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Abstract. Nearest neighbor (NN) classifiers rely on a distance metric ei-
ther a priori fixed or previously estimated through metric learning. When
such metric learning occurs, a natural objective is to minimize the clas-
sification errors of the NN classifier. This learning procedure is however
commonly performed without any regard to the computational efficiency
of the NN classifier at test time. In this work, we propose to formulate
the metric learning problem as a multi-objective trade-off between clas-
sification performance and computational efficiency at test time. This
is illustrated here in the context of person identification. Specifically, a
Mahalanobis metric learning scheme is cast as a convex optimization
problem over a set of positive semi-definite matrices, and solved through
projected gradient descent. Experimental results are presented on semi-
artificial data, representative of a profile-based person identification task
at a large scale (≥ 106 individuals). Our method shows a significant im-
provement of the search efficiency of a NN classifier, compared to stan-
dard soft-margin maximization metrics. In presence of hard time and
space constraints, it leads to a drastic enhancement of the identification
performance.

Keywords: Metric learning · Person identification · Large scale · Nearest
neighbor search · Time efficient metrics

1 Introduction

From its emergence until now, metric learning has focused primarily on improv-
ing the classification performance of machine learning algorithms that use it.
Examples are numerous in the context of nearest neighbor classifiers, for which
the loss functions to be minimized on the training set only contain terms that
aim at reducing the number of classification errors on test data [8,9,10,21,22,23].
One major issue with such nearest neighbor methods is the increasing decision
time with the size of the model, which is essentially the number of stored train-
ing examples. Several approaches have been proposed to reduce this decision
time in various contexts [2,3,5,6,14,19,24]. These techniques require a predefined
metric that may strongly influence their decision speed-up. With a continuously
increasing volume of available data, it becomes critical to reduce this decision
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time even more. We propose to include the test speed-up objective directly into
the learning of an adequate metric. This approach is evaluated here in the con-
text of large scale person identification with exact nearest neighbor methods.
Metrics with a reduced decision time can be learned, but they suffer from a drop
of identification performance. These competing objectives are here balanced to
optimize the identification performance while satisfying time (and space) con-
straints. Our approach to person identification is based on generic features as-
sumed to be representative of an individual profile. In particular, it is not specific
to a computer vision methodology as a person can be represented by an arbi-
trary set of features (e.g. strings, zip code number, age, . . . ) not restricted to
image characteristics. The concept of large scale person identification is further
introduced below, together with nearest neighbor methods and how one usually
restricts their decision time.

Given a large set of noisy examples, representing different individuals, the
goal of person identification is to determine to which known person a new ex-
ample belongs, whenever such person exists. Person identification can be seen
as a particular case of extreme classification [18] where the number of labels is
huge (> 106). In such a context, time and space constraints have to be imposed,
both for the learning and the test decision procedures.

Formally, the input space X defines the domain from which are drawn the
examples representing individuals. The set P ⊂ X includes the examples be-
longing to known individuals. Without loss of generality, we assume here that P
contains exactly one example per individual. The person identification problem
can be tackled with a fixed-radius nearest neighbor (NN) algorithm. Given a
query q ∈ X, a decision threshold θ ∈ IR+ (also called radius), a learned dis-
tance metric D : X × X → IR+ and a (large) set of stored examples P , the
identification algorithm works in two steps. First, all examples nearer than θ to
q: Pθ = {p ∈ P : D(q,p) ≤ θ} are found. Then, the label (a specific individ-
ual) of the nearest example to q inside Pθ is predicted. When Pθ appears to be
empty, the special label unknown is predicted, which means that the test person
(i.e. the query) is not recognized as someone in the known population P . In the
sequel, we say that two examples match when their relative distance is smaller
than the decision threshold θ.

Three types of errors can arise. A false rejection (FR) happens when a known
person is not identified. A false acceptance (FA) occurs when an individual not
belonging to the known population is wrongly identified. Finally, a false classifi-
cation (FC) arises when a known individual is recognized but as somebody else.
The false classification rate can be shown to be bounded by the false acceptance
rate. As a consequence, learned metrics can be evaluated using the following F1

score, based only on the false rejection rate FRR and the false acceptance rate
FAR:

F1 , 2 ∗ (1− FRR) ∗ (1− FAR)

(1− FRR) + (1− FAR)
(1)
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The larger this F1 score the better. A smaller decision threshold θ implies a
higher FRR and a lower FAR, and conversely. The threshold θ∗ maximizing the
F1 score is a natural objective to be found.

The optimal threshold θ∗ and the specific error rates are related to the num-
ber of known individuals n = |P | (also called the population size) as follows. The
FRR is the probability that Pθ becomes empty, Pr(Pθ == ∅), when the query
example q represents a known individual. This probability Pr(Pθ == ∅) can be
approximated1 by Pr(D(p, q) > θ), where p ∈ P is the stored example represent-
ing the same individual as the test example q ∈ X. Consequently, the FRR does
not depend on the population size n. To the contrary, the FAR increases2 with
n. As a result, the optimal threshold θ∗ decreases with the population size n.
Our proposed metric learning method focuses on large scale person identification
systems. The proportion of misclassified pairs of examples (false match/reject)
is thus expected to be particularly low. Otherwise it would become impossible
to identify correctly anyone among a very large population.

The first step of the decision algorithm described above requires to find all
data points that are within a certain threshold θ from the test (or query) point.
Such a range query is typical of NN methods, which generally make use of the
triangular inequality to prune the search space [2,3,6,14,24]. This pruning is itself
dependent on the metric used. Consequently, the time performance of NN meth-
ods could highly depend on the metric. Numerous schemes for nearest neighbor
metric learning have been proposed [8,9,10,21,22,23]. However, they focus on
the classification performance of the classifier rather than its computational ef-
ficiency at test time.

In this paper, a Mahalanobis [13] metric learning method is proposed for
nearest neighbor algorithms balancing between identification performance and
computational efficiency at decision time. We first define d(xi, xk) as the distance
vector of the data points xi and xk. The attribute d(xi, xk)j is equal to the
distance between the attribute j of these two data points, denoted by xi,j and
xk,j . A Mahalanobis metric is of the form

DM (xi, xk) =
√
d(xi, xk)>Md(xi, xk) (2)

and is defined by the matrix M to be learned. A common constraint is to impose
M to be PSD, denoted by M � 0. Our method does not require the input data to
be made of real vectors. Vectors of any data type are allowed as long as distance

1 Formally, Pr(θ == ∅) could differ from Pr(D(p, q) > θ) as a non-empty Pθ might
not include the example of the test individual. This situation would lead to a false
classification, rather than a false rejection. Nevertheless, the chance of this situation
to occur is negligible, as it is proportional to the product of FRR and FAR, which
are both assumed to be (very) low in realistic settings.

2 The probability of a FA increases with the number of known individuals n = |P |, as
a single false match among them is enough for a FA to occur. For sufficiently small
error rates, it can be shown that FAR(n, θ) ≈ 1− (1− PrFM (θ))n ≈ n ∗ PrFM (θ)
with PrFM (θ) the probability of false match with θ as threshold, i.e. the probability
that two random examples from different individuals would match.
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functions between pairwise attributes exist and verify the triangular inequality.
The existence of such functions, coupled with the constraint M � 0, ensures
that DM verifies the triangular inequality.

Our focus is on learning a metric in possibly non-Euclidean metric spaces. A
distance in such a space, for example the Levenshtein distance3 [17], is generally
heavier to compute than Euclidean distances. We will therefore assume that the
time taken by the search for neighbors is dominated by the number of distances
to compute. AESA algorithms [14,15,20] specifically try to minimize the number
of such distance computations through the prior definition of a set B ⊂ X of
prototypes. The distance between every prototype b ∈ B and every stored point
p ∈ P is pre-computed. Given a query q and a decision threshold θ, the distance
between an example p and the query, DM (p, q), needs not be computed if and
only if:

∃b ∈ B : |DM (q,b)−DM (b,p)| > θ. (3)

In such a case, p is said to be pruned or filtered. Different approaches try to prune
jointly subsets of examples by storing them in a tree data structure [2,3,6,14,24].
All these methods rely on the filtering condition described in equation (3).

A time constraint, to be satisfied at test time, imposes a maximal thresh-
old θmax because equation (3) implies that a larger decision threshold θ offers
a weaker pruning. The actual threshold to be used is equal to min(θ∗, θmax),
which is sub-optimal in terms of classification performance when θmax < θ∗. The
maximal threshold, θmax, also decreases with the size n of the population since
the pruning required to meet a given time constraint needs to be stronger. Met-
rics allowing for a better pruning are able to use higher decision thresholds and,
hence, provide a better identification performance when the optimal threshold,
θ∗, cannot be used.

Section 2 presents related works on metric learning. Our method balancing
between identification performance and computational efficiency is proposed in
section 3. Section 4 details the experimental results obtained on semi-artificial
profile-based data.

2 Related works in metric learning

Most nearest neighbor metric learning techniques aim at satisfying different
types of constraints on the training set [4]:

– Must link constraint: S = {(xi, xj) : xi and xj should be similar}.
– Cannot link constraint: D = {(xi, xj) : xi and xj should be dissimilar}.
– Relative constraint: R = {(xi, xj , xk)} : xi should be more similar to xj than

to xk}.

These constraints are typically associated to loss functions to be minimized.
The set S contains pairs of points with the same label (i.e. representing the

3 Evaluating this distance has an O(k ∗ l) time complexity, where k and l are the
respective length of the input strings.
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same individual in our context) and the set D contains pairs of points with
different labels. The set R contains triplets of points, only the first two ones
sharing the same label. Must link constraints simply impose to points having
the same label to be close to each other while cannot link constraints enforce
points with different labels to be far away. MMC [23] maximizes the sum of
distances between points in D while constraining the sum of squared distances
between points in S. ITML [8] minimizes the violation of soft constraints for each
pair of points in S or in D: points in S should be closer than a given distance
value, while points in D should be farther than another specific distance value.

Relative constraints (notably used in [21,22]) enforce points sharing the same
label than a given point x to be closer to x than other points with different labels.
This type of constraints fits well with the classical k-NN decision procedure. In-
deed, they can ensure that, for each training point, impostors are farther away
than points sharing the same label. For instance, LMNN specifies relative con-
straints such that the k-nearest points, to each training point, all share the same
label [22]. NCA is an alternative method that tries to maximize the leave-one-
out accuracy of a stochastic nearest neighbor classifier [10]. In a similar fashion,
MCML tries to collapse each class into a single point, while pushing away, as far
as possible, the points labeled with other classes [9]. The loss functions of these
three methods are such that the cost of having two points with different labels
close to each other depends on the presence or absence of points with the same
label in their neighborhood.

Despite their success in metric learning, the above methods are poorly suited
to person identification precisely because of their use of relative constraints.
Indeed, for person identification, a specific decision threshold θ is typically used
because the decision procedure must include the possibility for an individual to
be rejected. If one considers similar points sharing the same label, without any
impostor in their neighborhood, bringing them close to each other is not enforced
by relative constraints. The net result is that such similar points can stay far
from each other. This situation would increase their probability of rejection
since, to avoid the use of additional meta-parameters, θ is fixed globally for the
whole population. Similarly, points not sharing the same label as a given point
x should be pushed far from it, even if x has nearest neighbors with the correct
label. Indeed, if an unknown individual is represented by an example too close to
x, it could be falsely accepted independently of the neighbors of x. Consequently,
our proposed method only relies on must and cannot link constraints.

In this paper, we focus on exact nearest neighbor search, as opposed to ap-
proximate techniques [7,11]. When using exact fixed-radius NN, an example can
only be pruned if, provably, it cannot be closer to the test example than the
threshold θ. In contrast, approximate NN methods have a non-zero probability
to prune points that should be kept. Approximate methods can offer a consid-
erable reduction of the decision time with only a small drop of identification
performance [25]. For example, Optimized Kernel Hashing OKH [11] uses a set
of prototypes and associates to every data point a hashcode, based on linear
combinations of distance values between the point and the prototypes. At test
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time, points with the nearest hashcodes to the query point hashcode are identi-
fied. Next, only the real distances between them and the query point are actually
computed. An interesting perspective of this work would be to study the possi-
bility to learn a metric that aims at decreasing even further the OKH decision
time.

3 Learning Computationally Efficient Metrics

We detail in this section our proposed method to learn a metric balancing clas-
sification performance and computational efficiency at test time. The sets S
and D contain pairs of points, respectively with the same and different labels,
which specify must and cannot link constraints. The competing objectives in our
appoach are presented below.

– Reduce the number of misclassifications through increasing class separabil-
ity. This is implemented by favoring points in S to be close to each other,
while points in D should be far from each other. More precisely, the distance
probability density function (PDF) of points in S, denoted by fS , and the
PDF of points in D, denoted by fD, have to be separated by a large mar-
gin. Figure 1 represents both densities, with fS in blue (left) and fD in red
(right). The more these respective densities are separated the better.

– Increase the pruning efficiency in order to meet a prescribed time constraint
to process a query. This is achieved by flattening fD, while keeping fS con-
centrated on a small domain. Indeed, the filtering condition for a stored point
p, a query q and a set of prototypes B is ∃b ∈ B : |DM (q,b)−DM (b,p)| > θ.
A sharp fS allows the use of a smaller decision threshold θ, which in turn
improves the filtering. A flatter fD means that the distances between ex-
amples from distinct individuals have a larger variance. In such a case, the
absolute difference |DM (q,b) − DM (b,p)| increases resulting in a stronger
pruning.

Reducing the extent of fS benefits to both objectives, on the training set.
In contrast, getting a larger class separation and a flatter fD are competing
objectives. Let us consider, for instance, the limit scenario in which the distances
between points from the same individuals are 0 everywhere, while the distances
between examples of distinct individuals are all assumed to be equal to some
(arbitrarily large) constant c > 0. Formally, fS(x) = δ(x) and fD(x) = δ(x− c)
where δ is the Dirac function. This scenario would lead to a perfect classification,
for any threshold 0 < θ < c. However, ∀q,b,p : (q,b), (b,p) ∈ D : |DM (q,b) −
DM (b,p)| = |c− c| = 0 < θ. Consequently, pruning would be impossible and no
time constraint could be met when the population gets very large.

Our method can be seen as an extension to the work by Mignon and Jurie
who seek to maximize class separability through soft margin maximization4 [16]:

4 These authors use a squared distance, D2
M (pi, pj), for convenience.
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Fig. 1: Probability density functions for a person identification problem according
to a metric quantifying the distances between individuals. The blue (left) curve
corresponds to distances between examples of the same individual (fS). The
red (right) curve represents the distances between two examples of different
individuals (fD). Both densities slightly overlap in this example.

M∗ = argmin
M�0

[
∑

(pi,pj)∈{S∪D}
max(0, yij(DM (pi,pj)− 1))] (4)

with yij = 1 if the pair of points comes from the same individual ((pi,pj) ∈
S), and yij = −1 otherwise ((pi,pj) ∈ D). These authors rely on a popular
approximation to the loss h(x) = max(0, x) known as the generalized logistic
function lβ(x) = 1

β log(1 + eβx), such that standard gradient descent approaches
can be used. The generalized logistic function tends to the original loss when β, a
sharpness parameter, gets larger: limβ→∞ lβ(x) = h(x). Similarly, when β →∞,
lβ(x−1) ∝ eβ∗(x−1) in the region x < 1. For a large scale person identification to
be effective, the PDFs fS and fD, estimated on the training set, are not expected
to have a large overlapping mass around x = 1. In other words, lβ(x − 1) and
lβ(1 − x) are expected to be in their non-linear regime, for x < 1 and x > 1,
respectively. The minimization problem (4) can thus be approximated by (5), as
long as β is chosen sufficiently large.

M∗ = argmin
M�0

[
1

|S|
∑

(pi,pj)∈S
e−β∗(1−DM (pi,pj)) +

1

|D|
∑

(pi,pj)∈D
e−β(DM (pi,pj)−1)]

(5)
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In the above objective, the distance PDFs fS and fD are separated5 around
1. Distance values close to 1 are penalized more heavily. The magnitude of this
penalty is controlled by the meta-parameter β, which is fixed in order to bal-
ance between poor separation (β → 0) and strong overfitting (β → ∞). More
importantly, the meta-parameter β cannot be tuned to maximize the pruning
efficiency, as it controls jointly the widths of fS and fD.

Our multi-objective of class separability and pruning efficiency, can be reached
through the control of the sharpness of fS and fD, independently of each other.
This can be formalized through the optimization problem (6), in which the orig-
inal β meta-parameter has been replaced by ks and kd, respectively associated
with fS and fD.

M∗ = argmin
M�0

[
1

|S|
∑

(pi,pj)∈S
e−ks∗(1−DM (pi,pj)) +

1

|D|
∑

(pi,pj)∈D
e−kd(DM (pi,pj)−1)]

(6)

In the limit case, when kd → ∞, the only distance value between distinct
individuals that matters is the smallest one. The class separability is then maxi-
mized. While decreasing kd, the remaining mass of fD starts playing an increas-
ing role. Larger distance values are increasingly pushed towards the right, which
causes fD to flatten and improves the pruning efficiency. Doing so, however, the
relative importance of small distance values decreases, which is detrimental to
class separability. A larger ks value favors a sharper fS , which offers a better
class separability and a stronger pruning as well. Yet, this is only true on the
training set and a too large ks would lead to overfitting, in the same fashion as
a too large β would lead to in problem (5).

Unlike problem (6), problem (4) is designed to minimize the number of mis-
classifications for a specific threshold, here θ = 1. This threshold is given a special
status as the loss used in problem (4), max(0, x − 1), changes its behavior at
x = 1 (it becomes linear, like its approximation lβ). Doing so in our context has
no theoretical justification because the used threshold varies with the population
size.

Problem (6) is convex and can be solved through projected gradient descent.
At each gradient step, this iterative procedure projects the current estimate M
to the set of PSD matrices (M � 0) while minimizing the Frobenius norm of
the difference before and after the projection [23]. This projection can be im-
plemented by decomposing the current solution M = XTλX, with λ a diagonal
matrix representing the spectrum of M . The projected solution M ′ is computed
as M ′ = XTλ′X, where the diagonal matrix λ′ contains the respective thresh-
olded eigenvalues: max(λi, 0). This gradient descent algorithm scales linearly
with the number n of training examples.

5 One could use any arbitrary positive cut-off value instead of 1, since what matters
is the separability between fS and fD, not the actual scale of the distance values.
See figure 1 as an illustrative example.
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4 Experiments

Our method has been tested on semi-artificial data. Each individual is repre-
sented by 5 string attributes (first, last and middle names, affiliations), a phone
number, the day, month and year of birth, as well as 6 categorical attributes (sex,
marital status, country, race, work class, education). Actual names and affilia-
tions were extracted from publicly available repositories such as the UCLouvain
repository [1]. The day and month of birth were generated randomly following
a uniform distribution. The categorical attributes and the year of birth were
extracted from the adult dataset of the UCI Machine Learning Repository [12].
These 7 attributes were extracted jointly for each example to maintain their pos-
sible dependence. The original data includes 30,000 individuals represented by
a profile of 15 attributes.6 Random perturbation is applied to obtain noisy ex-
amples from the original data. Such a noise is intended to represent the possible
fluctuations of recording individual profile (e.g. mispelling of names, encoding
errors, . . . ).

A training set with |S| = |D| = 250, 000 is used for learning metrics. A test
set with |S| = |D| = 250, 000 is used for visual representation of the distance
PDFs. However, the error rates are reported on far larger test sizes to reliably
estimate the FAR for large population sizes (> 106). To avoid any bias, the
original 5,000 individuals used to generate the training set are different from
the 25,000 individuals in the test set. Figure 1 actually represents the distance
PDFs, fS and fD, obtained on the test set. In this case, no metric learning was
used but rather the Mahalanobis distance (see equation (2)) with M being fixed
to a scaled identity matrix M = 1

15I (as there are 15 features).

Using a validation set, it was observed that ks = kd ≈ 20 provides the
best separability between the distance PDFs fS and fD while controlling for
possible overfitting. Subsequently, ks is kept fixed (ks = 20) and test results are
reported in figure 2 while varying kd values. Depending on the specific ks, kd
setting considered, the range of values of the distances between examples can
vary. For illustrative purposes, the learned metrics have been arbitrarily scaled
such that the threshold at which their FRR is equal to 0.001 is always θ = 1.5.
Such a scaling does not influence the F1 score as it does not depend on the range
of distance values but rather on the possible overlap between PDFs. Figure 2
illustrates that, when kd decreases, the densities fS and fD get less separated
which results in higher error rates. At the same time, the density fD flattens
which implies a more efficient pruning.

The optimal F1 score is reported in Figure 3a for various metrics learned with
population sizes of up to 2 millions individuals. The lower the better since 1−F ∗1
is actually plotted. This would be the F1 score of these metrics if no time con-

6 30,000 individuals is considered to be enough to simulate a population of millions
of individuals. Indeed, an arbitrary number of examples can be generated through
random perturbation of the original data. This leads to a reliable estimation of the

FRR. Moreover, with 30,000 points, it is possible to form 30,0002

2
= 450M pairs of

points, which is sufficient to estimate the FAR correctly.
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straint were present. As expected, a higher kd gives a better optimal F1 measure.
The optimal thresholds θ∗ for these metrics are depicted in figure 3c (dashed).
A higher kd implies a higher optimal threshold θ∗. Indeed metrics learned with
a higher kd have a lower FAR. One can then afford the use of higher decision
thresholds θ. In presence of a maximal time budget, the optimal identification
performance of these metrics can hartdly be achieved due to the substantially
higher optimal thresholds (θmax < θ∗) and their low pruning efficiency.

The amount of pruning obtained with the learned metrics, for a threshold
θ = 1.5 and up to 500 prototypes can be seen on figure 3b. Clearly, a small kd
is more efficient. This better pruning allows these metrics to use larger maxi-
mal thresholds θmax when a time constraint is involved. Nonetheless, there is
no additional gain when going below kd = 1, even if fD still gets wider. This
can be explained by the fact that unfiltered points are the points that are the
closest to the test point. If the separation between the two curves narrows, the
closest points are closer, and hence may be harder to filter. This is supported
by the fact that a kd < 1 still provides gain for a low number of prototypes.
On figure 3c, the maximal thresholds are displayed for a maximal time budget
of 7,500 distance computations and a maximum of 500 prototypes, compared
to the optimal thresholds (dashed). Metrics with a good separation have higher
optimal thresholds θ∗ but lower maximal ones θmax. For both reasons, the time
constraint becomes limiting a lot sooner.

It is seen on figure 3a that a higher kd offers better identification performance.
However, when adding a maximal time budget, the results are radically different
as depicted on figure 4. The dashed line represents the performance after the
time constraint imposed a threshold lower than the optimal one (θmax < θ∗).
It turns out that kd = 20 is the best choice only for populations up to 100k
individuals. Between 100k and 225k, kd = 10 provides the best results. Then
kd = 5 between 225k and 610k. Finally, kd = 2.5 has the lowest error rates from
610k to 2M. This shows well that the best suited metric depends on the size of
the population and the time constraint involved. 7

7 Technically, it also depends on the number of prototypes used. The difference of θmax
is increased when fewer prototypes are used, which could result from an additional
space constraint.
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kd = 1 kd = 0.5

Fig. 2: Test set results for ks = 20 and different kd values. In blue (left) is plotted
the distance PDF corresponding to the set of similar points S (fS). In red (right)
is the distance PDF of the set of dissimilar points D (fD).
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Fig. 3: Optimal identification F1 score of the metrics learned with different kd
values (the lower the better as 1 − F ∗1 is plotted), and ks = 20 (a). Unfiltered
fraction of examples, for the different metrics, with up to 500 prototypes (θ=1.5)
(b). Maximum (plain) and optimal (dashed) thresholds of these metrics, for a
time constraint of 7,500 distance computations and a maximal number of 500
prototypes(c).
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Fig. 4: Effective F1 score of the metrics given a maximal time budget of 7,500
distance computations, for population sizes up to 2M. The lower the better
as 1 − F eff1 is plotted. The various curves correspond to the same kd values
as depicted in figure 3, and ks = 20. Plain lines refer to settings where θ∗

can be used while satisfying the maximal number of distance computations.
Dashed lines refer to settings where the used threshold has to be smaller than
θ∗ to satisfy the time constraint at the cost of decreasing the identification
performance (θmax < θ∗).

5 Conclusion and perspectives

We address here a person identification task with a fixed-radius nearest neighbor
method. For large sets (typically ≥ 106) of stored individuals, we argue that it is
crucial to learn metrics that lead to a small decision time. The search efficiency of
exact nearest neighbor techniques is dictated by a pruning step that drastically
reduces the number of distances to be computed. Taking this pruning step into



14 V. Hamer, P. Dupont

account, our metric learning approach looks for a trade-off between classification
performance and computational efficiency of a NN classifier at test time. This
is done through the optimization of a Mahalanobis distance metric over a set of
positive semi-definite matrices, and solved by projected gradient descent. The
proposed approach is compared to soft-margin maximization metrics which offer
the best identification performance for small populations. Yet, for larger popu-
lations, for which time and space constraints at decision time play a significant
role, pruning efficient metrics are shown to be best suited and are actually closer
to the optimal ones in terms of identification performance. This is assessed here
on semi-artificial profile-based data, representative of a population of up to two
million individuals.

The metric learning approach introduced here could be used, at least in prin-
ciple, in other settings. For instance, part of our future work concerns Optimized
Kernel Hashing [11], an approximate nearest neighbor technique also relying on
a predefined metric.

Our current algorithm to solve the convex multi-objective metric learning
problem scales relatively poorly in the number of dimensions of the input space
(O(d3), with d the dimensionality of the input space X). This is due to the
projection step of the projected gradient descent used here. Nonetheless, it can
be adapted to handle high dimensional data, following the method proposed by
Mignon and Jurie [16]. Instead of projecting the current solution to the set of
PSD matrices, the search space is restricted to be PSD by design, while mapping
the high dimensional input space into a lower dimensional one. One could also
study the applicability of the proposed method to other identification tasks, such
as person identification through computer vision or face verification.
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