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Abstract

Safety assessment for highly critical system differs from other performance evalua-
tion tasks in various respects. Statistical evidence is usually insufficient for assigning
model parameters with any confidence before operation of a new system, and for a
long time into the operation period itself. On the other hand, a high degree of confi-
dence is sought that the system will perform as safely as required. The assessors use
disparate forms of evidence to reach this confidence, usually via their own expert
judgement, a process which is poorly understood and subject to well-documented
problems. Explicit, probabilistic formal reasoning is a way for the assessors to control
the risks of intuitive judgement. We report on an exercise in using the formalism of
Bayesian Belief Networks to support such formal probabilistic reasoning, the various
difficulties encountered and methods for resolving them.

Key words: safety assessment, Bayesian belief networks, expert judgement,
inference.

1 Introduction

Safety-critical equipment for regulated industries must undergo a formal safety
assessment before it can be operated. This is a difficult task. The assessor
must consider the possibility of design and realisation faults that would im-
pair safety. Especially the increasing dependence on software-based systems
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has increased concern about safety assessment with respect to design faults.
Although equipment vendors may operate to the best known standards of
practice, these are known not to guarantee freedom from design faults in ev-
ery single case.

Safety assessment uses disparate evidence like known conformance to stan-
dards of design and methodology, demonstrated competence of the organi-
sations involved in producing a system, results of verification and validation
activities on various products of the design process. Deriving a single judge-
ment of satisfactory safety from all this evidence is usually an informal process
of “expert judgement”, which may be unreliable and is difficult to analyse and
verify. The “safety argument” - the reasoning that links the evidence to the fi-
nal judgement - is mostly in the assessor’s mind, and its descriptions on paper
are typically limited to enumerations of items of evidence, without a detailed
explanation of how these are assumed to support or counter one another.

We have looked for explicit, formal ways of describing safety arguments, and
chosen “Bayesian belief networks” (BBNs), a probabilistic notation for describ-
ing relationships between many variables in terms of conditional distributions
and conditional independence relations.

We hope that the use of BBNs may make the hidden safety arguments visible,
communicable and auditable. BBNs offer a formal mathematical language for
describing reasoning in uncertain situations. The assessor can thus describe
his “safety argument” in a form that he can re-examine and “debug”. He
can describe the causal models that he has assumed to apply to the situation
considered. This description implicitly specifies the value of the evidence con-
sidered in predicting the safety of the product, and the inference process can
be automatically performed by software tools. At the same time, the formal
description allows experts to analyse and discuss the constituent parts of the
“safety argument”, devise empirical tests of their validity, and so on.

We summarise here a case study that was run as part of the European long-
term research project “DeVa” (Design for Validation). A more detailed account
can be found in two technical reports [1,2]. This report concentrates on issues
of elicitation and validation of a BBN, as evidenced in the case study.

In section 2 we describe the essential characteristics of the BBN formalism;
in section 3 we recall the context of our case study and in section 4 the
BBN model we produced. In section 5, we discuss issues of validation of the
model, which we tried to address 6 by developing methods for feed-back to
the assessors of various implications of the BBN model. A discussion of our
results and future developments follows in section 7.



2 Bayesian Belief Networks

A belief network is a directed acyclic graph, like the one in Figure 1, associated
with a set of probability values. We can use a belief network to represent our
uncertain, probabilistic knowledge about a real-world situation. Each node
represents a set of events (a partition on the set of outcomes of an experiment
or observation), e.g. the values of a numerical random variable. The events are
called the possible “values” or “states” of the node. Each node has a “node
probability table” (NPT) associated with it. If the node has no incoming arcs
(root node), this table lists the marginal probabilities of its possible values; if
it has n incoming arcs, the table lists the probabilities of its values, conditional
on each possible n-tuple of values of its “parent” nodes. This information rep-
resents the fact that knowledge about a (parent) node is useful for predictions
about another (child) node: either through cause-effect relationships, or via
more general correlation laws. The absence of an arc between two nodes, say A
and B, represents conditional independence. Roughly speaking, it means that
any way the knowledge of the state of A might influence our expectations
about the probabilities of states of B is already represented by other nodes in
the BBN, that do have arcs joining them to B.

After building a BBN, i.e., choosing a topology and filling the NPTs, one can
use an automated tool (e.g. the Hugin tool., for which information is available
at http://www.hugin.dk) to:

e calculate the probabilities of the values of all nodes with incoming arcs, from
the conditional and marginal probabilities of the values of their ancestor
nodes;

e when an event (value of a node) is actually observed, update the (prior)
probabilities given by the user to other events in the table, by repeatedly
applying Bayesian inference to “propagate” the new knowledge along the
arcs in the graph, and obtain (posterior) probabilities that take into account
the events observed. Software tools supporting Bayesian networks have been
made possible by recent, efficient algorithms for applying this rule repeti-
tively through a large network.

A BBN can model one’s (uncertain) knowledge about a situation, and also
the arguments that can be built to support a thesis about the probabilities of
events in the BBN itself, on the basis of the probabilities of other events. An
informal judgement can be formalised into a belief network, in that one can
specify a series of links of the form “the truth of statement A would support
my belief in statement B”, and can specify how much the truth of A strength-
ens this belief in B, compared e.g. to how much some other truth C would
weaken it. On this basis, the propagation operation determines the “norma-
tively correct” inference to be drawn from any combination of observations.



Applications of BBNs to safety and reliability issues are documented in (3,4],
and have been the subject of another European research project [5].

BBNs offer the advantages of a formal probabilistic model presented in an eas-
ily assimilated visual form, together with efficient computational methods and
tools for exploring model consequences. BBNs are clearly useful to summarise
large models of probabilistic dependencies among variables. The model itself
may be obtained from known physical and mathematical laws and statisti-
cal information, as possible, for instance, in applications to medical decision
support systems. An example of such a BBN for software dependability as-
sessment is in [3]. But another attractive feature of BBNs is that experts can
represent laws that they conjecture or believe to be true, or even that they
unconsciously apply. So, intuitive expert judgement can to some degree be
opened to criticism, checked for consistency and challenged in terms of its
constituent assumptions, and it can be integrated with other knowledge using
the formal rules of probability calculus. Building, analysing and in the end
trusting these representations of expert judgement procedures clearly poses
serious problems, and these were the focus of this case study.

3 Context of the case study.

This case study dealt with the safety argument for a class of software-based
systems used in nuclear plant for functions important to safety. The exercise
involved a group of researchers on the application of BBNs to safety assess-
ment and an expert of the class of equipment and safety problems concerned.
We expect most uses of BBNs to require a similar collaboration between ex-
perts of the formalism and domain experts. For obvious reasons of professional
discretion, the identity of the nuclear operators, manufacturers, systems and
functions from which the expertise captured by the BBN is in part drawn has
been kept confidential and not even revealed to co-authors.

To contain the effort required, we limited the exercise to describing a part of
the safety argument. This BBN addresses the early part of the lifecycle of [the
computer part of] a nuclear safety system, during which two documents are
produced, the “System Requirements Document” and the “Computer System
Specification Document”, and subjected to various analyses. Its goal variable
(the variable about which predictions are sought) is ‘Safety Adequacy of Com-
puter System Specification’. It is through this quality that the results of this
phase of development affect successive phases. These two main documents
are produced and modified through the interaction of three ‘personae’ (each
typically consisting of a team or subset of an organisation): the system manu-
facturer; the system licensee (future user of the system) and the independent
assessor, who works on behalf of a safety authority and is responsible for even-



tually recommending approval of the system from the safety viewpoint. In our
scenario, the independent assessor has [partial] visibility (through access to
documents and personnel) of the development process that produces and val-
idates these documents, rather than being required to evaluate the finished
product and documentation only.

In more detail, the two documents have these functions:-

(1) the System Requirements Document describes the environment of oper-
ation as well as the functions of the safety system. It lists the system’s
foreseeable failure modes, with probabilities, criticality and intended lines
of defence against each of these modes, and assesses the criticality of the
system;

(2) the ‘Computer System Specification Document’ specifies and justifies,
among other things, the allocation of safety functions between hardware
and software, and must demonstrate that the computer system architec-
ture satisfies the system and safety requirements, in particular concerning
adequate levels of redundancy and diversity, and barriers between safety
and non-safety functions. A “failure modes and effects analysis” should
also be included in terms of the software and hardware components, and
the methods and mechanisms of auto-detection by the system of its own
failure should be specified.

4 The BBN model and its construction.

Figure 1 shows the topology of the BBN produced. Its general structure
strongly reflects the life-cycle model used, roughly divided into three sub-
graphs, divided by dotted lines in the figure. The three subgraphs concern
(from bottom to top in the figure) the quality of the requirements document,
the design process that leads from this to the computer system specification,
and the quality of the specification document itself.

An important part of the safety argument is a detailed specification of the
meaning of each node, which we omit for lack of space. A few conventions
will help to interpret this BBN: i) the names of nodes are reasonably self-
explanatory, if read in the context of the subgraph to which the node belongs:
thus, for instance, the node named ‘Completeness & Correctness’ in the bot-
tom part of the figure refers to the completeness and correctness of the require-
ment document; ii) we have appended an asterisk to the names of those nodes
that represent observable variables; iii) when a variable is defined in terms of
subjective judgement or observation, the observer or judge is the independent
assessor, unless otherwise specified. Defining a node or variable as ‘observable’
means that we expect that at some stage of applying the BBN model to the
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assessment of a system, the user will enter a value for that node (or even
possibly an assignment of probabilities to its possible values - a ‘likelihood
observation’ in BBN jargon). For this BBN, one can see that most leaf nodes
(the nodes having one arrow attached to them) will normally be observable
to the independent assessor: and most of the other nodes will normally be
unobservable to the independent assessor.

The meanings of the nodes must be carefully defined, and will be specific to
the particular context in which the expert assessors operate, and may not
be obvious to non-experts. For instance, there are two nodes labelled Prob-
lem Complexity, indicating the inherent difficulty of the development tasks:
Problem Complexity (manufacturer) and Problem Complexity (li-
censee) because the manufacturer may replace the licensee’s problem by a
different problem, of a greater or lesser complexity - e.g. they may want to
make the equipment marketable for a more general set of uses than required
in the application for which it is now being assessed.

The possible states of a node in this BBN are usually ordered on a scale of
increasing or decreasing ‘quality’, e.g., in the ‘Requirements Document’ sub-
graph the node Quality of Requirements may take the values (‘Poor’ ‘OK”’
‘Good’).

The BBN model was built by an iterative process: the construction broadly
proceeded in ‘top-down’ fashion from the definition of the nodes to that of
the BBN topology to that of the NPTs, but elicitation at a later stage in this
sequence often prompted reconsideration of previous stages and changes in
the information that had been elicited at an earlier stage.

Eliciting the multi-dimensional NPT for the Design Process Performance node
posed serious problems. The sheer size of the table is enough to make it very
difficult for experts to describe their beliefs as a complete, consistent prob-
ability table. To elicit this NPT, we obtained a smaller NPT by fixing the
states of a pair of parent nodes, identified as least significant among the five
parents. We then varied the states of the most significant nodes until every
combination had been covered.

To represent the effects of variation in the states of the two parent nodes
believed to be least significant, we used a simple parametric formula to produce
a linear displacement consistent with a short list of rules which the domain
experts believed to govern the influence of these two less significant parents.



5 Validation & Sensitivity Issues

Ideally, the language of BBNs allows experts to express their beliefs about
a complex problem within a formal probabilistic framework. In practice we
expect both that the experts may find the BBN they produced inadequate,
and that the process itself of building and validating it may change these
beliefs. This may be a positive effect - they may face questions that they had
not previously thought of, and thus be led to deeper analyses, confutation
of previous beliefs, etc. On the down side, the experts may be led to give
inaccurate descriptions of their beliefs, simply through the need to express
themselves in an unfamiliar or inappropriate language.

A BBN is a way of specifying a joint probability distribution for all the vari-
ables corresponding to the BBN nodes, i.e., a complex set of probabilistic
dependencies among all these variables. The expert builds it by breaking this
complex ‘global’ set of dependencies into an equivalent set of ‘local’ dependen-
cies which he/she can handle, describing the detailed constituent laws govern-
ing these ‘local’ dependencies among variables. These laws — detailed beliefs
— may have various origins, from accepted laws (physical or mathematical)
to the expert’s attempt to describe intuitive, experience-based laws that he
believes he applies when producing safety judgements without the assistance
of formal mathematics.

Multiple validation issues thus arise, which are particularly pertinent in the
nuclear application we treated, because empirical data are relatively sparse. In
other fields in which BBNs have been used successfully, such as in medicine,
there are large empirical data bases and the dependence upon the unaided
expert (for selecting topologies and especially for specifying NPTs) is less.

A first set of validation issues concerns whether the BBN represents the ex-
pert’s initial understanding of the way he applies judgement to safety assess-
ment. Issues at this stage may include:

e slips and other errors of execution in using the formalism. Some but not all
of these will be detected by the BBN support tools;

e lack of self-consistency of the experts’ intuition. The set of ‘local’ depen-
dencies specified may contradict some other aspect of their global beliefs,
as evidenced in their judgements;

e insufficient familiarity with the subtleties of the BBN formalism, leading to
errors in using it;

e ‘normatively incorrect’ reasoning by experts. A BBN can only describe a
process of judgement that is a correct application of Bayesian reasoning.
Human judgement seldom approaches such formal perfection. Mismatches
must to be resolved by the experts diagnosing errors in their previous intu-



itive judgement and/or their specification of the BBN;

e ambiguities in the definitions of the variables and their states, making it
difficult for an expert to interpret them consistently over time, and to com-
municate their meanings to other experts to allow meaningful dicussion of
the safety argument.

e spurious precision in the BBN, as an artefact of demanding that the expert
specify numerical probability values.

A second order of concerns is whether the experts, once satisfied that a BBN
represents their current beliefs, will change these beliefs once they have a
chance to analyse them thoroughly, as made possible by the BBN itself, and
compare them to additional knowledge/beliefs, not represented in the BBN.
Last, another interesting question is whether the captured intuition of the ex-
pert really does accurately express the real-world uncertainty. In cases where
there is a lot of data it may be possible to address this question - it has been
examined in some detail, for example, in software reliability growth modelling
using tools such as Prequential Likelihood [6]. Such an investigation is, how-
ever, beyond the scope of the present work.

6 Support for Validation and Sensitivity Analysis

To check the validity of a BBN model they produced, experts need feedback
from it. They need to see various (non-obvious) implications of the model
to decide whether any of these are counter to their intuition and deal with
any surprising differences. We see two main forms of feed-back: exploring the
direct consequences of the BBN “as is”, and sensitivity analysis with respect
to observations or changes in the NPTs.

Mathematically, a BBN model can be seen as a function which maps vectors
of observations onto finite vectors of probabilities of the states of un-observed
nodes. Feed-back to the experts may consist in showing them instances of
this function: what the BBN “would infer” if given facts were observed, or
what it implies in terms of prior probabilities in the absence of observations.
The experts can compare these results from alternative NPTs, among which
they are undecided. In particular, the NPT values may have been defined as
parametric functions, as we did for the NPT of the Design Process Performance
node, and the experts can “tune” the parameters by observing their effects on
the results of the BBN model. Many approaches are possible here. We show
some examples.



6.1 Feedback from Numerical Calculation using the Hugin tool

As an illustration of how evidence affects model conclusions, we traversed the
space of possible complete observations of the 15 variables which we intend
typically to be observable, and plotted in Figure 2 the resulting distribution of
the main goal node Safety Adequacy of Computer System Specification. The
path chosen is one of the possible paths that lead from an intuitively ‘least
favourable’ to a ‘most favourable’ combinations of observations, by changing
one node at a time to an intuitively more favourable state.

This graphical format is clearly appropriate for the viewer to note general
trends and exceptions to them, especially appropriate for nodes whose states
can be considered as ordered on a scale. Then, any line in the graph represents
the probability of a node being in a ‘higher’ state (or ‘better’ or ‘worse’,
depending on the meaning of the particular ordering) than a chosen threshold.
For instance, the line under the region labelled “Good” in the upper half of
the figure, if taken as a function plot in isolation, represents the probability
that the state of the node is worse than “Good”, and the dependency of this
probability on observed evidence (within the particular set of observations
represented on the z-axis).

In this particular figure, one would naturally expect every curve to be mono-
tonically non-increasing. The “spike” in the left-hand side of the bottom graph
is an obvious “irregularity”, which would prompt an expert to re-analyze the
pertinent NPTs. The expert may conclude that the irregularity is due to an
error in building the NPTs, and correct this error; on the other hand, the
expert may conclude that the NPTs are a correct representation of his beliefs,
and the perceived irregularity indicates a previously ignored, counterintuitive
consequence of these beliefs. So, graphs like these can be a powerful visual aid.
Experts may even be surprised by features that do not violate any rule they
may have specified beforehand, and yet require a re-analysis of the NPTs.

6.2  Complementary Symbolic Analysis Using Polytree Propagation Algorithm

Plots such as that in Figure 2 raise many questions about the systematic re-
lationships which must exist for the mathematical function which our model
embodies. We wished therefore to give the experts feedback in an analyti-
cal form, more susceptible to systematic analysis than individual numerical
results. An “analytical propagation engine” for BBNs would be extremely
complex, but luckily the special topology of this BBN allowed a simpler
solution. This topology can be treated as a polytree [7] provided we block
one of the nodes in the only cycle present, by assuming its value has been

10
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observed. This way of conditioning on values of certain nodes to break loops
in the BBN topology is discussed in [7, §4.4.2]. In our example, we expect
the ‘Problem Complexity (licensee)’ node to be observed by the assessor. We
simply condition all our reasoning on its observed state. This creates a polytree
topology.

We then devised a “symbolic propagation algorithm” for polytree BBNs (2],
implemented with the Maple mathematical software. This gives us:

e Arbitrary (i.e. user specified) numerical precision.

e The ability to substitute any particular observation, NPT, or part of an
NPT, by an arbitrary parametric function, and to observe the resulting
functional form of any selected model output.

o Creater ease of obtaining plots of functional relationships.

e Potentially better intuitive understanding from access to algebraic, as well
as visual topological, representations of model assumptions and their con-
sequences. We found that these different forms of representation of model
output complemented each other well.

Analytic expressions for model outputs make it easier to investigate the effects
on some important model output of different values of the model inputs by
analytic differentiation to find maxima and minima.

7 Discussion and Conclusions

This special session is meant to compare different forms of “validation”, and
specifically evaluation performed at the end of system development against
early prediction followed eventually by evaluation of the completed system.
From this viewpoint, safety validation in general has some peculiar character-
istics. The comparison above suggests that evaluation “at the end of system
development” is much more reliable than preliminary predictions for the as-yet
unbuilt system. And indeed predictions about, for instance, throughput under
typical loads, can usually be validated as soon as a system is built, by run-
ning it with appropriate test loads. But safety requirements are of a negative
nature, requiring some system behaviours to be extremely unlikely. Demon-
strating that they are really so via statistical observation is usually considered
unaffordable and is in many cases infeasible [8]. So, even at the end of system
development, the system’s conformance to the user’s safety needs is difficult
to ascertain with great confidence. Much “safety validation” activity deals
with checking other qualities that are generally believed to be good indica-
tors of safety. In many markets, this safety validation must not only convince
the vendor and the buyer, but an independent regulatory authority (like the
F.A.A.) and/or independent certification agency (like a TUeV) as well. To re-
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duce the risk of products being rejected at this last validation stage, after long
and expensive development processes, interactions have developed between the
parties involved. Many design and management decisions during development
are in practice pre-negotiated with the regulators, or dictated by guidelines
they have approved. In this sense, safety validation is seldom performed on
the finished product only. Even so, important unresolved issues remain: there
is little evidence that the checks being performed actually deliver the required
levels of safety. For instance, it seems self-evident that HAZOP (HAZard and
OPerability analysis, essentially a systematic procedures for checking the ways
that failures might cause accidents - several such systematic methods are in
common use), will decrease the risk of the produced system causing accidents,
and yet no-one knows how much the probability of such accidents will be
reduced by having performed a HAZOP.

BBNs are an ideal tool for this continuing assessment. At the beginning of a
project, a BBN like that in Figure 1, without any observation having yet been
entered, can describe the prior probability of the project producing acceptable
results. “What if” analysis - entering various possible combinations of obser-
vations - can answer questions like: “What would I need to observe, at each
successive stage of the project, in order to show that the chances of success
are still acceptable - that the project is on track?”, or “After observing some
damning evidence, what kind of reassurance would be needed to believe that
the project still has a good chance of success?”. As the project proceeds, new
evidence is entered and predictions evolve accordingly.

So, a BBN model, once built, is an extremely powerful tool. It solves a daunt-
ing problem in safety analysis, i.e., the complex “propagation” process from
the multifaceted evidence that can be collected to a judgement about the qual-
ities that the assessor must judge. However, this is just the third one of three
serious problems in safety assessment: the first problem is obtaining evidence
that can demonstrate the required qualities with the required confidence. This
evidence may not be available, which is not a problem for BBN models: the
model will just show that the evidence is insufficient for the positive judge-
ment that is sought. The second, essential problem is correctly describing the
relationship between the evidence and the required qualities, i.e., building a
correct BBN. This is why we put such emphasis on the validation of a BBN
model. Assessors need to be clear about how much trust they put in the scien-
tific accuracy of a BBN model. We believe, and this case study gives moderate
reassurance in this sense, that the process itself of building and validating the
BBN model is helpful to this end. Like other formal methods, BBNs help their
users to examine their own thinking, and to seek for inconsistencies and factual
errors. If this process converges to a BBN that the users trust as “scientifi-
cally accurate” - an accurate enough description of their best understanding
of the real situation - then the BBN model can be used directly for decision
support. Otherwise, the value of BBNs for seeking insight and for producing
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alternate predictions under different theories may still be valuable enough to
justify their use.

In this case study, we have reached the point of building a complete first
version of the BBN, with complete NPTs. The validation exercise is still in
progress.

In conclusion, in this case study we have explored some of the issues that
arise in building and validating BBNs for safety assessment, and produced
some useful tools to support these phases. Developing the BBN has been use-
ful for the expert to question and analyse his criteria of judgement. Further
experimentation with feedback methods and support tools will also help us to
develop improved guidelines to assist choices about the topology and complex-
ity of a BBN, so as to facilitate its refinement and its use in communication
between experts.
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judgements, the application of Bayesian nets to systems dependability assess-
ment, and the question of the extent to which empirical information about
achieved reliability levels can legitimately be transferred, as a basis for predic-

tion, either from one system to another, or from one execution environment
to another.
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