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Abstract—

This paper proposes a novel approach to select features
that are jointly predictive of survival times and classification
within subgroups. Both tasks are common but generally tackled
independently in clinical data analysis. Here we propose an
embedded feature selection to select common markers, i.e. genes,
for both tasks seen as a multi-objective optimization. The Coxlogit
model relies on a Cox proportional hazard model and a logistic
regression that are constrained to share the same weights. Such
model is further regularized through an elastic net penalty to
enforce a common sparse support and to prevent overfitting.
The model is estimated through a coordinate ascent algorithm
maximizing a regularized log-likelihood.

This Coxlogit approach is validated on synthetic and real
breast cancer data. Those experiments illustrate that the proposed
approach offers similar predictive performances than a Cox
model for survival times or a logistic regression for classification.
Yet the proposed approach is shown to outperform those standard
techniques at selecting discriminant features that are informative
for both tasks simultaneously.

I. INTRODUCTION

An important objective in cancer research aims at develop-
ing guidelines to determine a personalized treatment strategy.
A specific cancer is sometimes thought as a single disease,
but increasing evidence suggests that even within the same
typology of cancer (e.g. breast, colon,...) there are multiple
subgroups that respond to different kinds of treatment [1].
These subgroups are more or less aggressive and they have
variable long-term survival rates [2], [3]. Hence, in order to
choose the right treatment for each population, one needs
to understand the links between patient subgroups and the
survival times, that is, the times at which specific events such
as metastasis, relapse or death, occur. One typical approach to-
wards this objective would find markers (e.g. genes) that could
explain both the subgroup and the survival time observed. The
list of these markers provides information about the biological
processes and pathways that are involved [4], [5].

In general this task is not trivial as the cancer is a complex
decease and distinct genes may be relevant for the survival time

estimation [6], [7] or the classification in subgroups [8]. When
the two problems are tackled independently, Cox proportional
hazard models or logistic regression are typically used to
model survival times, on one hand, and to classify samples,
on the other [11]–[13].

When the two problems are faced jointly the traditional
approach consists of a two step procedure [10]. Firstly, a
subset of markers are identified according to their ability to
differentiate between the subgroups of patients. Secondly, a
model using those markers as input features is estimated to
predict survival times. The features selected by such a two
step procedure could however be inconsistent between both
tasks. Indeed markers that are good predictors of the patient
subgroups need not be good estimators for the survival times.

In this work we propose an original feature selection
method that is able to detect markers relevant for fitting sur-
vival time and simultaneouly classifying samples in subgroups.

Section II briefly revisits the Cox proportional hazard
model, logistic regression and the elastic-net regularization to
perform an embedded feature selection. Section II-D specifi-
cally presents the Coxlogit model seen as a mixture of Cox
and logistic regression. This novel model promotes the features
selected both in subgroup classification and survival time
prediction.

Practical experiments on synthetic and real breast cancer
datasets are reported in Section III. They show that the
Coxlogit approach offers similar predictive performances than
a Cox model for survival times or a logistic regression for
classification while it selects features jointly discriminant for
both tasks.

II. METHODS

One considers a typical survival analysis framework in ad-
dition to a class label denoting a specific subgroup. Each sam-
ple i ∈ {1, . . . , n} is characterized by a 4-tuple (ti, δi, yi, xi)
where ti is the time of an event (such as metastasis or
relapse) whenever δi equals 1 and the censoring time whenever
δi equals 0. Furthermore yi denotes a binary class label,
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respectively −1 and 1 for the two subgroups. The vector xi
includes p covariates for the sample i, typically corresponding
to a specific patient.

A. Cox proportional hazard model

The Cox model assumes the hazard hi(t) and hj(t) of
any pair of samples (i, j) to be proportional [14]. The hazard
function hi(t) is a time depending function that gives the
probability of a patient i to have the event (death, relapse,
etc) at time t knowing that he has not yet experienced the
event just before time t.

With this Cox hypothesis of proportionality, the hazard of
a patient can be rewritten as the product of a baseline hazard
h0(t) and a positive function of the covariates :

hi(t) = h0(t) exp (β
>xi) (1)

The partial likelihood of the Cox model can be written as :

L(β) =
n∏

i=1

[
exp (β>xi)∑

j∈R(ti)
exp (β>xj)

]δi
(2)

where R(ti) = {j|tj ≥ ti} is the set of patients still at risk
just before time ti. A Breslow approximation is used in the
partial likelihood for the ties (patients with the same time of
event).

B. Logistic regression

The logistic regression is a very common generalized linear
model for classification. The logistic model predicts from the
vector xi associated to patient i, the probability of this patient
to be in a specific subgroup/class.

P (yi = 1|xi) =
exp(β>xi)

1 + exp(β>xi)
(3)

P (yi = −1|xi) =
1

1 + exp(β>xi)
(4)

= 1− P (yi = 1|xi) (5)

One typically looks for the parameters β to maximize
the model likelihood L(β) while assuming the samples to be
independent.

L(β) =
n∏

i=1

1

1 + exp(−yi(β>xi))
(6)

C. Embedded feature selection

In this context, a popular way to perform feature selec-
tion is through an embedded method. Those methods use
sparse regularization techniques such as the LASSO [15], [16].
Alternatively, a mixture of an l1 (LASSO) and l2 (ridge)
penalties, referred to as the elastic-net regularization [17], is
often considered. This regularization has been successfully
applied to several biomedical problems with p � n and
correlated features. It can be used with any generalized linear
model such as the logistic regression for classification or a
Cox proportional hazard model for survival prediction. Hence
the general form of the optimization problem to fit the model
parameters is given by

β̂ = argmax
β

[
2

n
l(β)− λPα(β)

]
(7)

where l(β) is the log-likelihood of the Cox or the logistic
regression (respectively lcox(β) and llogit(β)), and Pα(β) is
the elastic-net penalty:

Pα(β) =

(
α

p∑

k=1

|βk|+ (1− α)1
2

p∑

k=1

β2
k

)
(8)

α ∈ [0 − 1] is a meta-parameter of the regularization, which
reduces to the LASSO (respectively to ridge regression) when-
ever α = 1 (respectively α = 0).

D. The Coxlogit mixed model

The Cox proportional hazard regression and logistic re-
gression are standard models for their respective tasks: either
fitting survival times or classifying samples. Here we make
use of both types of supervision, i.e. the time to event (ti, δi)
and the class label yi, to fit both models constrained to share
the same set of parameters β. As both optimization problems
have a similar form and can be efficiently solved by the same
algorithm, one can maximize both likelihoods jointly. The log-
likelihood of this model is a mixture of a Cox and a logistic
model sharing the same sparse parameter vector β:

l(β) = (1− γ) lcox(β) + γ llogi(β) (9)

The meta-parameter γ ∈ [0−1] controls the contribution of
either log-likelihoods in the model, with γ = 0 (respectively
γ = 1) corresponding to a pure Cox model (respectively a
pure logistic regression).

In all cases, the same vector β is combined with the
covariates xi of a new sample to define a risk score β>xi.
This score can be either directly used in survival analysis or
included in equation (3) to define a posterior class probability.

The mixed log-likelihood can be optimized under an
elastic-net regularization using the same optimization frame-
work as for equation (7):



β̂ = argmax
β

[
2

n

(
(1− γ) lcox(β) + γ llogi(β)

)
− λPα(β)

]

where Pα(β) is the regularization term (Equation 8).

In this paper, a coordinate ascent algorithm is used to solve
the optimization problem for both the logistic and Cox model
as presented in [18], [19]. This efficient algorithm computes
the regularization path. It starts with the trivial optimal solution
given by a high λ and follows the optimum when λ is
decreased. Applied to feature selection, the algorithm follows
the regularization path and stops when the model contains a
desired number of features.

III. EXPERIMENTS

In order to validate the proposed Coxlogit model in pre-
diction and feature selection tasks, we perform experiments on
synthetic and real datasets. The performances in classification
and survival are assessed according to the classification accu-
racy and the concordance index, respectively. The concordance
index (C-index) measures to which extent the risk groups are
concordant with the time to event, that is, whether the patients
in the high risk group actually experience the event before the
patients in the low risk group [20].

The first experiments reported on a synthetic data set
(section III-A) illustrate that the Coxlogit model is able to
select features that are jointly informative for survival and
subgroup classification. Those results are confirmed on real
breast cancer prognosis studies (section III-C). In general, the
Coxlogit approach offers similar classification results than a
logistic regression and survival prediction results similar to a
standard Cox model but Coxlogit is better at selecting genes
predictive for both tasks.

A. Synthetic data

The synthetic data set is designed to have both supervisions
in terms of survival times and subgroup classification. The data
set is designed with four groups of features. The first 3 groups
of k features are predictive of respectively

• both the survival and the class label.

• the survival only.

• the class label only.

while the p − 3k remaining features are purely random and
supposed to represent noise.

One would like to assess to which extent the Coxlogit
approach is able to select features from the first group, as
compared to a regularized Cox or logistic model alone. The
data matrix X ∈ Rn×p is drawn from a N (0, 1) distribution
to represent covariates that have been centered and normalized
to unit variance, a common practice in our context.

The class assignments and hazards are generated from dis-
tinct linear combinations of the features. The weights of those
predictors β ∈ R3k are drawn from a uniform distribution over

[−1, 0.5] ∪ [0.5, 1]. Class labels y ∈ {−1, 1}n are generated
from the first and third groups in the following way:

βclass = ( β1 . . . βk 0 . . . 0 β2k+1 . . . β3k 0 . . . 0 )

y = sign (Xβ>class)

The survival data (ti, δi) are generated from two weibull
distributions, for the time to event and the censoring re-
spectively. The weibull distribution for the time to event is
parametrized such that the hazard hi(t) depends on the features
from the first and second groups :

βsurv = ( β1 . . . βk βk+1 . . . β2k 0 . . . 0 0 . . . 0 )

hi(t) ∝ exp(Xβ>surv)

The two classes, −1 and 1, exhibit a difference in their
survival, but these classes only account for part of the survival
differences between patients, as expected in real data. In
practice, we consider a data set of n = 1000 patients with
k = 10 features in each of the 3 groups for a total of
p = 100 features. 200 samples are used for training and 800
independent samples serve as validation.

B. Results on synthetic data

This section reports the results using the Coxlogit model
on the synthetic data described above, as compared to a
regularized Cox model ((γ = 0) or a logistic regression
(γ = 1). Figure 1 reports the model weights obtained while
varying γ in [0, 1].

For each experiment, the regularization path is followed till
the model contains exactly 10 features. The absolute weight
value assigned to each feature can be easily interpreted as the
relevance of the features estimated by the model. Figure 1
shows a smooth transition between the features selected by
the method while varying the value of γ. The Cox model
only selects features that contains some survival informations
(in green and red). Similarly, the regularized logistic model
only selects features associated to class assignments (in green
and blue), plus one random feature in this particular run. In
contrast, the Coxlogit model (typically for γ = 0.5), tends to
select only those features (in green) that are informative for
both tasks.

Figure 2 reports the absolute weight values while repeating
the above experiment 100 times and averaging those absolute
values over the 100 runs. While the Cox model, respec-
tively the logistic regression, always selects features related
to the survival, respectively the classification in subgroups,
the Coxlogit model clearly favors the selection of common
features. This experiment also shows that no specific random
feature is consistently selected over all runs.

Figures 3 and 4 report the prediction results, respectively
in terms of classification accuracy and C-index, obtained using
the features selected by the Coxlogit model and averaged over
100 runs.

The results presented in Figure 3 show that the best
classification accuracy is obtained for a logistic regression or
a Coxlogit model with γ ≥ 0.75. Logically, a model fitted
to maximize only a regularized Cox log-likelihood (γ = 0)
performs poorly according to this metric.
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Fig. 1. Model weights obtained while varying γ from 0 (Cox model) to 1
(Logistic model). The absolute value of the weights represent the importance
assigned by the model to each feature. Only 10 out of the 100 weights have
a non-zero value as a consequence of the chosen working condition along the
regularization path.

Similarly, as reported in Figure 4, the best C-index is
obtained for a Cox model or a Coxlogit model with γ ≤ 0.5
while a model fitted to maximize only a regularized logistic
log-likelihood (γ = 1) is poor at predicting survival times.

In summary, the Coxlogit model is able to perform com-
parably at both tasks, provided an adequate choice of γ, while
using only a third of the relevant features (those which are
commonly informative for survival prediction and classifica-
tion).

C. Breast cancer experiments

Further tests, reported here on 4 breast cancer datasets,
validate the Coxlogit performances in a real scenario. These
data sets are publicly available from the GEO database
with accession numbers GSE2034, GSE5327, GSE7390 and
GSE2990. In all those studies, distant metastasis serves as
survival end point and gene expression data are measured on
the Affymetrix HGU133A microarray platform. All data sets
were summarized according to the MAS5.0 procedure and
represented in log2 scale. A class independent pre-filtering is
performed to keep only those features with highest variances.

Three histo-pathological markers, the tumor size, the num-
ber of invaded lymph nodes and the grade of the tumor,
commonly predict the outcome for breast cancer patients [22].
In particular, the grade measures how much the tumor cells are
differentiated from the physiological tissue, i.e. normal breast
tissue. Understanding the link between the grade of the tumor
and the probability of survival is an important task studied in
the medical literature [10], [23].

We propose to revisit here this question with the Coxlogit
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Fig. 2. Mean absolute weight values in each group of features (Common,
Survival, Classification, Random) computed while varying γ within [0, 1].
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Fig. 3. Forest plot of the classification accuracy on 100 repeated experiments
with synthetic data sets.

model. Our goal is to predict both the grade of the tumor and
the survival probability of the patients. All the experiments
were performed after pooling the 4 GEO datasets in a single
dataset of 554 patients consisting of 1236 features, i.e. gene
expression values. The two classes, low (≤ 2) and high (>
2) grades, of the binary classification problem approximately
correspond to the same number of patients.

The predictive performances are computed in terms of
accuracy and C-index, respectively for the classification and
the survival prediction. Those performances are reliably esti-
mated through a resampling protocol. The following steps are
repeated 100 times:

• 80% of the patients are selected at random (without
replacement) as training set. The remaining 20% is
used as validation set.

• For each γ ∈ {0, 18 , 14 , 12 , 34 , 78 , 1} :
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Fig. 4. Forest plot with the results in C-index on 100 repeated experiments
with synthetic data sets.

◦ Compute a Coxlogit model on the train.
◦ Predict the class and survival on the test.

Each model has been estimated by following the regular-
ization path such that one selects exactly 10 features. The
statistics recorded at each run of the above protocol are then
aggregated to provide an average classification accuracy and
average C-index for all models.

D. Breast cancer prognosis and classification results

Figures 5 and 6 report the average results over the 100
experiments generated according to the protocol presented in
the section III-C.

Figure 5 shows the accuracy achieved with the Coxlogit
model in the classification task while varying the value γ.
These results confirm those obtained on synthetic data. In
particular, the best classification results are obtained for a
logistic regression or a Coxlogit model with γ ≥ 0.75. Again, a
model fitted to maximize only a regularized Cox log-likelihood
(γ = 0) performs poorly according to this metric.

Figure 6 presents, in terms of C-index, the results of the
survival prediction task. A Cox model or a Coxlogit model
with γ ≤ 0.5 offer the best performances while a model fitted
to maximize only a regularized logistic log-likelihood (γ = 1)
perform slightly worse. The differences are here less striking
than those observed in classification accuracy. Globally, a
Coxlogit model with γ = 0.5 offers a good performance trade-
off for both tasks.

We further study the feature selection characteristics of the
Coxlogit approach and use the 10 genes selected by a Coxlogit
model with γ = 0.5 as reference. Figure 7 reports the size of
the intersection between 10 gene signatures obtained while
varying γ and the reference signature. By design, the overlap
is maximum at the middle of the plot. Clearly, the signature
content diverges quickly as one decreases or increases γ from
its reference 0.5 value. The overlap is minimum at both
extremes with respectively only 3 (γ = 0) or 4 genes (γ = 1)
in common with the chosen reference.

We also consider a set of 7 genes, the so-called CGI
signature, known to be predictive of the tumor grade [10].
Figure 8 reports the average overlap between the genes selected

Cox
0.125
0.25
0.5
0.75
0.875
Logit

ACC
0.61
0.67
0.70
0.72
0.73
0.73
0.74
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Fig. 5. Forest plot: grade classification results on breast cancer samples.
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Fig. 6. Forest plot: survival prediction results (C-index) on breast cancer
samples.

by a Coxlogit model while varying γ in [0; 1] and this refer-
ence signature. Experiments were conducted here over 100
independent runs of the above protocol. The highest overlap is
achieved with a Coxlogit model using γ = .75. Those results
confirm that mixing of class and survival time supervisions
brings informative gene signatures.

IV. CONCLUSION AND PERSPECTIVES

This work describes the Coxlogit method: a novel feature
selection approach towards the combined objective of fitting
survival times and classifying samples in subgroups. This
method relies on a selection embedded into the fitting of a
generalized linear model. The parameters of this model are
estimated so as to maximize a mixture between a logistic and
Cox log-likelihoods including an elastic net regularization.

Experiments reported both on synthetic and breast cancer
data illustrate that the Coxlogit approach is indeed able at iden-
tifying features which are jointly predictive of survival times
and classification within subgroups. As such this approach
outperforms a Cox proportional hazard model or a logistic
regression, each of those models being efficient essentially on
their own task.

Several questions will be addressed in our future work
on this topic. Firstly, an appropriate choice of the mixing
coefficient γ deserves a further study, even though satisfac-
tory results are reported here with a balanced contribution
(γ = 0.5). Secondly, the number of selected features results
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Fig. 8. Average number of genes selected for each model that come from
the GGI signature.

from the user choice when to stop the regularization path
while estimating this model. Such path is in turn controlled
by the meta-parameters of the elastic net penalty. The above
observations call for an appropriate model selection strategy
or, at least, for studying the performances of the Coxlogit
approach across various feature set sizes.

The supervision used at training time assumes that the
samples are labeled into 2 specific subgroups. Generalization
to more than 2 subgroups looks interesting and easy. It would
essentially amount to replace the logistic part of this model by
its multinomial extension using a softmax function. Finally,
the specific subgroups are here assumed to be a priori known
for all samples. Such assumption could be relaxed and unsu-
pervised or semi-supervised learning of those groups could be
considered.
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by the F.R.S. - FNRS - Télévie (Grant number FC 88088).

REFERENCES

[1] R. Rouzier, C. M. Perou, W. F. Symmans, N. Ibrahim, M. Cristofanilli,
K. Anderson, K. R. Hess, J. Stec, M. Ayers, P. Wagner,
P. Morandi, C. Fan, I. Rabiul, J. S. Ross, G. N. Hortobagyi, and
L. Pusztai, “Breast cancer molecular subtypes respond differently
to preoperative chemotherapy.” Clinical cancer research : an
official journal of the American Association for Cancer Research,
vol. 11, no. 16, pp. 5678–85, Aug. 2005. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16115903

[2] L. Marisa, A. de Reyniès, A. Duval, J. Selves, M. P. Gaub,
L. Vescovo, M.-C. Etienne-Grimaldi, R. Schiappa, D. Guenot,
M. Ayadi, S. Kirzin, M. Chazal, J.-F. Fléjou, D. Benchimol,
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