On the “readers and writers” problem

Appeared as “Concurrent Control with Readers and Writers - An Introduction.” in Software Fundamentals- Collected Papers by D.L. Parnas,  Edited by D.M. Hoffman and D.M. Weiss, Addison –Wesley, 2001, pp. 387-392. 

It all began in the summer of 1970.  Dave was in Brussels, visiting the M.B.L.E research laboratory, then one of the Philips research institutes.. He had spent the previous months in The Netherlands, working as a consultant to Philips Computer Industries.  It was  during a visit to Electrologica, in Rijkswijk, that he first heard of readers and writers.  He had seen a note on the problem written by Dijkstra with an argument that it was not solvable with the the P and V semaphore operations.  Dave had expressed doubts on the validity of this argument, and these doubts had excited our curiosity.

The problem was being discussed in the Netherlands in a sort of gross “Kaffeeklatsch” mode.  Little was known about its exact origin.  Rumour had it that E.W. Dijkstra had expressed doubts on the possibility of solving it with his P and V semaphore operations only.  True or not, this rumour excited our curiosity.

The apparent simplicity of the problem was deceptive. Each of us in turn proudly brandished one or more solutions, which were quickly dismissed as being incorrect by the others.  We had to recognise humbly the great virtues of software independent reviews at a time when they were not yet considered to be a standard and quite honourable practice.

We were going to give up this prolific production of faulty and clumsy programs when Frans Heymans came up with the idea of counting processes to differentiate first coming and last leaving readers and of making processes use what was later called a split semaphore.  From then on, more acceptable solutions quickly emerged.

Today, the structure of the first solution may appear quite simple and natural. Not long ago I found this in a recent textbook on concurrent programming : “A simple way to specify this synchronisation is to count the number of each kind of process, then to constrain the counters…”.  Taking this specification for granted, the textbook then goes to great lengths to construct the program by means of invariant predicates, pre- and post-conditions, and coarse- and fine-grained refinements.  The author was not the only one to overlook the real difficulty, which was not to implement what he calls the specification of the synchronisation.  The tricky bit was to ferret out this counting mechanism from the sort of informal “Kaffeeklatsch” problem description, which was all we had.  Even now, I still can’t think of any programming language or arsenal of formal tools that could have helped to make that particular decisive design step.

The solution to the second problem, where priority is given to writers, is more complicated.  Its merit was perhaps to have been one of the first to show that apparently simple synchronisation problems could not always be elegantly solved with P and V. This solution raised a wave of alternative propositions programmed with new synchronisation primitives, in an attempt to obtain programs simpler to understand and easier to validate; the conditional critical section from Brinch Hansen was just one of these primitives[1].  These solutions were not comparable.  They solved another type of synchronisation problems and took advantage of what had been coined “busy waiting” by E.W. Dijkstra, an active state in which a waiting process keeps testing state conditions.  Loose synchronisation of this type turned out to be easier to design and to understand. than a tight co-ordination of processes active only when they have access to the resources they need.

Studies prompted by this type of problem later showed that primitives like P and V are necessary and sufficient when mutual exclusion - and thus synchronisation - programs need to be associative (invariant under the number of parallel processes involved), without busy waiting, and with minimum process blocking or interrupt masking.  The problem that readers can starve writers or vice-versa also gave rise to various prevention algorithms. 

It is worth noting that this second solution, despite its complexity, still allows one reader, but no more, to bypass all barriers and sneak in ahead of a writer.  How this can occur, and whether or not it is avoidable are questions left to the reader as an exercise so that he can judge by himself whether Dijkstra was not perhaps right after all.

At the end of August, the paper was issued as a research report of the M.B.L.E laboratory, and submitted for publication shortly afterwards when Dave was back in Pittsburgh.  It was and still is one of the shortest of Dave’s publications and, perhaps for that reason as he himself says, also one of the most quoted.

Pierre-Jacques Courtois

[1]
Comments on “A Comparison of two Synchronizing Concepts by P.B. Hansen” P.J. Courtois, F. Heymans, and D.L. Parnas, Acta Informatica, 1, 375-376, 1972.

15/02/2005  17:17

