ Meeting on Software Engineering in Nuclear Power Plants: 
Experience, Issues and Directions. AECL Research, Chalk River Laboratories. 
Chalk River, Ontario, Canada. September 1992. Reproduced in IEEE Proceedings 
of 15th International Conference on Software Engineering, Baltimore, May 1993. 

4. Courtois P.-J. Semantic Structures and Logic Properties of Computer-Based 
System Dependability Cases.  Nuclear Engineering and Design 203 (2001) 87-
106.  

5. Courtois P.-J., Hard Guidelines Made for Computer Software. Nuclear 
Engineering International, January 2002, Vol 47, N° 570, pp.37-40.  

6. Courtois P.-J.  A Framework for the Safety Justification of the Dependability of 
Computer-Based Systems,  October 2004; available from 
http://www.avnuclear.be/avn/dependability_framework.pdf 

7. Feynman R.P. “Cargo Cult Science: Some remarks on science, Pseudoscience, 
and Learning How to Not Fool Yourself”. The 1974 Caltech Commencement 
Address. Reprinted in “The pleasure of finding Things Out”, J. Robbins ed., 
Penguin Books, 1999.  

 16



8. Govaerts, P.  Possible Use of Reliability and Safety from other technologies. 
Proceedings ESA Symp. “Ground data Systems for Spacecraft Control”.  
Darmstadt, FRG, June 1990. 

9. Heninger, K.L., Specifying Software Requirements for Complex Systems: New 
Techniques and their Application, IEEE Transactions Software Engineering, Vol. 
SE-6, No. 1, January 1980, pp. 2-13.  Reproduced in Software Fundamentals- 
Collected Papers by D.L. Parnas, Edited by D.M. Hoffman and D.M. Weiss, 
Addison –Wesley, 2001, pp. 387-392. 

10. Parnas D.L., Asmis G.J.K., Madey J., 1991, Assessment of Safety Critical 
Software in Nuclear Power Plants.  Nuclear Safety, 32, 2. 

11. D. Pavey, R. Bloomfield, P.-J. Courtois et al. Cost Effective Modernization of 
Systems Important to Safety (CEMSIS). Proceedings of FISA-2001. EU Research 
in Reactor Safety. Luxemburg, 12-15 November 2001. EUR 20281. pp.213-225. 
ISBN 92-894-3455-4. 

12. Saglietti F. Licensing Reliable Embedded Software for Safety-Critical 
Applications. Real-Time Systems, 28, 217-236, 2004.  

 

 17



 

  

Figure 4 

 18



8. APPENDIX 
Model Functional Relations of Figure 5 

At level 1, environmental variables are either monitored or controlled; monitored variables m(t) are 
those that need to be measured by the system; controlled variables c(t) are those that the system is 
intended to control.  These variables have values that can be a function of time.  FS(t) is the the sub-
set of c(t) values that correspond to fail-safe states of the environment.   
NAT is the set of relations dictated by the constraints of the environment between the values of the 
m(t) and c(t) variables.  REQ is the set of functional relations between the values of m(t) (REQ 
domain) and the values of c(t) (REQ range) that  specify the required system behaviour; REQ is thus 
the specification of the system requirements.   
h1(t) is the vector of entities in the environment structure that are potential sources of undesired 
events that are postulated, e.g. a failed motor, a pipe break, or a malfunctioning valve.  An element of 
h1(t) indicates whether an undesired event has occurred and which type.  The occurrence of an 
undesired event at time t is described by the pair (h1(t),t). There must be a set of relations that descrie 
how the variables monitored by the system are affected by these postulated undesired events.  HAZ1 
describes this set of relations. 
At level 2, for each channel k, two sets of variables are identified: a set of inputs, variables ik(t) that 
can be read by the channel, and a set of output variables ok(t) whose values are determined by the 
computers of the channel.  These variables are associated with input registers (data acquisition) and 
output registers (actuators) of the channel; their values are also described by time-functions. 
Undesired event that may occur at architecture level, and are part of the design basis must be 
observable by the architecture. h2(t) is the vector of architecture entities that are potential sources of 
undesired events to be considered and postulated, e.g. a failing sensor, a failing input or output 
register, a communication line; HAZ2 is the set of relations that describe how undesired events h2(t) 
may affect the input and output channels. 
At level 3, the software should provide a channel k with input-output behaviour that can be described 
by a relation SOFk, the domain of which is a set of possible values of  ik(t), and range is the set of the 
possible values of ok(t). 
Undesired events may affect the processing hardware or the software.    h3(t) is the vector of the 
potential causes of postulated hardware undesired events, e.g. a processor failure, a failing register, a 
failing memory location, a numerical or memory under/overflow, a buffer or stack over/under flow, 
an interrupt caused by a software check or an invariant violation, a watchdog run out time,… There is 
a set of relations between the values taken by the channel state and these undesired events. sk(t) is the 
vector of all states that the channel k processing unit (processor and memory) can be in and HAZ3

k 
the set of relations that define how undesired events affect the channel state. 
Software failures are undesired run-time events of different type.  They are the consequences of errors 
caused by anomalies and defects of the software that escaped the verifications. They correspond to 
relations SOFk that would not bet acceptable, i.e. that do not to comply with the relations REQ.  
Evidence on the acceptability of the relations SOFk must be provided. More precisely, for each 
channel k, one must have: 

REQk ⇐ INk  ∧ SOFk  ∧ OUTk  ∧ NAT 

(eq 2)  

At level 4, control of operation (human operators, procedures, maintenance, periodic tests…) can be 
viewed as a channel, which is external to the system and is part of its environment.  This channel 
receives information from the environment and from various parts of the system.  It can a send 
information to and re-act upon different parts of the environment and the system.  The operation 
control channel is supposed to have direct reading and writing access to input registers ik(t) of the 
channels, reading access to output registers ok(t), but no access to the internal state sk(t) of each 
channel. This control channel is at any time in a distinct state defined by the value of a vector ctr(t). 
Relations READk and REACTk specify the behaviour of the operators, users and maintenance team 
when they follow the operational procedures, the maintenance, calibration and manual control 
procedures to capture and intervene on the state of channel k.  Undesired events h4(t) that may occur 
at this level are human failures, external postulated initiating events, potential defects in control and 
maintenance procedures, etc….   
For a detailed analysis of these models, see [6]. 

 19



 
 

 

 

 
 
 
m(t) 

 
 
 
c(t) 

 
ok(t)

 
ik(t) 

 

Channel k  , h2(t)

 
SOFk

 
sk(t) 

h3(t)
HAZk

3

h1(t) ctr(t) HAZ4

READ 

REACT 

FS(t) 

h4(t)

HAZ2

HAZ2 

REQ 

NAT 

HAZ1 

 
 

Figure 5 

 20


