

Inference of pathways from metabolic networks by subgraph extraction

Karoline Faust*, Pierre Dupont+, Jérôme Callut+, Jacques van Helden*

*Laboratoire de Bioinformatique des Génomes et Réseaux (formerly SCMBB), ULB http://www.scmbb.ulb.ac.be

+UCL Machine Learning Group http://www.ucl.ac.be/mlg/

I. Motivation - Link genes assumed to be functionally related

trpB

microarray data

conditions

other data sets yielding gene groups assumed to be functionally related (same operon, coregulation, ...)

enzyme-coding set pathway(s) of genes

In which metabolic pathway(s) participate the enzymes coded by genes assumed to be functionally related?

I. Motivation - Pathway mapping

KEGG pathway mapping

Pathway Search Result

 eco00400 Phenylalanine, tyrosine and tryptophan biosynthesis
b0388 aroL; shikimate kinase II [EC:2.7.1.71] [SP:AROL ECOLI]
b0754 aroG; 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase, phenylalanine repressible) [EC:2.5.1.54] [SP:AROG_ECOLI]
b1261 trpB; tryptophan synthase, beta protein [EC:4.2.1.20] [SP:TRPB_ECOLI]
b1262 trpC; fused indole-3-glycerolphosphate synthetase/N-(5-phosphoribosyl)anthranilate isomerase [EC:5.3.1.24 4.1.1.48] [SP:TRPC_ECOLI]
b2601 aroF; 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase), tyrosine-repressible [EC:2.5.1.54] [SP:AROF_ECOLI]
b4054 tyrB; tyrosine aminotransferase, tyrosine repressible [EC:2.6.1.57] [SP:TYRB_ECOLI]
 eco02020 Two-component system - General
b1261 trpB; tryptophan synthase, beta protein [EC:4.2.1.20] [SP:TRPB_ECOLI]
b1262 trpC; fused indole-3-glycerolphosphate synthetase/N-(5-phosphoribosyl)anthranilate isomerase [EC:5.3.1.24 4.1.1.48] [SP:TRPC_ECOLI]
eco00271 Methionine metabolism
b4054 tyrB; tyrosine aminotransferase, tyrosine repressible [EC:2.6.1.57] [SP:TYRB_ECOLI]
eco00350 Tyrosine metabolism
b4054 tyrB; tyrosine aminotransferase, tyrosine repressible [EC:2.6.1.57] [SP:TYRB_ECOLI]
eco00360 Phenylalanine metabolism
b4054 tyrB; tyrosine aminotransferase, tyrosine repressible [EC:2.6.1.57] [SP:TYRB_ECOLI]
 eco00401 Novobiocin biosynthesis
b4054 tyrB; tyrosine aminotransferase, tyrosine repressible [EC:2.6.1.57] [SP:TYRB_ECOLI]
eco00950 Alkaloid biosynthesis I
b4054 tyrB; tyrosine aminotransferase, tyrosine repressible [EC:2.6.1.57] [SP:TYRB ECOLI]

M. Kanehisa, S. Goto, S. Kawashima and A. Nakaya. (2002). "The KEGG databases at GenomeNet", <u>Nucleic Acids Research</u> 30: 42-46.

I. Motivation - Result of pathway mapping

I. Motivation - Enzymes involved in known example pathway

superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis

C. Krieger et al. (2004). "MetaCyc: a multiorganism database of metabolic pathways and enzymes." Nucleic Acids Research 32: D438-D442.

I. Motivation - Pathway mapping limitations

Why is pathway mapping not sufficient?

- pre-defined pathway set may be incomplete
- mapping does not deal well with genes that map to several pre-defined pathways
- mapping does not allow variations or combinations of pathways

I. Motivation - Metabolic networks

metabolic graph constructed from MetaCyc

given a set of enzyme-coding genes, find meaningful metabolic pathways connecting them

given a set of enzyme-coding genes, find meaningful metabolic pathways connecting them

given a set of enzyme-coding genes, find meaningful metabolic pathways connecting them

given a set of enzyme-coding genes, find meaningful metabolic pathways connecting them

Approach

 infer pathway given two seed nodes only using path finding (k shortest paths) algorithm

- problem: hub nodes (highly connected compounds such as ATP, H₂O etc.) favor biochemically irrelevant pathways

D. Croes, F. Couche, S. Wodak and J.van Helden (2006). "Inferring Meaningful Pathways in Weighted Metabolic Networks." <u>J. Mol. Biol.</u> 356: 222-236.
D. Croes, F. Couche, S. Wodak and J. van Helden (2005). "Metabolic PathFinding: inferring relevant pathways in biochemical networks." <u>Nucleic Acids Research</u> 33: W326-W330.

Approach

 infer pathway given two seed nodes only using path finding (k shortest paths) algorithm

- problem: hub nodes (highly connected compounds such as ATP, H₂O etc.) favor biochemically irrelevant pathways

unweighted graph (pathway

traverses highly connected compound)

D. Croes, F. Couche, S. Wodak and J.van Helden (2006). "Inferring Meaningful Pathways in Weighted Metabolic Networks." <u>J. Mol. Biol.</u> 356: 222-236.
D. Croes, F. Couche, S. Wodak and J. van Helden (2005). "Metabolic PathFinding: inferring relevant pathways in biochemical networks." <u>Nucleic Acids Research</u> 33: W326-W330.

Approach

- infer pathway given two seed nodes only using path finding (k shortest paths) algorithm
- problem: hub nodes (highly connected compounds such as ATP, H₂O etc.) favor biochemically irrelevant pathways
- solution: weighted graph penalizing hubs
- weighted graph gives better results than either unweighted or filtered graph (hubs removed)

D. Croes, F. Couche, S. Wodak and J.van Helden (2006). "Inferring Meaningful Pathways in Weighted Metabolic Networks." <u>J. Mol. Biol.</u> 356: 222-236.
D. Croes, F. Couche, S. Wodak and J. van Helden (2005). "Metabolic PathFinding: inferring relevant pathways in biochemical networks." <u>Nucleic Acids Research</u> 33: W326-W330.

unweighted graph (pathway

traverses highly connected compound)

Approach

- infer pathway given two seed nodes only using path finding (k shortest paths) algorithm
- problem: hub nodes (highly connected compounds such as ATP, H₂O etc.) favor biochemically irrelevant pathways
- solution: weighted graph penalizing hubs
- weighted graph gives better results than either unweighted or filtered graph (hubs removed)

D. Croes, F. Couche, S. Wodak and J.van Helden (2006). "Inferring Meaningful Pathways in Weighted Metabolic Networks." <u>J. Mol. Biol.</u> 356: 222-236.
D. Croes, F. Couche, S. Wodak and J. van Helden (2005). "Metabolic PathFinding: inferring relevant pathways in biochemical networks." Nucleic Acids Research 33: W326-W330.

unweighted graph (pathway

traverses highly connected compound)

3. Methods - Definition of accuracy

reference: superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis

3. Methods - Multiple-end metabolic pathway inference

Pairwise k shortest paths

- extend two-end path finding to multiple seeds pathway inference by calling k shortest paths algorithm (REA) repetitively

V.M. Jimenez and A. Marzal (1999). "Computing the K Shortest Paths: a New Algorithm and an Experimental Comparison." Proc. 3rd Int. Worksh. Algorithm Engineering, Springer Verlag

3. Methods - Multiple-end metabolic pathway inference

Pairwise k shortest paths

 extract subgraph: unify lightest paths (of first rank) in the order of their weight until all seed nodes are connected

3. Methods - Pairwise k shortest paths in weighted MetaCyc graph

reference: superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis

3. Methods - Pairwise k shortest paths in weighted MetaCyc graph

reference: superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis

six seed reactions

kWalks algorithm

 idea: some edges and nodes in a graph are more relevant than others to connect given seed nodes

P. Dupont, J. Callut, G. Dooms, J.-N. Monette and Y. Deville (2006-2007). "Relevant subgraph extraction from random walks in a graph." Research Report UCL/FSA/INGI RR 2006-07, November 2006.

output: list of
 edge and node
 relevances

extract subgraph:
 add edges and their
 adjacent nodes in the
 order of their
 relevance to the seed
 nodes until seed
 nodes are connected

3. Methods - kWalks in unweighted MetaCyc graph

reference: superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis

six seed reactions

4. Evaluation of kWalks

Reference pathways

- 71 pathways taken from the Saccharomyces cerevisiae pathways annotated in MetaCyc

- minimal pathway size: 5 nodes
- average node number: 13
- 34 branched and 17 cyclic pathways

Metabolic graph

- MetaCyc (all reactions and compounds)
- 4,891 compound nodes and 5,358 reaction nodes

Evaluation procedure

- for each reference pathway, do inference with terminal reactions of the reference pathway as seed nodes

- repeat inference by adding one additional reaction at each step to the seed reaction set

Saccharomyces cerevisiae, taken from http://www.bath.ac.uk/bio-sci/wheals2.htm

4. Evaluation of kWalks - Geometric accuracy heat map for unweighted graph

4. Evaluation of kWalks - Sensitivity and PPV heat map for unweighted graph

number of reactions to be inferred

4. Evaluation of kWalks - Parameter optimization

4. Evaluation of kWalks - Geometric accuracy heat map without and with iteration

4. Evaluation of kWalks - Parameter optimization

4. Evaluation of kWalks - Accuracy heat map without and with pairwise k shortest paths

4. Evaluation of kWalks - Summary

- kWalks is much faster (order of seconds) than pair-wise k shortest paths (order of minutes)

- iterating kWalks or combining it with pair-wise k shortest paths reduces number of false positives

- in contrast to pair-wise k shortest paths, kWalks avoids hub nodes in unweighted graphs

- kWalks performs slightly better in directed than in undirected MetaCyc graph

5. Conclusion

- kWalks and pairwise k shortest paths complementary:
 - kWalks: high sensitivity, quick

- pairwise k shortest paths: high positive predictive value for a high computational cost

- combination of both: promising approach for pathway inference in metabolic graphs

6. Next Steps

- test Steiner tree algorithms in combination with kWalks
- improve pathway inference by considering main/side compound annotation (work in progress)
- test approach on microarray data
- make pathway inference available as Web Service

Acknowledgement

Jacques van Helden (supervisor) Didier Croes BiGRe team

IBMM

Bruno André Patrice Godard

amaze 🙀

Fabian Couche Christian Lemer Hassan Anerhour Frédéric Fays Olivier Hubaut Simon De Keyzer UCL

Pierre Dupont Jérôme Callut Yves Deville Pierre Schaus Jean-Noël Monette

The PhD grant of Karoline Faust is funded by the Actions de Recherche Concertées de la Communaute Française de Belgique (ARC grant number 04/09-307). The INGI-SCMBB collaboration is funded by the Région Wallonne de Belgique (projects aMAZE and TransMaze).

Appendix I - Graph representation of metabolic data

Why bipartite?

to avoid a compound or a reaction to be represented in the metabolic graph multiple times

R′ reaction RI is represented compound A is represented by

several edges

Why directed?

to avoid paths going from educt to educt (or from product to product) of the same reaction

Why weighted?

to avoid highly connected compounds

J. van Helden, L. Wernisch, D. Gilbert, S. Wodak, "Graph-based analysis of metabolic networks", Ernst Schering Research Foundation Workshop, Springer-Verlag 38 (2002), 245-274.

graphs with only one node set:

Appendix II - Graph representation of metabolic data - directionality

- two ways to treat reaction directionality:
 - represent the reaction direction as annotated in the source database
 - consider that all the reactions can occur in both directions
- free energy ΔG depends on temperature T as well as on the product and educt concentration ratio and the standard free energy ΔG°

- these parameters are known for only a few reactions - directed metabolic graph therefore contains direct and reverse direction for each reaction enzymes don't alter the equilibrium of educt and product concentrations, instead they speed up attainment of equilibria:

image source: <u>http://www.biology.buffalo.edu/courses/bio401/</u> <u>KiongHo/Lecture32.pdf</u>

Appendix III - MetaCyc graph

Parsing

- from MetaCyc (Release 11.0) owl file (MetaCyc: collection of well annotated organisms in BioCyc)
- restriction to small molecule compounds and reactions having as educts/products small molecules (graph represents small molecule metabolism)

Processing

- removal of orphan nodes
- removal of reactions having the same compound as educt and product

Properties

- 4,891 compound nodes and 5,358 reaction nodes
- 43,938 arcs
- 52 strongly connected components

Appendix IV - Reference pathways

Parsing

- 171 pathways obtained from BioCyc (Release 11.0) S. cerevisiae owl file
- side/main compound annotation obtained from *S. cerevisiae* pathway.dat file

Processing

- removal of pathways with node identifiers absent from the largest strongly connected component of the MetaCyc graph
- removal of pathways with less than five nodes (inference would be trivial)
- after processing, 71 pathways left

Appendix V - Weighting schemes

Node weighting schemes

compound node: degree or unit weight (I)

reaction node: unit weight (I)

Arc weight computation pair-wise k shortest paths

 weight of arc a: mean of weight of head node n_h and weight of tail node n_t

 $w(a) = w(n_h) + w(n_t)/2$

Arc weight computation kWalks

weight of arc a: inverse mean of weight of head node n_h and weight of tail node
n_t:

 $w(a) = 2/(w(n_h)+w(n_t))$

Inflation of arc weight by inflation factor z:

w(a)^z

Appendix VI - Metabolic path finding evaluation

- Validation of metabolic path finding with KEGG/LIGAND graph and metabolic pathways annotated in aMAZE database

Shortest path				
Graph	Average sensitivity	Average PPV	Average accuracy	
Raw	31.4%	25.4%	28.4%	
Filtered	68.0%	63.0%	65.5%	
Weighted	88.5%	83.4%	85.9%	

-Validation of metabolic path finding with EcoCyc graph and metabolic pathways annotated in EcoCyc

Shortest path				
Graph	Average sensitivity	Average PPV	Average accuracy	
Raw	29.6%	31.0%	29.3%	
Filtered	63.3%	68.8%	66.6%	
Weighted	80.7%	85.3%	83.0%	

D. Croes, F. Couche, S. Wodak and J.van Helden (2006). "Inferring Meaningful Pathways in Weighted Metabolic Networks." J. Mol. Biol. 356: 222-236.

D. Croes, F. Couche, S. Wodak and J. van Helden (2005). "Metabolic PathFinding: inferring relevant pathways in biochemical networks." <u>Nucleic Acids Research</u> 33: W326-W330.

C. Lemer, H. Anerhour, J.M. Maniraja, O. Sand, J. Richelle and S. Wodak (2004). "The aMAZE database goes public." ECCB.

Appendix VII - Evaluation pairwise k shortest paths in weighted MetaCyc graph

Appendix VIII - Gene to reaction mapping

Appendix IX - Treatment of reaction groups

kWalks

- random walks start in any node of group A and end in any node of group B

Pairwise k shortest paths

- multiple to multiple end path finding by introducing pseudo start and end nodes

Appendix X - Main/side compounds

Basic idea

- main/side compound annotation present in KEGG/LIGAND in form of sub-reactions (RPairs)
- favor sub-reactions that connect main compounds

Kotera, M., Hattori, M., Oh, M.-A., Yamamoto, R., Komeno, T., Yabuzaki, J., Tonomura, K., Goto, S., and Kanehisa, M. (2004). "RPAIR: a reactant-pair database representing chemical changes in enzymatic reactions" <u>Genome Informatics</u> 15.