
The Maximum Weighted Submatrix
Coverage Problem: A CP Approach

Guillaume Derval(B) , Vincent Branders , Pierre Dupont ,
and Pierre Schaus

UCLouvain - ICTEAM/INGI, Louvain-la-Neuve, Belgium
{guillaume.derval,vincent.branders,

pierre.dupont,pierre.schaus}@uclouvain.be

Abstract. The objective of the maximum weighted submatrix coverage
problem (MWSCP) is to discover K submatrices that together cover
the largest sum of entries of the input matrix. The special case of
K = 1 called the maximal-sum submatrix problem was successfully
solved with CP. Unfortunately, the case of K > 1 is more difficult to
solve as the selection of the rows of the submatrices cannot be decided in
polynomial time solely from the selection of K sets of columns. The search
space is thus substantially augmented compared to the case K = 1. We
introduce a complete CP approach for solving this problem efficiently
composed of the major CP ingredients: (1) filtering rules, (2) a lower
bound, (3) dominance rules, (4) variable-value heuristic, and (5) a large
neighborhood search. As the related biclustering problem, MWSCP has
many practical data-mining applications such as gene module discovery
in bioinformatics. Through multiple experiments on synthetic and real
datasets, we provide evidence of the practicality of the approach both in
terms of computational time and quality of the solutions discovered.

Keywords: Constraint programming ·
Maximum weighted submatrix coverage problem · Data mining

1 Introduction

Constraint Programming (CP) has received an increasing interest for solving
unsupervised (clustering) data-mining problems [1,3,5,7,12,14,18]. This article
is interested into the mining of a numerical matrix to discover submatrices (also
called biclusters) that capture a high total value. More exactly we consider an
input matrix M with m rows and n columns where element Mi,j is a given
real value. The matrix is associated with a set of rows R = {r1, . . . , rm} and a
set of columns C = {c1, . . . , cn}. We use (R;C) to denote matrix M. If I ⊆ R
and J ⊆ C are subsets of the rows and of the columns, respectively, MI,J =
(I;J) denotes the submatrix MI,J of M that contains only the elements Mi,j

belonging to the submatrix with set of rows I and set of columns J .
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The maximal sum submatrix problem introduced in [4] is to discover a subset
of rows and columns of an input matrix that maximizes the sum of the covered
entries. An example is provided in Fig. 1.

Definition 1. The Maximal-Sum Submatrix Problem. Given a matrix
M ∈ R

m×n. Let R = {1, . . . , m} and C = {1, . . . , n} be index sets for rows and
for columns, respectively. The maximal-sum submatrix is the submatrix (I∗;J∗),
with I∗ ⊆ R and J∗ ⊆ C, such that:

(I∗;J∗) = argmax
I,J

f(I, J) = argmax
I,J

∑

i∈I,j∈J

Mi,j (1)

The objective function rewards the selection of positive values and penalizes
selection of negative values. In case of positive input matrices, the domain expert
can subtract a constant threshold θ from all entries. The choice of this threshold
is not discussed here. Therefore, the problem matrix is assumed to contain both
positive and negative values in order to be interesting and challenging to solve.

Fig. 1. Example of matrix and associated submatrices of maximal sum. (Color figure
online)

The maximum weighted submatrix coverage problem, that we study in this
work, generalizes the maximal-sum submatrix problem to K submatrices. An
example is provided in Fig. 1.

Definition 2. The Maximum Weighted Submatrix Coverage Problem.
Given a matrix M ∈ R

m×n and a parameter K, the maximum weighted subma-
trix coverage problem is to select a set of submatrices (Rk, Ck) with k = 1, . . . , K
such that the sum of the cells covered by at least one submatrix is maximal:

(R∗
1; C∗

1 ), . . . ,(R∗
K ; C∗

K) = argmax
(R1;C1),...,(RK ;CK)

∑

i∈R,j∈C

Mi,j × 1cover((i, j)) (2)

where 1cover is the indicator function over the set cover =
⋃

k∈1..K Rk × Ck.
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1.1 Applications

The maximum weighted submatrix coverage problem has many practical data
mining applications where one is interested to discover K strong relations
between two groups of variables (rows and columns) represented as a matrix:

– In gene expression analysis, rows correspond to genes and columns to samples
and the value in Mi,j is the measurement of the expression of gene i in sample
j. One is typically interested in finding subsets of genes that present high
expression in a subset of the samples as it would indicate that a particular
biological pathway made of these genes is active in these samples.

– In migration data, value Mi,j represents the number of persons that moved
from location i to j. The goal is the to identify groups of locations that
together migrate to other groups of locations.

– A sports journalist could also be interested in Olympic games to discover
group of countries that together obtained similar strong performances on the
same subset of sports. The matrix value Mi,j then represents the number of
medals obtained by the country i in sport j.

– Dendrograms and Sankey plots are standard visualization tools to represent
relations. Unfortunately those plots quickly suffer from cluttering for large
matrices. The MWSCP can be used as a preliminary step to preselect sub-
matrices that can then be analyzed more easily with those plots.

1.2 Related Work

The maximal-sum submatrix problem was introduced in [4] and efficiently solved
using constraint programming with a dedicated global constraint.

The biclustering problems are concerned with the discovery of homogeneous
submatrices (called biclusters in this context) rather than maximizing the sum
of the covered entries. A comprehensive review can be found in [15]. Common
approaches are heuristic based and greedily selects the next bicluster after ran-
domization of entries covered by the previously discovered biclusters.

The maximum subarray problem introduced by [2] is looking for a maximal-
sum submatrix with contiguous subsets of rows and contiguous subset of
columns.

The maximum ranked tile mining problem has been introduced in [14]. This
is a special case of the maximal-sum submatrix problem for which the matrix
entries are discrete ranks, corresponding to a permutation of column indices on
each row. Another relevant difference is the constraint that sets of entries covered
by the submatrices are disjoint. This restriction is more convenient for solving
the problem efficiently but unnatural for the applications motivating this work.
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1.3 Contributions

Our contributions are:

– The introduction of the maximum weighted submatrix coverage problem
(MWSCP) as a generalization of the maximal-sum submatrix problem.

– A CP approach for solving MWSCP including filtering, lower-bound, domi-
nance rules, a variable heuristic, and a large neighborhood search.

– An evaluation of the performances of the CP approach as compared to a
greedy baseline approach (using the maximal-sum submatrix problem as sub-
routine) and two mathematical programming models on synthetic and real
datasets.

2 CP Approach

Constraint programming (CP) is a flexible programming paradigm for solving
(discrete) optimization problems. A CP model is a triplet (V,D,C) where V is
the set of variables, D their domains and C is a set of constraints. In constraint
programming the set domain bounds representation [8] is used to approximate
the domain of a set variable S by a closed interval denoted [S∈,S∈∪S⊥] where S∈

are the mandatory elements and S⊥ are the possible additional ones (S∈ ∩S⊥ =
∅). Such an interval represents all the sets in between those two bound sets
according to the inclusion relation {S | S∈ ⊆ S ⊆ (S∈ ∪ S⊥)}. A set variable
is bound (or assigned) whenever it contains a single set in its domain. This
situation (called an assignment) happens when set interval bounds are equal,
that is the possible set is empty: S⊥ = ∅.

For a set variable, the domain’s update operations are:

– The inclusion of an item j in the mandatory set, denoted require(j,S), which
implies that S∈ ← S∈ ∪ {j} and S⊥ ← S⊥ \ {j}.

– The exclusion of an item j from the possible set, denoted exclude(j,S), which
implies that S⊥ ← S⊥ \ {j} (and j /∈ S∈).

For each submatrix k, a set variable Rk (resp. Ck) is introduced to represent the
possible rows (resp. columns) selections in submatrix k.

Preliminary Notations. We define R∈,+j
k (resp. R∈,−j

k ) as the subset of R∈
k whose

matrix value in column j is positive (resp. strictly negative):

R∈,+j
k = {i ∈ R∈

k | Mi,j ≥ 0} R∈,−j
k = {i ∈ R∈

k | Mi,j < 0} (3)

Similar notations hold for Ck and ⊥. The sum of the elements in a given row i
(resp. column j) and in a column (resp. row) set S is noted as:

sum
row i

(S) =
∑

j∈S

Mi,j sum
col j

(S) =
∑

i∈S

Mi,j (4)
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The set of cells selected by at least one submatrix is denoted Cover∈. The set of
cells excluded by all submatrices is denoted Cover/∈:

Cover∈ = {(i, j) | ∃k : i ∈ R∈
k ∧ j ∈ C∈

k } (5)

Cover/∈ = {(i, j) | ∀k : i /∈ (R∈
k ∪ R⊥

k ) ∨ j /∈ (C∈
k ∪ C⊥

k )} (6)

The CP resolution is made via a Depth-First-Search (DFS) exploration. The
following subsections discuss the search space, sketch the algorithm and its key
components.

2.1 Search Space

As explained in [4], the search space of MWSCP with K = 1 can be limited
to searching on a single dimension, for instance C1. Indeed, the variable R1

can be fixed optimally in polynomial time by a simple inspection argument:
∀i ∈ R⊥

1 : sum
row i

(C1) > 0 =⇒ i ∈ R∈
1 .

For K > 1, once all the columns set variables are fixed (Ck ∀k ∈ [1..K]) it
remains to decide for each row i and each submatrix k whether i should be part
of Rk or not. Those K decisions per row does not enjoy the monotonicity or the
anti-monotonicity properties as illustrated on the next example.

Example 1. Let us consider K = 2 with column selection C1 = {1, 3}, C2 =
{2, 3}. For the 1 × 3 input matrix M = [[2, 2,−3]]. Individually for each sub-
matrix, the sum of entries that would be covered by selecting this row in both
R1 and R2 would be negative (−1). But since weights of covered elements count
only once, the value −3 is added only once and the objective value obtained is
1. Now consider the matrix M = [[−2,−2, 3]]. Individually for each submatrix,
the sum of entries that would be covered by selecting this row in both R1 and
R2 would be positive (1). But since weights of covered elements count only once,
the value 3 is added only once and the final objective value is −1.

Actually, those K decisions per row cannot be optimally taken in polynomial
time anymore as stated in Theorem 1. As a consequence, the CP search will have
to branch both on the rows and columns variables rather than branching on the
columns only.

Theorem 1. For fixed variables Ck ∀k ∈ [1..K], fixing optimally Rk ∀k ∈ [1..K]
is NP-Hard.

Proof. We reduce the NP-Hard Set Cover Problem [11] to our problem: Given a
universe U = {1, . . . , n} and a set {S1, . . . , SK} of K subsets of U , the Set Cover
Problem is to find the minimum number of sets such that their union covers
the universe. We construct a matrix with a single row and n + K columns.
The unique row values of this matrix are given by the regular expression [K +
1]{n}[−1]{K} (value K +1 repeated n times followed by −1 repeated K times).
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The column variables are fixed to Ck = Sk ∪ {n + k}. In this reduction, Sk is
selected if and only if Rk = {1} for every set k. A first observation is that any
optimal solution covers the universe otherwise it could be improved by K by
selecting any additional set that contains an uncovered element. The optimal
objective function can thus be written as n · (K + 1) − |{k | Rk = {1}}|. As
n · (K + 1) is fixed, maximizing this expression amounts at minimizing |{k |
Rk = {1}}| which is exactly the set cover objective.

2.2 Resolution via Depth-First-Search

The CP resolution through Depth-First-Search (DFS) exploration is sketched
in Algorithm1. All the procedures are assumed to take the decision variables
{R1, . . . ,RK , C1, . . . , CK} and the input matrix M as parameters.

Algorithm 1. Sketch of the DFS resolution algorithm
function SolveDFS( )

if !allVariablesBound( ) then
S ← selectUnBoundSetVar( )
i ← selectValue(S⊥)
for action ∈ [require(i, S), exclude(i, S)] do

saveState( )
post(action)
propagateDominanceRule( )
(lb, cb, ub) ← updateBounds( )
best ← max(best, cb)
if ub > best then

SolveDFS( )
end if
restoreState( )

end for
end if

end function

The procedure selectUnBoundSetVar chooses a not yet bound set vari-
able among {R⊥

1 , . . . ,R⊥
K , C⊥

1 , . . . , C⊥
K}. The subsequent line chooses for the

selected row/column set of some submatrix k, the specific row/column i (among
the possible ones) to be included on the left branch and to be excluded on
the right branch. The explored search tree is thus binary. Once the constraint is
posted, and the previous state saved for later backtracking, the procedure prop-
agateDominanceRule can include (exclude) rows or columns in every subma-
trix that can be proven to (not) participate in any optimal solution. The update-
Bounds function updates and returns the lower, current and upper bounds for
the state. The current bound is obtained by transforming the partial assignment
into a complete feasible solution that excludes all rows/columns in ⊥. If the cur-
rent bound cb is better than the best value found so far (stored in variable best),
the current state (R∈

1 , . . . ,R∈
K , C∈

1 , . . . , C∈
K) is a better solution and the value of

the variable best (storing the best objective found so far) is updated (and the
solution is logged). Once this is done, a check is made to ensure that there may
still be a better solution below this tree node, by verifying that the upper bound
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is greater than the best objective value found so far; if that is the case, the DFS
continues recursively. Once these steps are done, the state is backtracked and
the next state visited.

Efficient backtracking is achieved through trailing, which is a state man-
agement strategy that facilitates the restoration of the computation state to
an earlier version. Trailing enables the design of reversible objects. We refer to
MiniCP [13] for a detailed description of trail-based solvers and to [17] for a
trailed based implementation of set domains with sparse-sets.

The following subsections are dedicated to the four main functions of our
algorithm: selectUnBoundSetVar, selectValue, propagateDominance-
Rule and updateBounds.

2.3 Functions selectUnBoundSetVar and selectValue

selectUnBoundSetVar chooses, at each step of the DFS, the next
(unbounded) row/column interval set S to branch on, while selectValue
selects the value l ∈ S⊥ to include/exclude from this set when branching. That
is, when a pair (S, l) has been chosen, the DFS branches on the left, by set-
ting require (l,S), and on the right, by setting exclude (l,S). The decision of the
interval set and of the value are not done independently. To choose the next (set,
value) pair to branch on, our algorithm maintains two (reversible) counters per
row or column and per submatrix:

– trowk,i contains the sum of cell values that will be immediately added to the
objective value if row i is included in Rk:

trowk,i = sum
row i

({j | j ∈ C∈
k ∧ (i, j) �∈ Cover∈})

(7)

– prowk,i contains the sum of positive values in the line i that could be taken by
submatrix k, i.e. whose columns have not been excluded:

prowk,i = sum
row i

({j | j ∈ (C∈
k ∪ C⊥

k ) ∧ (i, j) �∈ Cover∈})
(8)

tcolk,j and pcolk,j are defined similarly. The algorithm then selects the (submatrix,
row) (or (submatrix, column)) pair (k, i) (or (k, j)) that maximizes trowk,i (or tcolk,j).
Ties are broken by maximizing prowk,i (or pcolk,j). The selected interval set and value
are then Rk and i (or Ck and j).

Recomputing these counters at each iteration is costly, as this operation
is in O(Knm + K(n + m)) for the MWSCP with an m × n matrix and K
submatrices. We propose here to maintain these counters using the finite state
machine (FSM) shown in Fig. 2. The algorithm we propose virtually maintains
a FSM for each (row, column, submatrix) triplet. The FSMs are updated each
time a row/column is added to/excluded from a submatrix:

– When a row i is included in/removed from the submatrix k, at most n FSMs
must be updated (one for each cell in the row).
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prows
k,i ← prows

k,i + v+

pcolsk,j ← pcolsk,j + v+
start

prows
k,i ← prows

k,i − v+

pcolsk,j ← pcolsk,j − v+

prows
k,i ← prows

k,i − v+ pcolsk,j ← pcolsk,j − v+

tcolsk,j ← tcolsk,j + v trows
k,i ← trows

k,i + v

tcolsk,j ← tcolsk,j − v

pcolsk,j ← pcolsk,j − v+
trows
k,j ← trows

k,j − v
prows
k,j ← prows

k,j − v+

require the cell

cell required by
other submatrix

require(i,Rk) require(j, Ck)

exclude(j, Ck) exclude(i,Rk)
cell required by
other submatrix

cell required by
other submatrix

require(j, Ck) require(i,Rk)

Fig. 2. FSM maintained for each (row, column, submatrix) i, j, k in the variable/value
selection algorithm. For simplicity, v = Mi,j , v+ = max(v, 0) and v− = min(v, 0).
FSMs states in blue are terminal states.

– When a column j is included in/removed from the submatrix k, at most m
FSMs must be updated (one for each cell in the column).

– Updating a cell is O(1), if it does not become selected by a submatrix (i.e. the
row and column of the cell are both in the mandatory sets of the submatrix).

– If a cell becomes selected, K − 1 other cells must be updated.

Given that Δrows,Δcols and Δselected are respectively the number of added or
excluded (submatrix, row) tables, added/excluded (submatrix, column) tables
and selected cells between two calls of the algorithm, this update runs in
O(Δrowsn + Δcolsm + ΔselectedK). To this update process must be added
the verification of the counters to select the best set/value pair, which is in
O(K(m + n)).

Over a complete branch of the DFS tree (which has a maximum depth of
K(m + n)), we have that:

∑

branch

Δrows ≤ K · m
∑

branch

Δcols ≤ K · n
∑

branch

Δselected ≤ n · m (9)

Over a complete branch, the FSM-based algorithm maintains the states and
returns the best set/value pair in O(K2(m+n)2), which is a significant improve-
ment over the recomputation-based algorithm which runs in O(K2(n2m+nm2))
over a complete branch.

2.4 Dominance Rules

In some cases, given a partial assignment with some rows and columns already
included in the set variables Ck and Rk, dominance rules permit to detect addi-
tional rows or columns that must be included in any optimal solution extending
this partial assignment, or rows or columns that never participate in an opti-
mal solution. The current state is defined by (R∈

k ,R⊥
k , C∈

k , C⊥
k ), and we denote
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the optimal solution extending this state as (R∗∈
k , ∅, C∗∈

k , ∅) with R∈
k ⊆ R∗∈

k ,
R∗∈

k ⊆ (R∈
k ∪ R⊥

k ), C∈
k ⊆ C∗∈

k , C∗∈
k ⊆ (C∈

k ∪ C⊥
k ).

Theorem 2 gives the condition to be satisfied to detect that a row i should
be included in submatrix l in any optimal solution extending the current state.

Theorem 2

∀i ∈ R⊥
l : sum

row i

⎛

⎝(C∈
l ∪ C⊥,−i

l ) \ (
⋃

k|k �=l

C∈,+i
k ∪ C⊥,+i

k )

⎞

⎠ > 0 ⇒ i ∈ R∗∈
l (10)

Proof (sketch). Let us assume the worst-case scenario: despite selecting all the
columns with negative values in this row i, while other submatrices would take
the columns with positive values, the submatrix still has a positive sum contri-
bution for this row i. Therefore this row must be included in submatrix l in any
optimal solution extending the current state.

Theorem 3 gives the condition to be satisfied to detect that a row i will never
be included submatrix l in any optimal solution extending the current state,
using the best-case scenario.

Theorem 3

∀i ∈ R⊥
l : sum

row i

⎛

⎝(C∈
l ∪ C⊥,+i

l ) \ (
⋃

k|k �=j

C∈,−i
k ∪ C⊥,−i

k )

⎞

⎠ < 0 ⇒ j /∈ R∗∈
l (11)

These two properties (and their symmetric counterparts for columns) can be
used in any node of the search tree to reduce the search space.

2.5 propagateDominanceRule: Dominance Rules Check

Dominance rules from Eqs. (10) and (11) (and their symmetric counterparts
for the columns) can be used to reduce the search space. As in the previous
subsections, recomputing the rules at each call to propagateDominanceRule
is expensive (O(Kmn) at each call, O(K2(m2n+mn2)) over a complete branch
of the DFS). We describe below how to maintain the rules on rows. Of course,
the method is symmetric for columns.

As in selectUnBoundSetVar and selectValue, we maintain virtual
FSMs for each triplet (row, column, submatrix), as shown in shown Fig. 3. The
FSMs collectively maintain two reversible values, shared between FSMs, for each
(submatrix k, row i) table:

– lbk,i is the value of the worst-case scenario for submatrix k and row i (the
left part of Eq. (10))

– ubk,i is the value of the best-case scenario for submatrix k and row i (the left
part of Eq. (11)).
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The FSMs also maintain the number of supports of each cell (i, j), i.e. the number
of submatrices that could still select the cell:

supporti,j =
∣∣{k | i ∈ (R∈

k ∪ R⊥
k ) ∧ j ∈ (C∈

k ∪ C⊥
k )}∣∣ (12)

Each supporti,j , shared across all FSMs, is maintained as reversible integer by
the solver: its state can then be backtracked.

lbk,i ← lbk,i + v−

ubk,i ← ubk,i + v+
start

supporti,j ← supporti,j − 1

lbk,i ← lbk,i − v−

ubk,i ← ubk,i − v+

supporti,j ← supporti,j − 1

lbk,i ← lbk,i + v+

ubk,i ← ubk,i + v−

exclude(j, Ck)

exclude(i,Rk)require(j, Ck) supporti,j = 1

exclude(i,Rk)

supporti,j = 1

exclude(i,Rk)

exclude(j, Ck)

require(j, Ck)

Fig. 3. FSM maintained for each (row, column, submatrix) i, j, k in propagateDom-
inanceRule. For simplicity, v = Mi,j , v+ = max(v, 0) and v− = min(v, 0). FSMs
states in blue are terminal states. (Color figure online)

The transition and update operations of our FSMs are the following:

– When a row i (resp. column j) is excluded from a submatrix k, at most n
(resp. m) cells’ FSMs must be updated. The contribution of the cell (i, j) to
ubk,i and lbk,i are removed and the support of the cell is decremented. Each
of these operations are in constant time, and overall takes O(n) (resp. O(m)).

– When a cell (i, j) becomes supported by only one remaining submatrix k
(supporti,j = 1), and the column j is included in this submatrix k ( j ∈ C∈

k ,
and since supporti,j = 1, it implies that i ∈ (R∈

k ∪ R⊥
k )), the value of lb and

ub for this submatrix k is updated by the cell’s value. This operation is also
in constant time, and thus O(K) for all submatrices.

– When a row i (resp. column j) is included in a submatrix k, a check on
all columns j (resp. rows i) must be performed to see if a cell (i, j) with
supporti,j = 1 and i ∈ R∈

k and j ∈ C∈
k exists. If that is the case, lbk,i and

ubk,i are updated to include the value of the cell. Overall, this operation is
O(n) (resp. O(m)).

Once the update of the FSMs is done, each (row, submatrix) pair is verified
w.r.t. the rules, in O(Km). A call to propagateDominanceRule is in O(Km+
Δrowsn + Δcolsm + ΔrequiredK + Δsupport=1K). Over a complete branch, the
number of operations required is in O(Km2 + Kmn). If the rules are applied
symmetrically on columns, the overall running time is in O(K max(m,n)2).
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2.6 updateBounds: Efficient Lower and Upper Bounds
Computations

In order to run the Branch & Bound, upper bounds on the objective for the
current tree node must be computed efficiently. The chosen method also provides
a lower bound, with no additional (asymptotic) computational cost.

The upper bound ub is the sum of every cell that is either selected in a
submatrix or that is positive and could still be selected. The lower bound lb is
similarly defined, but keeping negative-valued cells. Formally, they are computed
as follows:

ub =
∑

{Mi,j | (i, j) ∈ Cover∈ ∨ (Mi,j > 0 ∧ (i, j) /∈ Cover/∈)} (13)

lb =
∑

{Mi,j | (i, j) ∈ Cover∈ ∨ (Mi,j < 0 ∧ (i, j) /∈ Cover/∈)} (14)

Recomputing these bounds from scratch in each node is again costly:
O(Knm). The running time can be improved by maintaining incrementally the
number of submatrices supporting each cell, in the same way as previously done
in propagateDominanceRule.

These bounds, stored as reversible floating point numbers, can then be main-
tained easily:

– When a row i is included in a submatrix k, check if any column j is already
in C∈

k , and that (i, j) /∈ Cover∈ yet. If that is the case and that Mi,j > 0
(resp. < 0), increase ub (resp. lb) by Mi,j . This operation runs in O(n).

– The similar operation must be performed when a column is included in a
submatrix. Each of these operations runs in O(m).

– When a row i is excluded from a submatrix k, check if any column j is not
already excluded (j /∈ (C∈

k ∪ C⊥
k )). If that is the case, decrease supporti,j by

one. This operation runs in O(n).
– The same operation goes for excluded columns in O(m).
– When the supporti,j is reduced to zero, if Mi,j > 0 (resp. < 0), then decrease

ub (resp. lb) by Mi,j . This operation runs in O(1).

The whole maintenance process for the bounds behaves in O(Δrowsn+Δcolsm).
Over a complete branch, the incremental method is in O(Knm), while the one
based on recomputations is in O(K2(n2m + nm2)).

2.7 The Large Neighborhood Search

The exhaustive approach presented above eventually finds and proves the opti-
mum value provided enough time is given. Unfortunately, the search space is so
large that even for small matrices and a limited number of submatrices, it tends
to quickly find a good solution but is not able to improve it. To overcome this
limitation, we propose to embed the exhaustive CP search into a Large Neigh-
borhood Search (LNS) [19]. LNS is a local search approach using CP to discover
improvements around the current best solution:
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– First the CP exhaustive search is used during a limited time, to discover an
initial solution.

– For a given number of iterations, the CP exhaustive search is used again but
this time with some variables partially fixed (fragment) as in the current best
solution.

In addition, to limit the risk of having an iteration stuck for too long, we limit
the DFS to 1000 failures.

The current best solution at iteration t has the form ((R∗∈
1,t, . . . ,R∗∈

K,t); (C∗∈
1,t ,

. . . , C∗∈
K,t)). We propose three different fragment selection heuristics (part of the

solution to constrain when restarting the LNS for next iteration):

1. Select uniformly at random a subset of rows and columns in the set of lines and
columns used by some submatrix: Rp ⊆ (

⋃
k∈Mp R∗∈

k,t), Cp ⊆ (
⋃

k∈Mp C∗∈
k,t),

then for each submatrix, include the set of rows and columns intersecting
with those sets: R∈

k,t+1 = R∈
k,t ∩ Rp, R⊥

k,t+1 = R \ R∈
k,t+1 and similarly for

columns.
2. A similar operator is defined with rows and columns selected inside the whole

matrix: Rp ⊆ R, Cp ⊆ C. This allows for greater diversification, notably by
allowing discovery of previously unselected rows/columns.

3. Selecting uniformly at random a subset of submatrices Mp ⊆ {1, . . . , K}.
For each of these submatrices, select at random different subsets of rows and
columns Rp

k ⊆ R∗∈
k,t, Cp

k ⊆ C∗∈
k,t that is constrained: R∈

k,t+1 = R∈
k,t ∩ Rp

k,
R⊥

k,t+1 = R \ R∈
k,t+1 and similarly for columns.

Empirical observations show that these three operators are complementary.

3 Experiments

This section describes experiments conducted to assess the performances of the
proposed algorithms and to provide guidance on the selection of the appropriate
solution. We first evaluate the methods on synthetic datasets, where the optimum
is known, then on real datasets.

We compare our exhaustive CP and LNS methods against a greedy base-
line approach, CP-Greedy, that solves at each step the maximal-sum submatrix
(K = 1) problem using the CP approach from [4]. This approach iteratively
selects the next best submatrix, on a modified matrix in which the previously
selected entries are set to 0 such that there is no incentive to select several times
the same (positive) entries. Each iteration is performed within tmax

K with tmax

the allocated budget of time.
The implementation has been carried out on OscaR [16], using Java 1.8.0

(Hotspot VM) on an AMD Bulldozer clocked at 2.1GHz; one core and 3 Go of
RAM per instance.

The source code is available here: https://github.com/GuillaumeDerval/
MWSCP.

https://github.com/GuillaumeDerval/MWSCP
https://github.com/GuillaumeDerval/MWSCP
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3.1 Synthetic Datasets

A synthetic dataset composed of 1,617 instances have been generated using a
Python script (available on Zenodo [9]). For those, the optimal solution is known
as they were all generated by implanting randomly K submatrices before adding
some noise1. Table 1 describes parameter values considered in the generation.
The parameters used to generate the instances are described in Table 1.

Approaches are compared using any-time profiles as described in Definition 3.

Definition 3 Any-Time Profile. Let f(a, i, t) be the objective value of the
best solution found so far by an algorithm a for an instance i at time t. Let tmax

be the provided budget of time before interrupting a run. Let f∗
i be the optimal

solution for i if known (as is the case for synthetic data). The any-time profile
of a is the solution quality Qa(t) of a on all instances as a function of time:

Qa(t) =
1

|i|
∑

i

f(a, i, t)

max(f(a∗
i , i, t

max), f∗)
with a∗

i = argmax
a

f(a, i, tmax) . (15)

Table 1. Parameters for the synthetic dataset generation

Parameter Description Values used

m, n Size of the matrix M ∈ R
m×n (800, 200), (640, 250), (400, 400)

K Number of submatrices 2, 4, 8

o Minimum overlap between submatrices (in % of cells) 0, 0.3, 0.6

σ Background noise variance (mean is 0) 0, 0.5, 1.0

r, s Size of submatrices (noisy, Gaussian with σ = r or s
20 ) (35, 70), (50, 50)

seed Seed for matrix generation [0, 9]

Figure 4 gives the any-time profiles of the CP-Greedy baseline method, along
with CP-Exhaustive (the exhaustive process presented above) and CP-LNS. The
results clearly illustrates the overall better performances of the CP-LNS when-
ever the computation time exceeds roughly 20 s.

Table 2a presents, for each parameter value considered in the synthetic data
generation, the performances of the algorithms. Reported performances are com-
puted as the average performance of each algorithm obtained before a certain
limit of computation time.

Through analysis of the performances with respect to parameters’ values, we
observed that the major parameters are, in decreasing order of influence, the
following: (1) the submatrices overlap, (2) K = the number of submatrices. The
difficulty of reaching good solution increases quickly as the minimum overlap
parameter increases until 50%, after which it decreases. Similarly, as the number
of implanted submatrices increases, good solution quality becomes harder to
grasp.

1 Notice that the optimal solution may be slightly different than the implanted sub-
matrices because of the noise addition.
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3.2 Real Datasets

We also experiment with non-synthetic datasets of several types (olympic, migra-
tion, genes) described in Sect. 1.1. The results, presented in Table 2b, are similar
to those obtained for synthetic datasets. CP-LNS is the best method on most
datasets given 10 s of computation time, with two notable exceptions (alizadeh
and garber datasets), in which case LNS did not find the optimum in the 20min
allowed for each dataset.

Table 2. Comparison between CP-Greedy (GRE), CP-Exhaustive (EX) and CP-LNS
(LNS). The table shows the Qa(t) for each algorithm a given a certain amount of time
t (see Eq. (3)).

(a) Synthetic dataset

10s 20s 100s 1080s
Parameters GRE EX LNS GRE EX LNS GRE EX LNS GRE EX LNS

{m = 400, n = 400} 0.70 0.33 0.37 0.74 0.57 0.76 0.76 0.75 0.95 0.77 0.75 0.97
{m = 640, n = 250} 0.71 0.34 0.32 0.75 0.48 0.79 0.77 0.74 0.95 0.77 0.75 0.97
{m = 800, n = 200} 0.73 0.34 0.29 0.77 0.48 0.61 0.79 0.77 0.94 0.79 0.78 0.96

K = 2 0.85 0.78 0.32 0.85 0.88 0.83 0.85 0.90 0.96 0.85 0.91 0.97
K = 4 0.72 0.20 0.30 0.77 0.51 0.72 0.78 0.74 0.94 0.78 0.75 0.96
K = 8 0.57 0.03 0.36 0.64 0.13 0.61 0.68 0.62 0.94 0.68 0.62 0.97
o = 0% 0.58 0.27 0.34 0.67 0.45 0.71 0.71 0.66 0.97 0.71 0.66 0.98
o = 30% 0.71 0.34 0.31 0.73 0.50 0.69 0.75 0.75 0.93 0.75 0.76 0.95
o = 60% 0.85 0.40 0.34 0.86 0.57 0.77 0.86 0.86 0.94 0.86 0.86 0.97
σ = 0.0 0.73 0.34 0.78 0.78 0.63 0.80 0.81 0.77 0.98 0.81 0.78 1.00
σ = 0.5 0.72 0.33 0.04 0.75 0.44 0.67 0.78 0.74 0.94 0.78 0.74 0.97
σ = 1.0 0.69 0.33 0.16 0.73 0.44 0.68 0.73 0.75 0.93 0.73 0.75 0.94

{r = 50, s = 50} 0.71 0.34 0.34 0.75 0.52 0.73 0.77 0.76 0.94 0.77 0.77 0.96
{r = 35, s = 70} 0.71 0.32 0.32 0.76 0.50 0.71 0.78 0.75 0.95 0.78 0.75 0.97

(b) Real datasets

K = 4 1s 5s 20s
Type Dataset GRE EX LNS GRE EX LNS GRE EX LNS

migration migration 0.001 [6] 0.96 0.92 0.96 0.96 0.92 0.99 0.96 0.92 1.00
migration migration 0.003 [6] 0.87 0.89 0.93 0.87 0.89 0.99 0.87 0.89 1.00
migration migration 0.005 [6] 0.83 0.79 0.96 0.83 0.79 1.00 0.83 0.79 1.00
olympic olympic 0.01 [10] 0.88 0.69 0.92 0.88 0.91 0.97 0.91 0.91 1.00
olympic olympic 0.02 [10] 0.79 0.69 0.87 0.84 0.84 0.97 0.84 0.84 1.00
olympic olympic 0.04 [10] 0.62 0.81 0.91 0.76 0.82 0.96 0.93 0.82 1.00
olympic olympic 0.06 [10] 0.80 0.92 0.93 0.97 0.92 0.98 0.97 0.92 0.99
K = 4 10s 20s 100s
Type Dataset GRE EX LNS GRE EX LNS GRE EX LNS
gene alizadeh-2000-v1 095 [20] 1.00 0.48 0.82 1.00 0.48 0.82 1.00 0.48 0.92
gene armstrong-2002-v1 095 [20] 0.73 0.60 0.92 0.73 0.60 0.99 0.73 0.60 1.00
gene bhattacharjee-2001 095 [20] 0.82 0.31 0.98 0.91 0.86 0.99 0.91 0.96 1.00
gene bittner-2000 095 [20] 0.96 0.53 0.86 0.96 0.53 0.98 0.96 0.53 0.98
gene bredel-2005 095 [20] 0.98 0.86 1.00 0.98 0.86 1.00 0.98 0.86 1.00
gene chen-2002 095 [20] 0.74 0.80 1.00 0.89 0.80 1.00 0.89 0.80 1.00
gene chowdary-2006 095 [20] 0.82 0.83 1.00 0.82 0.83 1.00 0.87 0.83 1.00
gene dyrskjot-2003 095 [20] 0.97 0.94 0.99 0.97 0.94 1.00 0.97 0.94 1.00
gene garber-2001 095 [20] 0.59 0.24 0.58 0.82 0.32 0.58 1.00 0.50 0.86
gene golub-1999-v1 095 [20] 0.86 0.88 0.92 0.86 0.88 0.95 0.86 0.88 0.96
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Fig. 4. Comparison between CP-Greedy, CP-Exhaustive and CP-LNS on 1, 617 matri-
ces generated as described in Sect. 3.1. The graph presents the any-time profile
described in Eq. (3). For each instance, 18 min were allocated for computations.

3.3 Comparison Against Mixed Integer Linearly and Quadratically
Constrained Programming

We tested our methods against MIP (linear) and MIQCP (quadratic terms in
the constraints) methods. As these two methods do not perform well on big-
ger instances, we do not integrate them in our experiments on large matrices,
presented above.

MIP model MIQCP model
max

∑
i,j Mi,j · si,j max

∑
i,j Mi,j · si,j

si,j ≥ ei,j,k ∀i, j, k K · si,j ≥ ∑
k rk,i · ck,j ∀i, j

si,j ≤ ∑
k ei,j,k ∀i, j si,j ≤ ∑

k rk,i · ck,j ∀i, j
ei,j,k + 1 ≥ rk,i + ck,j ∀i, j, k
2 · ei,j,k ≤ rk,i + ck,j ∀i, j, k

All variables ∈ {0, 1}
MIP and MIQCP methods are plagued by the number of variables, that is in
O(Knm) for MIP and O(K(n + m)) for MIQCP, and by the number of con-
straints, which is O(Knm) for MIP and O(nm) for MIQCP. Tables 3a and b
show that both models are slow compared to our LNS method, and are heavily
affected by matrix size, number of submatrices to find and noise. For bigger sub-
matrices, such as the synthetic and real ones presented in the previous section,
both methods timeout either without returning solutions or with comparatively
poor solutions.
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Table 3. Comparison between CP-LNS, MIP and MIQCP, on a synthetic dataset
(generated as described in Sect. 3.1). All methods were given a fixed time limit of 300 s.
The metric used is the any-time profile at the time limit (see Definition 3). CP-LNS
finds the optimum on each dataset. The time when the best found solution was found
is indicated inside parentheses. Experiments made on Gurobi 8.1.0.

(a) Varying number of submatrices
and noise, with matrices of size 50×50
and submatrices of size 16 × 16.

K σ CP-LNS MIP MIQCP
2 0.0 1.00 (1s) 1.00 (0s) 1.00 (1s)
2 0.5 1.00 (1s) 1.00 (7s) 1.00 (7s)
2 1.0 1.00 (1s) 0.89 (233s) 0.79 (57s)
3 0.0 1.00 (2s) 1.00 (1s) 1.00 (2s)
3 0.5 1.00 (3s) 1.00 (140s) 1.00 (138s)
3 1.0 1.00 (3s) 0.74 (254s) 0.48 (256s)
4 0.0 1.00 (2s) 1.00 (1s) 1.00 (62s)
4 0.5 1.00 (3s) 1.00 (252s) 0.88 (290s)
4 1.0 1.00 (6s) 0.64 (260s) 0.69 (225s)
5 0.0 1.00 (4s) 1.00 (79s) 1.00 (275s)
5 0.5 1.00 (5s) 0.82 (257s) 0.69 (237s)
5 1.0 1.00 (6s) 0.77 (24s) 0.36 (38s)

(b) Varying size of the matrix and noise,
with matrices of size m×m and K = 2
submatrices of size �m

3 � × �m
3 �.

m σ CP-LNS MIP MIQCP
50 0.0 1.00 (0s) 1.00 (1s) 1.00 (3s)
50 0.5 1.00 (1s) 1.00 (5s) 1.00 (7s)
50 1.0 1.00 (1s) 0.95 (207s) 0.82 (204s)
100 0.0 1.00 (4s) 1.00 (1s) 1.00 (33s)
100 0.5 1.00 (1s) 0.86 (293s) 1.00 (45s)
100 1.0 1.00 (3s) 0.65 (269s) 0.82 (191s)
200 0.0 1.00 (17s) 1.00 (8s) 1.00 (135s)
200 0.5 1.00 (21s) 0.37 (191s) 3% (81s)
200 1.0 1.00 (6s) 0% (0s) 5% (134s)
400 0.0 1.00 (1s) 1.00 (31s) 1.00 (54s)
400 0.5 1.00 (1s) 0% (1s) 0% (0s)
400 1.0 1.00 (1s) 0% (1s) 4% (301s)

4 Conclusions

We presented a generalization of the Maximal-Sum Submatrix Problem [4] to
multiple submatrices, called the Maximum Weighted Submatrix Coverage Prob-
lem (MWSCP), along with a method to solve this problem based on constraint
programming and large neighborhood search. Experiments on both synthetic and
real datasets show that our CP-LNS method finds consistently better solutions
(when more than 10 s are allocated) than both MIP/MIQCP, an exhaustive CP
method and a greedy approach using the method from [4].
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