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Abstract

The expression by tumor cells of proteins with aberrant structure, expression or distribution accounts for the development
of a humoral immune response. Autoantibodies (aAb) directed against tumor-associated antigens (TAA) may thus be
particularly relevant for early detection of cancer. Serological proteome analysis (SERPA) aims to identify such circulating
aAb through the immunoblotting of 2D-separated tumor cell proteins with cancer patient serum and the consecutive MS
identification of proteins in reactive spots. This method has the advantage to use post-translationally modified proteins as a
source of potential TAA. Here, we applied this strategy by using colorectal tumor cells pre-exposed to hypoxia in order to
promote the expression of a pattern of TAA more likely to represent in vivo conditions. We used two human HCT116 and
HT29 colorectal cancer cell lines exposed for 48 hours to 1% O2. Spots positive after immunoblotting of 2D-separated
lysates of hypoxic cells with the sera of tumor-bearing mice, were collected and analysed by MS for protein identification.
Among the hypoxia-specific immunogenic proteins, we identified a phosphorylated form of eukaryotic translation
elongation factor 2 (phospho-Thr56 eEF2). We confirmed the increased phosphorylation of this protein in hypoxic colorectal
tumor cells as well as in mouse tumors. Using a specific immunoassay, we could detect the presence of corresponding anti-
phospho-Thr56 eEF2 aAb in the serum of tumor-bearing mice (vs healthy mice). We further documented that the detection
of these aAb preceded the detection of a palpable tumor mass in mice and validated the presence of anti-phospho-Thr56
eEF2 aAb in the serum of patients with adenomatous polyps and colorectal carcinoma. In conclusion, this study validates a
phosphorylated form of eEF2 as a new TAA and more generally, provides evidence that integrating hypoxia upstream of
SERPA offers a more relevant repertoire of TAA able to unmask the presence of circulating aAb.
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Introduction

The contribution of the tumor microenvironment to cancer

progression is nowadays well recognized [1]. Hypoxia is one of

these microenvironmental parameters which account for pheno-

typic changes in tumors [2–4]. Low oxygen concentration in

tumors arises from an imbalance between the supply and the

consumption of oxygen mainly due to the immaturity of the tumor

vasculature and the rapid cancer cell proliferation, respectively [5].

In response to tumor hypoxia, tumor cells will slow down their

protein synthesis machinery while at the same time, induction of

transcription factors such as HIF (hypoxia-inducible factor) will

promote specific gene expression programs [6,7]. Hypoxic tumor

cells will thus present a proteomic profile distinct of normoxic

tumor cells, with the preferential expression of proteins required to

support adaptive mechanisms including those leading to angio-

genesis and glycolytic switch [8–10]. Interestingly, hypoxia also

plays a role in carcinogenesis as a consequence of early tumor cell

proliferation on epithelial surfaces which are separated from the

underlying blood supply by an intact basement membrane [11].

Also, the link between inflammation and cancer is proposed to

integrate the hypoxic environment due to the increased metab-

olism and cell turnover while microvascular network is not (yet)

adapted [12]. Interestingly, in colorectal carcinogenesis, the

adenoma-carcinoma sequence was reported to be associated with

induction of HIF-1a in premalignant lesions [13] as well as with
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dysplasia [14]; HIF-2a was also reported to promote progression

from adenoma to carcinoma [15].

Although hypoxia is recognized as a hallmark of tumors

accounting for changes in the tumor cell phenotype, it has been so

far largely underestimated as a source of modulation of the pattern

of antigens prone to give rise to an immunogenic response.

Tumor-associated antigens (TAA) are described as proteins

released by tumor cells or peptides exposed at the surface of

tumor cells or antigen-presenting cells by MHC class I and II

molecules, respectively [16–19]. Mutation, truncation, misfolding,

over-expression and ectopic expression of proteins in tumor cells

are proposed to account for the immunogenicity of these TAA

[20–22]. Interestingly, autoantibodies (aAb) directed against these

modified proteins represent potential biomarkers for early

detection of cancer or even prognosis [23–26]. The specificity

and stability of antibodies together with a relative ease of detection

represent key advantages in comparison with other circulating

blood components [19]. The SERPA (SERological Proteome

Analysis) technique exploits the separation of protein lysates

derived from tumor cells onto two-dimensional gels and the

consecutive immunoblotting using sera collected from cancer

patients [25,27,28].

Here, for the reasons exposed above, we chose to integrate

hypoxia as an environmental parameter in the SERPA workflow

by pre-incubating colorectal cancer cells in 1% O2, in order to

unmask TAA absent or undetectable in lysates of normoxic tumor

cells. We identified different tumor- and hypoxia-specific antigens

including the phosphorylated Thr56 form of the eukaryotic

elongation factor 2 (eEF2). A dedicated immunoassay was

developed and enabled us to validate phospho-eEF2 as a bona

fide hypoxia-induced TAA and corresponding aAb as potential

cancer biomarkers in mice and humans.

Methods

Ethics Statement
All the experiments involving mice and tumor cells received the

approval of the Comité d’Ethique Facultaire of the Université catholique de

Louvain (UCL) (approval ID 2012/UCL/MD005); mouse studies

were carried out according to national animal care regulations.

All patients were hospitalized at the Universitair Ziekenhuis

Brussel (Belgium) and gave written informed consent agreeing with

the policy of the hospital. This includes anonymous use of residual

body material for scientific research purpose in strict accordance

with the Declaration of Helsinki and the Article 20.2 of the belgian

Law (19-12-2008) relating to the Procurement and Use of Human

Bodily Materials for Human Medical Applications and for

Scientific Research. This article of law states that consent to

research use of human biological materials is considered to be

given if the donor did not communicate an objection to such use.

Practically, all patients undergoing colonoscopy undergo a blood

analysis for evaluating their hemogram and coagulation; this

procedure is mandatory to allow endoscopic resection in case

polyps are found. None of the authors was involved in the

collections of samples: residual blood samples were collected by a

nurse and de-identified by a data manager before shipment to the

lab for the strict purpose of the current study.

Cells
Human colorectal carcinoma HCT 116 and HT29 cell lines

were purchased from the American Type Culture Collection

(ATCC), stored according to the supplier’s instructions and used

within 6 months after resuscitation of frozen aliquots. Both cell

lines were routinely cultured in McCoy 5A medium (Invitrogen,

Paisley, UK) supplemented with 10% fetal bovine serum and

antibiotics. Cells were maintained at 37uC in normoxic (21% O2,

5% CO2) conditions exposed to hypoxia (1% O2, 5% CO2) in a

Invivo2 500 hypoxic chamber for 48 h (Ruskinn, Belgium).

Mice
Male 7-week-old male NMRI mice (nu/nu) (Elevage Janvier, Le

Genest Saint-Isle, France) were subcutaneously injected with 2.106

HCT116 or HT29 cells; tumor diameters were weekly tracked

with an electronic caliper. Sera were collected for serological

assays through retro-orbital puncture at day 0 and every week

until the tumor diameter reaches 8 mm. At the end of a set of

experiments, mice were sacrificed, blood was collected by intra-

cardiac route, serum was isolated following centrifugation at room

temperature and tumors were cryopreserved.

Patients
Sera were collected from patients undergoing colonoscopy for

digestive complaints or for screening. Six subjects had normal

colonoscopy and were used as controls, fourteen patients had

adenomatous polyps and nine had carcinoma; the mean ages of

these three categories of patients were 7164, 6763 and 7163

years, respectively. Blood was collected on neutral-type tubes and

after centrifugation, serum was aliquoted and stored at 280uC.

2-Dimensional Electrophoresis Analysis and SERPA
For the extraction of proteins, normoxic or hypoxic cells were

washed with 20 mM sodium phosphate-buffered saline (PBS) and

scraped with DIGE labelling (DLA) lysis buffer (7 M urea, 2 M

thiourea, 4% CHAPS and 30 mM Tris, pH 8.5). Supernatant was

then recovered after centrifugation for 10 minutes at 10000 rpm

and 4uC and concentration was determined by Bradford protein

assay.

For SERPA experiments, 25 mg of protein extract was

minimally labelled with 200 pmol of cyanine dye Cy5 (Amersham

GE Healthcare) for 30 minutes in the dark on ice, according to the

manufacturer’s protocol. Labelling reaction was stopped by

incubating the mixture with 10 mM lysine (Sigma Aldrich) for

10 minutes. Non labelled proteins were added to reach a total of

250 mg of proteins and diluted in an appropriate loading buffer

(4% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfo-

nate (CHAPS), 7 M urea, 2 M thiourea, 30 mM Tris, 30 mM

dithiothreitol (DTT), 1% IPG buffer 3–11 [GE Healthcare]).

Samples were loaded onto rehydrated first dimension strip

(Immobiline DryStrip, pH 3–11 NL, 18 cm, GE Healthcare).

The samples were separated on 2 dimensional gel, using isoelectric

focusing in the first dimension (300 V for 3 hours, gradient steps of

1000 V for 8 hours, 8000 V for 3 hours, and 8000 V for 45

minutes at 20uC with a maximum current settings of 50 mA per

strip) and SDS polyarcrylamide gel (10% acrylamide) electropho-

resis (SDS-PAGE) in the second dimension. The proteins were

finally transferred onto a low-fluorescence PVDF membrane.

Membranes were incubated for 2 h in 5% non-fat dry milk-

containing Tris buffer saline with 1% of Tween (TTBS) blocking

buffer and then exposed overnight at room temperature to either

control or tumor-bearing mice serum in 1% non-fat dry milk-

containing TTBS (dilution 1/100). For each experiment, a pool of

sera collected from 6 different mice was used to ensure the

robustness of the screening method. Immunodetection was

performed using HRP-conjugated anti-mouse IgG secondary

antibodies and ECL Plus reagent (GE Healthcare). Membranes

were scanned at the Cy5 wavelength on a Typhoon FLA9500

Imager (GE Healthcare) for the detection of proteins and at the

Cy2 wavelength for the detection of antibodies, exploiting the

Phospho-eEF2 as a Hypoxia-Induced Tumor Antigen
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HRP-catalysed production of a fluorescent intermediate emitting

at 503 nm from the Acridan substrate contained in the ECL Plus

reagent. For validation of SERPA experiments, membranes were

incubated with commercial antibody against eEF2 (Abcam,

Cambridge, UK) and HRP-conjugated secondary antibodies (1/

5000, Jackson Immunoresearch, Sufolk, UK).

In Gel Enzymatic Digestion and Mass Spectrometry (MS)
Identification
For sample recovery, unlabelled proteins were separated by 2D

electrophoresis. The 2D gels were fluorescently-stained (Krypton

protein stain, Pierce, Thermo Scientific) after fixation in a 50%

water, 40% ethanol and 10% acetic acid solution, 1 h at room

temperature. The proteins of interest were automatically picked

from the gels using an Ettan Spot Picker (GE Healthcare). After

rinsing, the 2D gel spots were dehydrated in acetonitrile at 37uC.
Digestion was performed overnight at 37uC with trypsin (12.5 ng/

ml) in 100 mM ammonium bicarbonate. The extraction step was

performed with formic acid 5% for 15 min at 37uC. Supernatants
were then used for the mass spectrometry identification of proteins

with a nano-LC-ESI-MS/MS maxis 4G UHR-TOF (Bruker).

Proteins of interest were identified thanks to Mascot software

(Matrix Science, www.matrixscience.com). Then the NCBI

nonredundant protein database was searched with mammals as

taxonomy. Only significant hits, as defined by the Mascot

probability analysis (p,0.001), were accepted and Protein scores

.63 were considered statistically significant.

Immunoblotting and Immunohistochemistry
Immunobloting and immunostaining were performed with

antibodies against eEF2 (1/1000, Abcam), or phospho-Thr56-

eEF2 (1/1000, Abcam). Gel loading was normalized with actin

antibody (Sigma-Aldrich). Revelation was done with an anti-rabbit

IgG antibody coupled with horseradish peroxidase (Jackson

ImmunoResearch) and ECL Plus (GE). For immunochemistry,

5 mm sections of frozen xenografted HCT116 tumors were

mounted on slides for immunostaining. Protein phosphatase

(Protein Phosphatase, lambda, Calbiochem) was used according

to the manufacturer’s protocol to validate the specificity of

phosphorylated immunostaining. After treatment with phospha-

tase, tumor sections were probed with anti-eEF2 (1/50) or anti-

Thr56 phosphorylated eEF2 (1/50) antibodies and were immu-

nostained with anti-rabbit Alexa 488 (Invitrogen).

eEF2 Immunoassay
Amounts of circulating antibodies directed against phosphory-

lated Thr56 eEF2 were determined in a dedicated immunoassay.

96-well plates (Reacti-Bind, Thermo Scientific) were coated

overnight at room temperature with 10 mg/ml of a 12 amino

acid phosphorylated peptide of eEF2. The phosphopeptide

sequence was RAGETRFTDTRK, corresponding to amino acids

50 to 61 of the eEF2 protein, with a phosphorylation on Thr56

(Eurogentec). Coating and blocking steps were carried out using

ELISA coating buffer and ELISA ultrablock (Abd Serotec)

according to the manufacturer’s instructions. Diluted sera (1/100

for mice and 1/200 for humans) were incubated overnight at 4uC.
After washing, specific hybridization was measured with a

peroxidase-conjugated anti-mouse IgG antibody (dilution 1/10

000, Jackson ImmunoResearch) and addition of 3,39,5,59-tetra-

methylbenzidine (TMB, Calbiochem). Plates were read at 450 nm

in a VictorX4 microplate reader.

Statistics
Results are expressed as means 6 s.e.m. Student’s t test and

ANOVA tests were used where appropriate. *P,0.05, **P,0.01

or ***P,0.001 was considered statistically significant in the

different experiments. For clinical data, sub-populations of patients

were automatically detected by running the K-means clustering

algorithm [29]; pairwise comparisons between distinct profiles

within each condition were assessed according to a t-test including

Benjamini-Hochberg FDR correction for multiplicity of the test

[30].

Results

SERPA Identification of eEF2 aAb in the Serum of Tumor-
bearing Mice
To mimic the tumor microenvironment, the human colorectal

HCT116 and HT29 cells were exposed to hypoxia (1% O2) for 48

hours, a time interval required for the expression of the hypoxia-

inducible gene program at the protein level and for reaching a new

equilibrium rate of tumor cell proliferation. Cells maintained

under normoxic conditions (21% O2) were used as controls. We

then applied the SERPA technology to identify hypoxia-specific

tumor antigens (Figure 1A). HCT116 and HT29 lysates were first

separated on gel by 2-dimensional electrophoresis and transferred

onto membranes. Pooled sera from control or tumor-bearing mice

(6 sera per condition) were then used to reveal spots corresponding

to immunogenic proteins. Differential analysis was performed by

comparing 4 different conditions: lysates from normoxic and

hypoxic cells probed with sera from control and tumor-bearing

mice (Figure 1B). This analysis allowed us to discard two types of

spots: (i) those corresponding to proteins recognized by antibodies

from control mouse sera and (ii) those corresponding to proteins

recognized by antibodies from tumor-bearing mice but failing to

be expressed under hypoxia. Remaining spots of interest were then

excised from preparative gels, digested by trypsin and analyzed by

MS (Figures 2 and 3). By combining both HCT116 and HT29 cell

lines, we found 17 proteins with satisfying Mascot scores (p,0.001)

which were recognized by antibodies from tumor-bearing mice, 4

hypoxia-specific proteins and 13 corresponding to proteins

expressed both under hypoxic and normoxic conditions (see lower

panels in Figures 2 and 3). For the rest of this study, we decided to

focus on the hypoxia-specific antigen strictly reactive with the

serum of tumor-bearing mice and identified by MS with the

strongest Mascot score, namely eEF2 or eukaryotic elongation

factor 2.

First, to validate the nature of the eEF2 protein present in the

2D gels, we probed the membrane with a commercially available

anti-eEF2 antibody and found that the immunoblot signal

matched the localization of the spot identified by the SERPA

analysis (Figure 4A). Moreover, this experiment showed the

distribution of the protein at different isoelectric points (Figure 4A

and 4B, top panel). In the SERPA experiment however, one spot

(the third one according to the pI value range) was immunogenic

(Figure 4B, middle panel), strongly suggesting that a post-

translational modification could confer the immunogenicity.

Phosphorylation of Thr56 eEF2 after Hypoxia in Human
Colorectal Cancer Cells
Since the phosphorylation of eEF2 is known to occur in

response to hypoxia (leading to eEF2 inactivation and the arrest of

protein translation), we examined the extent of eEF2 phosphor-

ylation on Thr56 previously described as the first and main residue

modified by a phosphate group within the eEF2 sequence [31].

Re-probing the 2D membrane used for SERPA confirmed that the

Phospho-eEF2 as a Hypoxia-Induced Tumor Antigen
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spot recognized by the serum of tumor-bearing mice was also

positively stained by a commercial anti-phospho-Thr56 eEF2

antibody (Figure 4B, lower panel). We also confirmed in

conventional Western blotting experiments that eEF2 phosphor-

ylation on Thr56 was significantly increased in hypoxic HCT116

cells (p,0.01) and that a similar trend was observed in HT29 cells

(Figures 5A and 5B). Also, the injection of HCT116 cells into mice

led to the development of a tumor with a robust staining of

phospho-Thr56 eEF2 confirming the occurrence of this post-

translational modification in vivo (Figure 5C, top panel). The

treatment of tumor sections with phosphatase lambda completely

abrogated the staining obtained with a commercial anti-phospho-

eEF2 antibody (Figure 5C, bottom panel).

Validation of Phospho-Thr56 eEF2 as a Tumor-associated
Antigen and of the Corresponding aAb as Biomarker of
Mouse Tumor Growth
To further explore the immunogenicity of the phospho-Thr56

eEF2, we developed an assay to probe the presence of aAb reactive

against a phosphopeptide of 12 amino acids flanking Thr56,

corresponding to amino acids 50 to 61 (Figures 6A). We validated

the linearity of this immunoassay using the same commercial anti-

phospho-Thr56 eEF2 antibody as described above (Figure 6B). In

a first set of experiments, we used a pool of 6 sera of mice bearing

large tumors (i.e., 28 days post-implantation) and found a 10-fold

higher signal than when using control sera (Figure 6C). In a second

set of experiments, we performed a time course study to determine

the changes in phospho-Thr56 eEF2 signal according to the

development of HCT116 tumors. Sera were collected by retro-

orbital puncture in mice at day 0 and after 7, 14 and 21 days

following the injection of HCT116 tumor cells; tumor growth was

measured in parallel with an electronic caliper (Figure 6D). As

shown in Figure 6E, the phospho-Thr56 eEF2 signal was already

significantly increased at day 7 (p,0.05 vs. day 0) while at this

time, the tumor was not yet detectable (Fig. 6D). At days 14 and

21, the extent of phospho-Thr56 eEF2 signal further increased in

parallel to the growth of HCT116 tumors (Figures 6D and 6E).

Anti-phospho Thr56 eEF2 Autoantibodies Identifiy Sub-
populations of Patients with Colon Adenoma and
Carcinoma
We finally examined the potential of the detection of anti-

phospho-eEF2 antibodies to discriminate control subjects and

patients with either adenomatous polyps or colorectal cacinoma.

Because of the identity of sequences between mouse and human

eEF2 in the residues flanking Thr56 (see Figure 6A), we used the

same immunoassay for patients as the one described above for

tumor-bearing mice. We found that patients diagnosed with

adenomatous polyps and carcinoma showed an increase in the

phospho-Thr56 eEF2 aAb titer (P = 0,0015) when compared with

patients identified as negative following colonoscopy (Figure 6F).

Moreover, when using the K-means clustering algorithm (29), two

sub-populations of patients could be identified among the

adenomatous polyps (P,0.001) and carcinoma groups (P,0.01)

(see red symbols in Figure 6F).

Discussion

The two major findings of this study are (i) that hypoxia

accounts for the modification of the immunoproteome as

evidenced by the detection of circulating aAb directed against

TAA undetectable in tumor cells cultured under normoxic

conditions, and (ii) that the hypoxia-mediated stimulation of

eEF2 phosphorylation accounts for the development of an early

aAb response to colorectal cancer development.

aAb are nowadays recognized as potential cancer biomarkers

and SERPA was developed to detect them from serum specimens

through the blotting of 2DE-separated tumor cell lysates. The

SERPA technology, in contrast to SEREX and phage display,

enables the detection of proteins that have undergone post-

translational modifications. However, the proteome in lysates

isolated from tumor cells cultured in a conventional incubator

under normoxia is far from representing the proteome of tumor

cells in their in vivo microenvironment. In particular, hypoxia is a

hallmark of many cancers resulting from disequilibrium between

O2 consumption and O2 availability in poorly vascularized

tumors. The impact of hypoxia on the tumor cell transcriptome

Figure 1. Hypoxia integration in the SERPA strategy. A.
Workflow of the SERPA process including 2DE-gel separation of lysates
from either hypoxic or normoxic tumor cells, membrane transfer,
immunoblotting with the serum from either control or tumor-bearing
mice, and detection of spots of interest. B. Typical immunoblotting
patterns resulting from the incubation of 2D-resolved lysates of HCT116
cells exposed to normoxia or hypoxia, with the indicated mouse serum.
In the bottom panels, proteins of the lysates are labelled with Cy dye
(red) and fixed antibodies are detected with an anti-mouse secondary
antibody (green spot); arrow indicates the presence of a protein
exclusively detected in the lysates of hypoxic tumor cells by antibodies
from the serum of tumor-bearing mice.
doi:10.1371/journal.pone.0076508.g001
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Figure 2. MS/MS-identification of proteins detected by SERPA from colorectal cancer cells exposed to hypoxia. Mapping of spots of
interest resulting from the comparison described in Fig.1 and list of identified proteins (p,0.001) obtained using lysates of HCT116 colorectal cancer
cells.
doi:10.1371/journal.pone.0076508.g002
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and proteome is double: while the global translational machinery

is slowed down to spare energy, specific gene programs regulated

by key transcription factors such as the HIF family, are induced to

allow tumor cell adaptation [6]. Importantly, in epithelial cancers

such as the colorectal cancer, hypoxia is also proposed to occur

early during carcinogenesis. Mutant cells are indeed initially

separated from the underlying blood vessels by the still intact

basement membrane: this leads to the development of premalig-

nant lesions in avascular regions and heading towards the

opposite, less-constrained regions [11].

In the current study, we therefore used two analytical filters to

select potential TAA for further validation. First, we excluded

spots identified on 2D membranes after immunoblotting with

serum collected from control mice. Second, we did not consider

Figure 3. MS/MS-identification of proteins detected by SERPA from colorectal cancer cells exposed to hypoxia. Mapping of spots of
interest resulting from the comparison described in Fig.1 and list of identified proteins (p,0.001) obtained using lysates of HT29 colorectal cancer
cells.
doi:10.1371/journal.pone.0076508.g003

Phospho-eEF2 as a Hypoxia-Induced Tumor Antigen
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Figure 4. Validation of phospho-eEF2 protein as the target of autoantibodies in mice bearing colorectal HCT116 tumors. A.
Representative immunoblotting of 2D-separated lysates of hypoxic HCT116 cells with a commercial antibody against eEF2. Proteins of the lysates are
labelled with Cy dye (red) and secondary antibody is conjugated to horseradish peroxidase (green spots). Positive signal is obtained for several spots
of the same molecular weight but differing by their pI value. B. Comparison of the eEF2 spots detected with a commercial antibody against total
eEF2 (top), the serum from tumor-bearing mice (middle) and a commercial antibody against phospho-Thr56 eEF2 (bottom). Spot 4 (rightmost spot)
corresponds to the unphosphorylated form of eEF2 while the other spots correspond to multi-phosphorylated forms of the protein; spot 3 (second
spot from the right) corresponds to the preferential monophosphorylated form of eEF2 (on Thr56).
doi:10.1371/journal.pone.0076508.g004

Figure 5. Validation of hypoxia-induced phosphorylations of eEF2 in colorectal cancer cells. A. Representative eEF2 and phospho-Thr56
eEF2 immunoblotting of HCT116 and HT29 cultured for 48 hours under hypoxia (Hx) or maintained in normoxia (Nx). B. Normalized expression of
phospho-Thr56 eEF2 in normoxic vs hypoxic HCT116 and HT29 cells; n = 3, **p,0.01 C. Representative phospho-Thr56 eEF2 immunostaining of
sections of HCT116 tumors in the absence (top) or the presence (bottom) of phosphatase lambda; note the complete disappearance of the
phosphorylated form of eEF2 upon treatment with the phosphatase.
doi:10.1371/journal.pone.0076508.g005

Phospho-eEF2 as a Hypoxia-Induced Tumor Antigen
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for picking the proteins detected by the serum of tumor-bearing

mice but only expressed in normoxic tumor cells. This strategy

allowed to reduce the number of false-positive results and to favor

the detection of specific TAA as encountered in in vivo conditions.

We used two different colorectal cancer cell lines (P53-wild-type

HCT116 and P53-mutant HT29) to further increase the diversity

of the proteome, and in particular of the immunoproteome. This

strategy led to the identification of a total of 17 putative TAA, 13

expressed under both hypoxia and normoxia and 4 being

exclusively expressed under hypoxia (see figures 2 and 3). Among

Figure 6. Changes in the titer of anti-phospho-eEF2 aAb as a marker of early tumor progression in mice and humans. A. Human and
mouse amino acid sequences of eEF2 in the region of Thr56. The 12 residues corresponding to the synthetic peptide (phosphorylated on Thr56) used
in our immunoassay are indicated (red frame); note the perfect identity between mouse and human sequences. B. Detection of commercial anti-
phospho-Thr56 eEF2-antibodies using our immunoassay; dashed lines show the 95% confidence band of the linear regression. C. Detection of anti-
phospho-Thr56 eEF2 aAb in the serum of control or HCT116 tumor-bearing mice (n = 3). ***P,0.001. D. Time course of HCT116 tumor growth as
determined by measurements of tumor diameters (n = 7 per group). E. Detection of anti-phospho-Thr56 eEF2 aAb at the indicated time of HCT116
tumor progression. *P,0.05, **P,0.01, ***P,0.001 (n = 6–7 per group). Note that at day 7 post-implantation, tumors are not detectable (see panel D)
but a positive signal is detected in the immunoassay. F. Graph represents the detection of anti-phospho-Thr56 eEF2 aAb in the serum of control
subjects (n = 6) and patients with adenomatous polyps (n = 14) or carcinoma (n = 9). *P,0.05, **P,0.01. Of note, K-means clustering identified two
subpopulations of patients (see black and red symbols) among individuals diagnosed with adenomatous polyps (P,0.001) and carcinoma (P,0.01);
the same partition was observed in 100 independent runs by varying the random initialization of K-means algorithm.
doi:10.1371/journal.pone.0076508.g006

Phospho-eEF2 as a Hypoxia-Induced Tumor Antigen
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the latter, we focused on the eukaryotic translation elongation

factor 2 (eEF2), an essential factor for ribosomal mRNA

translation. Hypoxia is known to promote eEF2 inactivation to

block the high energy-consuming protein synthesis process in

order to spare energy [9]. Inactivation of eEF2 results from its

phosphorylation on Thr56 by the eukaryotic elongation factor 2

kinase (eEF2K) through a variety of mechanisms involving

mTOR, AMPK and PHD2 [32–34]. We actually identified this

phosphorylated form of eEF2 as the immunogenic protein.

Although several phosphorylation sites are reported for eEF2 as

evidenced by the four spots with distinct pI detected by a total

eEF2 antibody, the location of the positive spot in SERPA pointed

phospho-Thr56 eEF2 as the seroreactive entity. The second

position from the right is indeed compatible with the preferred

phosphorylation site previously reported to be Thr56 in a kinetic

study on the regulation of eEF2 [31]. We then confirmed by using

an immunoassay with a modified peptide phosphorylated on the

Thr56 residue, that this region accounted for the immunogenicity

of eEF2 as detected in our SERPA study. Using this assay, we

found that anti-phospho-Thr56 eEF2 aAb were detectable in the

mouse serum before tumors could be palpable. Also, we found that

these aAb could be detected in humans with adenomatous polyps

and colorectal cancers. Interestingly, in these two groups, patients

could be statistically clustered in two subpopulations. In patients

with adenomatous polyps, the K-means clustering of individuals

with a high seric titer of anti-Thr56 eEF2 antibody could be

related to a higher potential of cancer progression. Of note, in

carcinoma patients, a distinct reactivity of aAb according to the

time-to-diagnosis was recently proposed to relate to the formation

of immune complexes with circulating TAA, thereby leading to

plasma depletion of free aAb [35]. Our results therefore warrant

further evaluation of anti-phospho-Thr56 eEF2 aAb as a potential

diagnostic and possibly prognostic biomarker of colorectal cancer

using large cohorts of patients at different stages of the disease.

This objective is particularly attractive considering the data

obtained in patients with adenomatous polyps since today, the

determination of their potential of evolution towards carcinoma

requires repetitive colonoscopies with endoscopic resection for

histological analysis. Blood screening for the presence of biomark-

ers such as anti-phospho-Thr56 eEF2 aAb could contribute to the

stratification of patients in risk groups for tailored colorectal cancer

prevention programs.

This study also provides the demonstration that although

performed in nude mice exhibiting a limited humoral immune

response, this experimental setup remains an accessible method-

ology to obtain candidates biomarkers for further validation with

human serum samples. Importantly, however, the specificity of

phospho-Thr56 eEF2 aAb as cancer biomarker will have to be

addressed. Indeed, hypoxia is involved in other pathological

situations than cancer, including diabetes, atherosclerosis and

chronic obstructive pulmonary disease. Also, circulating aAbs

directed against eEF2 kinase were reported in patients with

systemic lupus erythematosus [36] and such response involving

eEF2 kinase and possibly eEF2 itself could therefore represent a

more general response against stress-related and/or starvation-

related conditions.

In conclusion, this study provides evidence that mimicking the

in vivo microenvironment may unmask the presence of autoanti-

bodies directed against proteins normally not present in the

proteome of tumor cells cultured under normoxia. Furthermore,

the identification of phospho-eEF2 as an immunogenic entity

giving rise to the production of autoantibodies in patients with

adenomatous polyps and colorectal cancers indicates that valid

post-translational modifications may also be recapitulated with this

strategy. This strategy opens new perspectives for the use of

SERPA and other proteomics-based strategies to identify aAb as

bona fide markers of carcinogenesis and early tumor progression.
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