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Abstract. The identification of genetic regulatory pathways whose structure differs across biolog-
ical conditions provides significant insights about organisms and diseases functioning at molecular
level. In this paper, we propose a computationally efficient test to assess from gene expression data
if a given group of genes is differentially regulated between two conditions. The method yields
promising results in terms of precision and recall on real datasets.

1 Introduction

Differential analysis of Gene Regulatory Networks
(GRNs) has been raising a growing interest lately.
There is not yet a standard definition to this prob-
lem, but the high-level shared goal is to assess if
the interactions or associations of genes differ be-
tween two or more biological conditions. This type
of analysis can be performed at the network level,
for a given group of genes (subnetwork) or for a
specific interaction between two genes for instance.

Most of the proposed methods have in common
that they compare networks infered for each con-
dition from gene expression data [1,2]. Hence, they
rely on network inference techniques or association
measures between genes. The comparison is then
based on a differentiation score whose significance
is assessed by a permutation test. The first con-
tribution of this work is to propose an alternative
permutation test that is more computationally ef-
ficient.

The definition of differential network analy-
sis slightly differs between studies. Either because
they operate at different network levels, or be-
cause some studies test a given component for
differentiation, while others try to discover differ-
entiated parts of the network. Gill et al. [1] pro-
poses three statistical tests to assess whether the
modular structures of two networks are different,
whether the connectivity of a group of genes or the
connectivity of a single gene has changed. Liu et
al. [3] describes a procedure to determine if genes
of a pathway are differentially wired between two
conditions. If so, a differential network is build
by testing dysregulation of each interaction in the
pathway using a t-test. The DINA procedure pro-
posed by Gambardella et al. [2] also intends to
assess whether co-regulation among a given set of
genes depends on the condition, but accross multi-
ple networks. Amar et al. [4] presents an algorithm
to extract differential gene clusters. Our work is

closely related to these techniques, especially [1,2].
In this paper, we describe a method to :

(a) test if a given group of genes (a module) is dif-
ferentially regulated between two conditions;

(b) rank modules by observed dysregulation level.

In Section 2, we describe the details of the
method. Section 3 discusses the results of our ex-
periments on two real gene expression datasets.
Finally, Section 4 presents the conclusions of this
work and suggests some future works.

2 Method

The method that we propose is summarized in Fig-
ure 1. It consists of three main steps. Firstly, GRNs
are infered from gene expression data for both
conditions. Subsequently, a differentiation score is
computed by comparing the GRNs. The signifi-
cance of this score is finally estimated through a
permutation test.

2.1 Inference of gene regulatory networks

For each biological condition, a GRN is infered
using the MRNET approach [5]. MRNET infer-
ence consists in performing a sequence of mRMR
gene selection procedures with each gene as output
variable. mRMR algorithm selects iteratively vari-
ables depending on the previously selected vari-
ables (gene expression profiles in our case). At each
iteration, it selects the gene that maximizes an
objective function measuring a trade-off between
the mutual information with the target gene (rele-
vance) and the mean mutual information with the
already selected genes (redundancy).

For the sake of computational efficiency, we
made assumption of data normality. Under this as-
sumption, mutual information can readily be com-
puted as

MIij = −
1

2
ln(1− ρ2ij)
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where ρij is the pearson correlation between genes
i and j.

This step produces two adjacency matrices A1

and A2 representing both GRNs. These matri-
ces are symetric with null diagonal and their en-
tries are in the range [0, 1]. Note that MRNET is
quite an arbitrary choice. Another GRN inference
method could have been chosen.

2.2 Differentiation score

The differentation score, denoted by s∆, represents
the differentiation level observed between GRNs
with respect to a module. A large score s∆ indi-
cates an important differentiation. In mathemati-
cal terms, it is computed as three-argument func-
tion :

s∆ = f∆(A1,A2,M)

where M is the group of genes of interest.

The computation of s∆ can be decomposed
into two steps. The first part is applied separately
to each network and aims to extract statistics that
depend on the topology of the module. The second
part compares these statistics to produce the dif-
ferentiation score.

In the first step, network statistics are com-
puted as s1 = f(A1,M) and s2 = f(A2,M), such
that s1 and s2 are real vectors of same length (RK)
for any instantiation of the scoring function f . The
scores are then combined as

s∆ = f∆(A1,A2,M)

=

K∑

k=1

|s1k − s2k| = ||s1 − s2||1

where ||.||1 denotes the ℓ1 norm.

Instead of this two-stage scheme, we could have
adapted graph kernels to compute the differentia-
tion scores. But, for the sake of computational ef-
ficiency, we chose this simple approach as a first
step.

We now introduce in the rest of the section
different instantiations of the scoring functions f .
Several variants have been explored, but for the
sake of brevity only simple graph statistics based
on node degree will be reported here.

Degree The function fdegree returns the degree
of each node in M. More precisely, let’s define
s = fdegree(A,M). Without loss of generality, we
can reorder genes such that M = {1, 2, . . . ,M}.
We have that s ∈ R

M and

si =
∑

j∈M,i 6=j

Aij , ∀i ∈ M.

Notice that this definition uses only weights of
edges between genes in M. Furthermore, the score
vector s can be normalised as s′ = 1

maxi∈M si
s.

Expression data

Adjacency matrix A1

s1 = f(A1,M)

Adjacency matrix A2

s2 = f(A2,M)

s∆ = f∆(A1,A2,M) = ||s1 − s2||1

Fig. 1 – Method overview : A GRN is infered for
both biological conditions from gene expression
data. Given a module M (grey nodes), network
statistics s1 and s2 are computed from each GRN
and combined to produce the score of differentia-
tion s∆.

Mean degree The function fmean.deg is simply
defined as the mean degree of the module, that is

s = fmean.deg(A,M) =
1

M

M∑

m=1

sdegreem

where sdegree = fdegree(A,M). In this case, the
scoring function returns a scalar.

Degree variance The function fdeg.var com-
putes the degree variance of the module

s = fdeg.var(A,M) =
1

M − 1

M∑

m=1

(sdegreem −sdegree)2

where sdegree = fmean.deg(A,M). As the previous
scoring function, it returns a scalar.

2.3 Permutation test

A permutation test is performed to assess if the dif-
ferentiation score s∆ is significant. The standard
approach consists in permuting the class labels N
times [1,2,3,4]. This requires to reinfer a pair of
GRNs for each permutation. This operation has
a complexity of Ω(p2) where p is the number of
genes and becomes costful for real networks that
involve thousands of genes.

Here, we propose an alternative approach that
is less computationally expensive. The idea is to
sample N random modules Mn (∀n, 1 ≤ n ≤ N)
of size |M| from all the available genes. This al-
ternative test postulates that the probability of
these random modules being differentiated is very
low. Hence, a background distribution of s∆ can
be estimated by computing permutation scores
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Kegg ID Name Size

hsa04010 MAPK signaling pathway 220
hsa04060 Cytokine-cyt. receptor interaction 217
hsa04110 Cell cycle 117
hsa04115 p53 signaling pathway 37
hsa04151 PI3K-Akt signaling pathway 292
hsa04210 Apoptosis 46
hsa05215 Prostate cancer 59

Table 1 – Kegg pathways used as differentiated
modules in prostate cancer compared to healthy
condition.

sn∆ = f∆(A1,A2,Mn) from these random mod-
ules. The test p-value is then defined as p-value =
#{sn∆ ≥ s∆}/N where #{sn∆ ≥ s∆} is the num-
ber of permutation scores greater or equal to the
original differentiation score. These p-values can
used to rank a set of modules according to their
dysregulation level.

3 Experiments

We investigate the performance of our approach on
real datasets and compare it with a baseline ap-
proach. The experiments show promising results
in terms of recall and precision.

3.1 Baseline

In order to validate our approach, we compare it
with the following baseline inspired from gene set
enrichment analysis [6]. Firstly, we select genes
with differentiated expression using a Welch’s
t-test with Benjamini-Hochberg correction. A hy-
pergeometric test is used to test the significance
of the overlap between the selected genes and the
genes of a given module. The modules can then be
ranked by p-value in ascending order.

3.2 Datasets

We tested our approach on two real gene ex-
pression datasets : GSE69191 and GSE131591, re-
trieved from InSilico DB [7]. In order to be able
to measure precision and recall, a set of differen-
tiated modules as well as a set of undifferentiated
modules must be known for each dataset. This in-
formation has been retrieved from Kegg database
of annotated pathways. A Kegg pathway can be
readily converted into a module by considering its
set of genes.

GSE6919 : prostate cancer. This dataset is
composed of gene expression data from normal
and prostate cancer tumor tissues. It consists of
171 samples (18 healthy and 153 cancer) and 8801
genes. For computational reasons, it has been re-
duced to 2000 genes. The set of differentiated mod-
ules was defined from the prostate cancer path-
way and its related pathways reported in Table 1.

And the set of undifferentiated modules was then
formed by selecting randomly 50 other Kegg path-
ways.

GSE13159 : leukemia. This dataset is part
of the MILE Study (Microarray Innovations In
LEukemia) program and encompasses 2096 gene
expression data from different kinds of leukemia.
We restricted the dataset to two conditions :
chronic myeloid leukemia (74 samples) and healthy
(76 samples). Furthermore, the dataset has also
been reduced to 2500 genes. In the same way as
for GSE6919, the set of undifferentiated modules
is formed from random pathways while the set of
differentiated modules is composed of pathways re-
lated to chronic myeloid leukemia.

3.3 Results and discussion

The precision-recall curves for both datasets are
shown in Figure 2 and AUPR measures are re-
ported in Table 2. We can observe from the
GSE6919 curve that the degree scoring function
performs best, followed by the mean-degree statis-
tics. However, turning now our attention to the
GSE13159 dataset, we can see that the baseline
outperforms our approach. It is followed this time
by the degree-variance scoring function. Hence, no
single technique appears superior to others in all
cases.

However, these results seem to underestimate
the actual performances of our method. Indeed,
if we consider for instance the most dysregu-
lated pathways in prostate cancer according to the
fdegree scoring function (as reported in Table 3),
we can see that meaningful results are penalized
by our initial definition of the differentiated mod-
ules. According to multiple studies [8,9], steroid
hormones play a major role in human prostatic
carcinogenesis. Besides, studies have shown associ-
ations between prostate cancer and alpha-linolenic
acid [10]. Eventually, Brockhausen et al. [11] re-
ports links between some kinds of O-glycans and
adenocarcinomas from the prostate. Hence, path-
ways 4, 6 and 7 (in Table 3) are actually relevant
to the disease, but are considered as false positives
by the evaluation protocol.

Besides measuring AUPR performances, we
also checked that the test behaves properly by
testing the uniformity of the empirical distribution
of p-values for undifferentiated modules. This has

Method GSE6919 GSE13159

Baseline 0.20 0.40
Degrees 0.57 0.22
Mean degree 0.40 0.21
Degree variance 0.09 0.30

Table 2 – AUPR measures.

1 Gene Expression Omnibus identifiers.
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Fig. 2 – Precision-Recall curves

been done for the different scoring functions with a
χ2 test. None of these tests has shown enough ev-
idence to reject the null hypothesis of uniformity.
This result and a complementary visual inspection
of the distribution indicate in particular a good
control of type-I error.

4 Conclusions and perspectives

In this paper, we proposed a statistical framework
to test the differential regulation of sets of genes.
The primary contribution is the introduction of
a computationally efficient permutation test. In-
deed, this test does not require to reinfer GRNs
(or recompute association measures for each pair
of genes) for each permutation.

Promising results in terms of precision and
recall has been obtained using very simple scor-
ing functions. Besides testing the approach on ad-
ditional datasets, there are plenty of opportuni-
ties for future works. Hitherto, we only consid-
ered scoring functions that rely on local properties
of GRN topology. One might implement network
statistics that takes long range dependencies into
account. Furthermore, the data and procedure of
evaluation are certainly a point to refine.

Rank Pathway name

1 MAPK signaling pathway
2 Prostate cancer
3 Apoptosis
4 Steroid hormone biosynthesis
5 Cytokine-cyt. receptor interaction
6 Linoleic acid metabolism
7 Other types of O-glycan biosynthesis

Table 3 – Top-ranked pathways for GSE6919
dataset (prostate cancer) using fdegree scoring
function. Pathways labeled as differentiated for the
evaluation are in boldface.
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