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ABSTRACT
Motivation: Biomarker discovery is an important topic in biomedical
applications of computational biology, including applications such as
gene and SNP selection from high dimensional data. Surprisingly,
the stability with respect to sampling variation or robustness of such
selection processes has received attention only recently. However,
robustness of biomarkers is an important issue, as it may greatly
influence subsequent biological validations. In addition, a more robust
set of markers may strengthen the confidence of an expert in the
results of a selection method.
Results: Our first contribution is a general framework for the analysis
of the robustness of a biomarker selection algorithm. Secondly, we
conducted a large-scale analysis of the recently introduced concept
of ensemble feature selection, where multiple feature selections
are combined in order to increase the robustness of the final
set of selected features. We focus on selection methods that are
embedded in the estimation of support vector machines (SVMs).
SVMs are powerful classification models that have shown state-of-
the-art performance on several diagnosis and prognosis tasks on
biological data. Their feature selection extensions also offered good
results for gene selection tasks. We show that the robustness of
SVMs for biomarker discovery can be substantially increased by
using ensemble feature selection techniques, while at the same
time improving upon classification performances. The proposed
methodology is evaluated on four microarray data sets showing
increases of up to almost 30% in robustness of the selected
biomarkers, along with an improvement of about 15% in classification
performance. The stability improvement with ensemble methods is
particularly noticeable for small signature sizes (a few tens of genes),
which is most relevant for the design of a diagnosis or prognosis
model from a gene signature.
Contact: yvan.saeys@psb.ugent.be
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1 INTRODUCTION
The identification of substances that are indicative of a specific
biological state, broadly referred to as biomarkers nowadays, is an
important research topic in the biomedical field. Especially in cancer
diagnostics, technologies such as microarrays, and more recently
also mass spectrometry, have become an established technique to
compare diseased samples to control samples. From a machine
learning point of view, the selection of biomarkers in this context
can be stated as a feature selection problem for a classification task,
where the aim is to find a small set of features (markers) that best
explains the difference between the disease and the control samples.

Feature selection offers a number of advantages, including more
powerful classification models by eliminating irrelevant or noisy
features (Krishnapuram et al., 2004), more compact and faster
models by constructing them using only a small subset of the
original set of features, and the ability to focus on a subset of
relevant features, which can be used for the discovery of new
knowledge (Guyon and Elisseeff, 2003). Future clinical tests can
then potentially be built at a cheaper cost on fewer markers.

Feature selection techniques can be broadly characterized into
three classes, depending on how they interact with the estimation
of the classification model (Saeys et al., 2007). Filter methods work
independently of the classifier design, and perform feature selection
by looking at the intrinsic properties of the data. In contrast, wrapper
and embedded methods perform feature selection by making use
of a specific classification model. While wrapper methods employ
a search strategy in the space of possible feature subsets, guided
by the predictive performance of a classification model, embedded
methods make use of the classification model internal parameters
to perform feature selection. Embedded methods show a better
computational complexity than wrapper methods, especially in
high-dimensional spaces.

This work focuses on the use of feature selection techniques for
biomarker discovery from microarray data. It is common practice
for a domain expert to start validating the biomarkers selected
by the feature selection algorithm in a top-down fashion, with
techniques such as RT-PCR. However, different feature selection
techniques may result in different rankings of the features. The same
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feature selection technique may produce drastically different results
depending on the chosen setting of the parameters of the method.
To make matters even worse, many of the current data sets are
described by a number of features that generally exceed the number
of available training samples by orders of magnitude. These so-
called wide data may lead to even more variation in the final ranking
of the features. In the particular context of genomic data, a stable
feature selection technique is desirable. Selection of relevant genes
for a given pathology on different sub-samplings of the patients
should produce nearly the same results since the biological process
generating the data is assumed to be largely common for all patients,
at least without confounding factors.

Surprisingly, the analysis of the stability or robustness of
biomarker selection techniques is only a topic of recent interest, and
has not yet made it into the mainstream methodology for biomarker
discovery. Therefore, we propose a general experimental setup
for stability analysis that can be easily included in any biomarker
identification pipeline. In addition, we also present new techniques
to increase the stability of the final set of selected biomarkers, using
the recently introduced concept of ensemble feature selection (Saeys
et al., 2008). Ensemble methods have originally been developed to
enhance classification performance (Dietterich, 2000). The general
idea of that family of techniques consists in combining lots of
different models in a global, more robust, model. The different
models are typically built on different sub-samplings of the original
data set. Ensemble method ideas have recently been ported to wide
data (Long and Berlian Vega, 2003; Dettling, 2004) and in particular
to feature selection (Saeys et al., 2008).

In the present study we use support vector machines (SVMs)
classifiers (Boser et al., 1992). These classifiers are interesting
because the number of parameters to be estimated essentially
depends on the number of samples rather than the number of
features, which is particularly relevant with very small sample-to-
feature ratios. Such models also offer state-of-the-art classification
performance on a wide range of applications (Schoelkopf and
Smola, 2002). Moreover, SVMs have been extended to form
embedded feature selection methods. A prominent approach among
them is the RFE selection method (Guyon et al., 2002). A linear
SVM is a classification model for which the influence of each
dimension, here a specific gene, is explicitly available. RFE
precisely uses this property to remove the least important features
and iteratively re-estimates a classifier on the remaining features.

Our experiments on four cancer diagnosis microarray data
sets show that the robustness of gene selection methods can
be significantly improved by extending them with an ensemble
procedure. The relative performances of various ways of combining
the individual signatures is also rigorously assessed.

2 MATERIALS AND METHODS
Our experimental data consists of 4 cancer diagnosis microarrays data
sets which are first described. Next we propose a general evaluation
protocol to evaluate both the stability and the classification performance
of gene selection methods. We discuss data normalization and present our
reference gene selection method, known as RFE (Guyon et al., 2002). Much
simpler selection methods do exist (Guyon and Elisseeff, 2003) but RFE
is chosen here as a baseline because it is known to provide state-of-the-
art classification performance and was originally applied precisely in the
context of gene selection for cancer classification. Besides, like most feature

Table 1. Overview of the data sets used. SDR refers to the ratio between the
number of samples and the number of dimensions (or features).

Name Ref. # samples (+/-) # dim. SDR
Leukemia (Golub et al., 1999) 72 (47/25) 7,129 0.010
Colon (Alon et al., 1999) 62 (40/22) 2,000 0.031
Lymphoma (Alizadeh et al., 2000) 45 (22/23) 4,026 0.011
Prostate (Singh et al., 2002) 102 (52/50) 6,033 0.017

selection methods embedded with a classifier estimation, RFE is intrinsically
multivariate in the sense that it evaluates the relevance of several features
considered jointly. In contrast, a univariate method evaluates the relevance of
each feature individually. The latter is often simpler computationally but the
former is more refined from a data analysis viewpoint and also biologically
more relevant, because genes are known to interact in many ways and are
often co-regulated.

In the following, we introduce the ensemble feature selection approach
which relies on different sub-samplings of the original data to build different
signatures. We detail two different aggregation methods to build a consensus
from the various signatures.

2.1 Microarray data sets
The datasets we use in this work are microarray datasets. Their
main characteristics are summarized in Table 1. They share common
characteristics such as a very low samples/dimensions ratio.

The original studies on these data sets stress the limitations of univariate
methods, which look at the influence of each gene individually, and the
issue of signature robustness. They trigger the interest of considering a
multivariate technique, like RFE, and of trying to improve its robustness.

The Leukemia dataset was produced in a study aimed at building a
model to discriminate between Acute Myeloid Leukemia (AML) and Acute
Lymphoblastic Leukemia (ALL) tissues (Golub et al., 1999). It is the largest
dataset used in this paper in terms of number of features (7,129). A set of 50
genes was selected in a univariate way according to a correlation criterion
with the class label. Those genes where combined afterwards to build a
simple weighted vote classifier. The model was tested on an independent
test set of 34 Leukemia samples, making correct predictions for 29 among
them. Authors mention the difficulty of choosing the right set of informative
genes, given that lots of them were highly correlated with the ALL-AML
distinction, and stress the need of a stable selection approach.

The Colon Cancer dataset is made of samples from 40 tumor and 22
normal colon tissues probed by an Affymetrix microarray chip measuring
more than 6,500 genes (Alon et al., 1999). The data set was, however,
published after a pre-filtering step and the resulting samples include only
2,000 genes. The task described in the original study is to determine if groups
of patients could automatically be constructed by a clustering algorithm.
Clustering separated cancerous from noncancerous tissue and cell lines from
in vivo tissues on the basis of subtle distributed patterns of genes even
when expression of individual genes varied only slightly between the tissues.
Since annotations of the samples are available, we address here the binary
classification problem of predicting whether a sample corresponds to a tumor
versus a normal colon tissue.

The Lymphoma dataset comes from a study on Diffuse Large B-Cell
Lymphoma (Alizadeh et al., 2000). The task is here to discriminate between
two types of Lymphoma based on gene expression measured by microarray
technology. The authors originally performed a clustering analysis based
on similarity measure related to correlation. This dataset has expression
measurements for 4,026 genes.

The Prostate dataset was first published in (Singh et al., 2002). One of
the tasks addressed by the authors is to build a model able to discriminate
between normal and tumor prostate tissue, based on microarray data. A
univariate selection criterion (Golub’s Signal-to-Noise Ratio) is applied
on each gene and its significance is assessed by a permutation test. The
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most significant genes are selected and a predictive model is built on this
signature with a k-nearest neighbor classifier. The number of genes found
to be significantly differentially expressed in the two classes according
to the Golub’s ratio is higher than 400. This result shows the difficulty
of identifying small and stable signatures. Each selected gene has been
individually compared with clinical factors but no significant correlation was
found.

2.2 Biomarker evaluation protocol
In order to analyze the stability of a biomarker selection algorithm, we
propose to generate slight variations of the original data set, and compare the
outcome of the marker selection algorithm across these different variations.
The rationale behind this is that, for a stable marker selection algorithm,
small changes in the training set should not yield big changes in the set
of finally selected markers. This is consistent with what a domain expert
would expect from a marker selection algorithm: adding or deleting a few
samples should not drastically modify the top-ranked markers identified by
the algorithm.

To implement the strategy of generating slight variations of the data
set, a sub-sampling approach is proposed: a large number (e.g. 500) of
data sets can be generated by subsampling the original data set without
replacement. As microarray datasets generally contain few samples, we
suggest to generate subsamplings containing 90% of the samples of the
original data set.

We argue that stability matters, but stability alone is not a good quality
measure. Indeed, one could conceive a trivial selection algorithm which
would always return the same features no matter which samples it receives
as input. The resulting set of features would be perfectly stable but likely
irrelevant for the classification task. Hence, stability needs to be assessed
together with classification performance. We propose to use the same
subsamplings - each containing 90% of the original data set - as training sets
to select features and estimate the performance of a classifier. The remaining
10% of the data can be used each time as an independent validation set to
evaluate classification performance. Since we are considering typically 500
independent partitionings into 90% training and 10% validation, we reduce
the risk of over-optimistic results of traditional cross-validation experiments
on small sample domains (Braga-Neto and Dougherty, 2004).

In the following paragraphs, we detail the exact performance metrics
used to assess the stability of biomarker lists and the average classification
performances.

2.2.1 Stability measure Let us first formalize the experimental setup
as follows. We consider a data set X = {x1, . . . , xM} with M instances
and N features. Then, k subsamplings of size dxMe (0 < x < 1) are
drawn randomly from X , where in our experiments k = 500 and x = 0.9.
Subsequently, feature selection is performed on each of the k subsamplings,
and a marker set -further referred to as a signature- of a given size is selected.

Here, following (Kalousis et al., 2007), we take a similarity-based
approach where feature stability is measured by comparing the signatures
selected on each of the k subsamplings. The more similar all signatures are,
the higher the stability measure will be. The overall stability Stot can then
be defined as the average over all pairwise similarity comparisons between
all signatures on the k subsamplings:

Stot =
2

∑k
i=1

∑k
j=i+1 KI(fi, fj)

k(k − 1)

where fi represents the signature obtained by the selection method on
subsampling i (1 ≤ i ≤ k), and KI(fi, fj) is the Kuncheva index; a stability
index between fi and fj , defined as follows (Kuncheva, 2007):

KI(fi, fj) =
r ·N − s2

s · (N − s)
=

r − s2

N

s− s2

N

where s = |fi| = |fj | denotes the signature size and r = |fi ∩ fj | is
the number of common elements in both signatures. The Kuncheva index

satisfies −1 < KI(fi, fj) ≤ 1 and the greater its value, the larger the

number of commonly selected features in both signatures. The s2

N
term in

this index corrects a bias due to the chance of selecting common features
among two signatures chosen at random. A negative index reflects that
feature sharing is mostly due to chance. This correction term pleads for using
the Kuncheva index, instead of other stability indices such as the Jaccard
index (Kalousis et al., 2007). In the sequel, the overall stability Stot is simply
denoted KI.

2.2.2 Classification performance measure To compare the classifi-
cation performance of different methods, we use the area under the Receiver
Operator Curve (ROC, Provost and Fawcett (1997)), further abbreviated
as AUC. This area is defined by a function of sensitivity and specificy,
frequently used in clinical settings.

2.3 Data normalization
The objective of data normalization is to enhance similarity of genes sharing
a common expression pattern throughout the data, but in different ranges of
absolute expression values. We use here an IQR-normalization procedure.
The normalized expression value f̄ij is defined as follows.

f̄ij =
fij −mj

IQRj/1.35

where fij is the original expression value of gene j from sample i, mj is the
median of expression of this gene over all samples, and IQRj stands for the
gene-specific interquartile range (Tukey, 1977). The IQR-normalization is
more robust to the presence of outliers than a classical Z-score (centering
to the mean with unit standard deviation) but the 1.35 scaling factor
makes both normalization equivalent whenever the data happens to be
normally distributed. The normalization parameters for each gene are always
estimated from the training samples only and applied subsequently to the
validation samples.

2.4 Embedded feature selection with SVMs
Our reference classifier is a linear SVM (Boser et al., 1992). SVMs are
known to scale well to high-dimensional spaces, and have shown state-of-
the-art performance in many problems in computational biology (Ben-Hur
et al., 2008). Furthermore, a linear SVM offers the additional advantage
that it contains an embedded capability for feature selection. As a linear
SVM essentially consists of a separating hyperplane in the input space, the
absolute values of the weights of each dimension in the hyperplane can be
regarded as the contribution (importance) of each dimension (feature) to the
multivariate decision of the hyperplane. As a result, these weights can be
used to rank the features from most important to least important, which is
the rationale for the recursive feature elimination algorithm (RFE, (Guyon
et al., 2002)).

In order to use RFE for feature selection, a recursive procedure is started
that adopts a backward elimination strategy to iteratively remove features.
Starting from the full feature set, a linear SVM is estimated from the
training samples and features are sorted according to the absolute value of
their weight in the hyperplane. Subsequently the least important features
are eliminated and a linear SVM is re-estimated on the same samples but
restricted to the remaining set of features. This process is iterated until all
features have been removed or a desired number of features is reached.

An internal parameter of the RFE method is the fraction E of features
to eliminate at each step, which greatly influences the computational
complexity of the method. Decreasing E increases the computational cost
since less features are dropped at each iteration but possibly offers a more
refined selection. In our experiments, we chose to drop E = 20% features
at each iteration by default. An additional sensitivity analysis is reported
in our experiments to check the precise influence of this parameter. When
setting E = 100%, RFE reduces to a single SVM estimation which ranks
all the features in one step. When setting E < 100%, the overall ranking
of features is constructed iteratively from worst to best features. Whenever
features are removed, they are sorted according to their absolute weight value
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Fig. 1. Stability of the baseline method (original RFE) and the ensemble
methods for prostate. We used 40 bootstraps and used RFE with E = 20%.

in the hyperplane at the iteration of removal and added at the top of the
current ranking.

Another internal parameter of the SVM learning procedure is the so-
called regularization parameter C. An SVM aims at classifying correctly
training samples with a certain margin, which is not always possible
when the training samples cannot be perfectly separated in two classes
by a hyperplane. The C parameter precisely controls how strong margin
errors (samples which cannot be classified with the prescribed margin)
are penalized. We use the simple default value C = 1 in our reported
experiments. We also investigated how to optimize C using a grid search
with an internal 5-fold cross-validation on the training part but the additional
computational complexity only offered marginal performance gains.

2.5 Ensemble feature selection
To increase the stability of feature selection algorithms, we further
elaborated on the recently introduced concept of ensemble feature selection
techniques (Saeys et al., 2008). Ensemble feature selection techniques use
an idea similar to ensemble learning for classification (Dietterich, 2000): in a
first step, a number of different feature selectors are used, and in a final phase
the output of these separate selectors is aggregated and returned as the final
(ensemble) result. We focus on the analysis of ensemble feature selection
techniques using linear SVMs and RFE as the feature selection mechanism.

Starting from a particular training set, i.e. one of the 500 subsamplings
containing 90% of the data, our aim is now to generate a diverse set of RFE
feature selections. Because the RFE procedure is deterministic, the only
chance to generate diversity in the selection is to perform it on different
training samples. To this end, we make use of the bootstrapping method,
a well-established technique in statistics to reduce variance (Efron, 1979).
By drawing (with replacement) different bootstrap samples of the training
data, we can apply RFE to each of these bootstrap samples, and thus obtain
a diverse set of feature rankings. More formally, we take an ensemble EFS
consisting of t feature selectors, EFS = {F1, F2, . . . , Ft}, then we assume
each Fi provides a feature ranking fi = (f1

i , . . . , fN
i ), where fj

i denotes
the rank of feature j in bootstrap i. The best feature is assigned rank 1, and
the worst one rank N .

To aggregate the different rankings, obtained by bootstrapping the training
data, into a final signature we propose two aggregation schemes. These
aggregation schemes differ in the way the aggregation (sum) of the individual
rankings is calculated. A general formulation for the ensemble ranking f ,
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Fig. 2. Classification performances of the baseline method (original RFE)
and the ensemble method for prostate. We used 40 bootstraps and used RFE
with E = 20%.

obtained by summing the ranks over all bootstrap samples is as follows:

f = (
t∑

i=1

wif
1
i , . . . ,

t∑
i=1

wif
N
i ) (1)

where wi denotes a bootstrap dependent weight.

2.5.1 Complete linear aggregation (CLA) This method uses the
complete ranking of all the features to create the ensemble result. The
ensemble ranking f is then obtained by just summing the ranks over all
bootstrap samples. In the general formulation (1), this amounts to setting
all weights wi equal to 1. To select the final set of features for a signature of
size s, the s features with the lowest summed rank are selected from f .

2.5.2 Complete weighted linear aggregation (CWA) This method
is a variation on the previous method, where we no longer just sum all scores,
but additionally weigh the scores of each bootstrap ranking. The weight
assigned to a bootstrap ranking is the AUC obtained by a linear SVM, trained
on the bootstrap samples and evaluated on the out-of-bag (OO) samples. In
formulation (1), this amounts to setting wi = OO-AUCi.

2.6 Implementation and availability
All algorithms for feature selection, classification, as well as the
extensions to ensemble feature selection and stability analysis were used as
implemented in Java-ML, a publicly available, open source Java machine
learning library (http://java-ml.sf.net/), or implemented in R,
a publicly available and open source language for statistical applications
(http://r-project.org).

3 RESULTS
We report here the experimental evaluations on the four cancer
diagnosis microarray data sets considered in the present study.
Our reference method serving as a baseline is the RFE approach.
It already offers state-of-the-art classification performance and
a multivariate selection mechanism for evaluating the combined
relevance of sets of markers. Our results show that the stability
of biomarker selection with RFE, as well as the classification
performance can be significantly improved with the proposed
ensemble methodology. The relative performance of the different
ways of building a consensus from distinct individual signatures is
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Fig. 3. Distribution plots of the pair wise stabilities for the four data sets. We used 40 bootstraps, eliminated E = 20% features at each iteration of RFE, used
a signature size of 1% and chose the CLA aggregation model. We used fixed-width bins of 5%.

carefully assessed. Results on the variance of the pairwise stability
between two signatures are also discussed, as well as the sensitivity
to the setting of internal parameters of the marker selection methods.

3.1 Ensemble feature selection methods improves
classification performance and biomarker stability

As a first experiment, we compare our newly proposed ensemble
RFE method to the traditional RFE setting, analyzing the stability
and classification performance for each of the four cancer data sets
used in this study. Figures 1 and 2 display the results for the Prostate
dataset, using a default configuration where the number of bootstrap
rounds to create the ensemble is set to 40, and RFE was applied
eliminating E = 20% of the features at each iteration. Results for
the other datasets can be found in Supplementary figures 1 and 2.
The default configuration was based on earlier work (Saeys et al.,
2008), where it was shown that these parameter settings yielded a
good default. Robustness of the selected signatures (marker sets)
was measured by the Kuncheva index (KI), and the AUC was used
to measure the classification performance.

It can be observed that the ensemble methods CLA and CWA
clearly improve upon the baseline, both in terms of stability
and classification performance. Moreover, the gains increase as
signature sizes get smaller. In three out of four datasets, the
ensemble methods even perform better with fewer than with all
features (see Supplementary Material), thus showing that ensemble

methods are better capable of eliminating noisy and irrelevant
dimensions.

In the above analysis we reported average classification and
stability performances over 500 distinct subsamplings from each
original data set. The proposed stability metric is an average over
all pairwise comparisons of two signatures built using different
subsamplings. Figure 3 details this analysis by reporting the
histogram of stability values across pairwise comparisons. We
observed that the ensemble CLA method improves the average
stability over the baseline, since there is a systematic shift of the
histograms with respect to the baseline, with no influence on the
variance of the stability since the respective histograms have the
same spread.

3.2 Sensitivity analysis with respect to internal
parameters

Up to now, performance metrics were computed using default
parameters which were proven useful in our preliminary study. We
further assessed the influence of two internal parameters that may
influence the results: the number of bootstrap rounds used by the
ensemble methods and the fraction of features discarded at each
iteration of RFE (baseline or ensemble versions).

3.2.1 Sensitivity with regard to the number of bootstrap samples
Figures 4 and 5 show the stability and classification performance
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Fig. 4. Stability for several numbers of bootstrap rounds for the construction
of an ensemble signature for prostate. We used the CLA aggregation method
and eliminated 20% of the features at each iteration of RFE. The baseline is
the original RFE on the full training sets without bootstrap.
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Fig. 5. Classification performances for several numbers of bootstrap rounds
for the construction of an ensemble signature for prostate. We used the CLA
aggregation method and eliminated 20% of the features at each iteration
of RFE. The baseline is the original RFE on the full training sets without
bootstrap.

with regard to the number of bootstrap samples used to construct the
ensemble. As the number of bootstraps used increases, so does the
stability of the ensemble. The default value of 40 bootstrap rounds
is suitable since increasing it to 60 rounds only marginally increases
the stability while requiring a 50% increase of the computational
effort. On the other hand, the number of bootstraps does not seem
to have an effect on the classification performance. Results for the
other data sets can be found as supplementary material (figures 3
and 4).

3.2.2 Sensitivity with regard to the number of features to eliminate
The number of features to eliminate does not have an effect on
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Fig. 6. Stability with regard to a varying number of features to eliminate
during RFE. Results represent the CLA aggregation and constructed using
40 bootstrap samples.
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Fig. 7. Classification performance with regard to a varying number of
features to eliminate during RFE. Results represent the CLA aggregation
method and were constructed using 40 bootstrap samples.

the ensemble methods, neither regarding stability nor classification
performance (figures 6 and 7). For the baseline model on the
other hand, ranking the features in one step, i.e. removing
100%, yields the best results, both in terms of stability and
classification performance. While the effect is only marginal
regarding classification performance, the effect has a clear impact on
the stability: a single SVM classifier used as a feature ranker largely
outperforms the RFE variants that eliminate 20% or 50% of the
features. Ensemble methods nevertheless show better performance
both in terms of stability and classification, as compared to a single
SVM run.
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4 DISCUSSION
The present study discusses the robustness of biomarker
identification with a concrete focus on microarray experiments on
four cancer diagnosis data sets. We stress the importance of the
marker stability with respect to sample variation. Such a stability
is desirable both for the reproducibility and the easiness of the
biological validation of the extracted signature. Our underlying
hypothesis is that small changes in the data sampling should not
yield dramatic changes in the set of finally selected markers.
Stability alone is however not a good quality criterion since it is
straightforward to increase stability by always considering some
fixed set of markers. The resulting predictive model would however
likely be poor at classifying new samples. Our first contribution is
an experimental methodology to assess the stability of biomarker
lists combined with the predictive performance of classification
models built from them. Such an experimental protocol repetitively
considers some samples both to select markers and to estimate
classifiers from independent samples used to estimate classification
performance. In particular it avoids a common optimistic bias
of the selection process (Ambroise and McLachlan, 2002). Our
protocol also relies on the area under the ROC curve (AUC) and
the Kuncheva stability index (KI). AUC is a more convenient metric
than classification accuracy to evaluate the predictive performance
on data sets with unbalanced class proportions, a common situation
for microarray experiments. KI measures to which extent several
signatures, typically extracted from different sampling of the data,
share features in common while including a correction of such a
common selection purely by chance.

Our second contribution is a set of ensemble feature selection
methods improving biomarker stability and classification per-
formance. We used RFE as a baseline method because it
already offered state-of-the-art classification performance and it is
intrinsically multivariate, that is measuring the joined relevance of
sets of markers. When decreasing the number of selected features,
the stability of RFE tends to degrade while ensemble methods offer
significantly better stability. Stability and classification performance
are particularly improved for signature sizes as small as 0.5%
of the initial feature set. This is particularly convenient since it
corresponds to sizes of practical interest (a few tens of genes), for
instance, for the design of a diagnosis model.

The present work proposes ensemble methods to improve
biomarker stability. Since this is an important issue, it would be
interesting to develop additional alternatives to further increase
stability. Recent results show that incorporation of prior knownledge
in the biomarker selection process (Helleputte and Dupont, 2009b)
or model estimation across several related datasets (Helleputte and
Dupont, 2009a) are worth investigating along these lines.
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