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ABSTRACT

Motivation: Subgraph extraction is a powerful technique to predict
pathways from biological networks and a set of query items (e.g.
genes, proteins, compounds, etc.). It can be applied to a variety of
different data types, such as gene expression, protein levels, operons
or phylogenetic profiles. In this article, we investigate different
approaches to extract relevant pathways from metabolic networks.
Although these approaches have been adapted to metabolic
networks, they are generic enough to be adjusted to other biological
networks as well.
Results: We comparatively evaluated seven sub-network extraction
approaches on 71 known metabolic pathways from Saccharomyces
cerevisiae and a metabolic network obtained from MetaCyc. The best
performing approach is a novel hybrid strategy, which combines a
random walk-based reduction of the graph with a shortest paths-
based algorithm, and which recovers the reference pathways with
an accuracy of ∼77%.
Availability: Most of the presented algorithms are available as part of
the network analysis tool set (NeAT). The kWalks method is released
under the GPL3 license.
Contact: kfaust@ulb.ac.be
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Subgraph extraction can be used to predict a meaningful pathway
given a biological network (e.g. protein–protein interaction or
metabolic network) and a set of query items (e.g. genes, proteins
and compounds) defining seed nodes in the network (van Helden
et al., 2000). This methodology may serve to predict pathways
from a variety of data types, such as clusters of co-expressed genes,
operons, phylogenetic profiles or protein levels.

Zien et al. (2000) inferred pathways from a biological network
weighted according to gene expression levels as measured with
microarrays. They construct a bipartite metabolic network consisting
of compound and reaction nodes and subsequently enumerate all
possible paths between a source (D-glucose) and a target compound
(pyruvate) under certain constraints. The score of each path is
computed on the basis of expression values of the genes catalyzing
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the enzymes involved in this path. This method ranks predicted paths
according to their degree of up- or down-regulation.

Ideker et al. (2002) extended this idea to the extraction of more
complex, non-linear sub-networks in protein–protein and protein–
DNA networks given yeast gene expression data. Sub-networks are
considered active whenever they involve highly expressed genes.
Such sub-networks can be identified by sampling the space of
possible sub-networks with simulated annealing.

Scott et al. (2005) also search for sub-networks in protein–protein
and protein–DNA interaction networks given gene expression data.
To our knowledge, they are the first to apply algorithms solving the
Steiner tree problem (Hwang et al., 1992) on biological networks
in order to connect nodes of interest (i.e. differentially expressed
genes).

Rajagopalan and Agarwal (2005) integrate various data sources
(TransFac, HumanCyc and Ingenuity Pathways Knowledge Base)
into a network of gene–metabolite relationships. Query nodes in this
network are connected by an algorithm based on breadth-first search.
A key contribution of these authors is the systematic evaluation
of their subgraph extraction approach on both simulated data and
known pathways taken from BioCarta.

Noirel et al. (2008) apply sub-network extraction to proteomics
data (i.e. enzyme level ratios, measured by mass spectrometry)
from the cyanobacterium Nostoc. A sub-network is extracted from
a weighted KEGG metabolic network by generating paths around
each up-regulated enzyme node up to a given maximal weight
and subsequently filtering these paths according to the number of
up-regulated enzymes contained in them. The filtered paths are
then merged to form a network whose connected components are
considered as the extracted sub-networks.

Dittrich et al. (2008) identify high-scoring sub-networks in
protein–protein interaction networks with a strategy similar to Scott
et al. (2005), by applying an algorithm that solves the Steiner
tree problem exactly. Interestingly, their method allows to report
sub-optimal solutions with a user-specified distance to previously
listed solutions. The pathway prediction approach is validated on
simulated data.

Antonov and co-workers predict metabolic pathways from KEGG
data and from input genes (Antonov et al., 2008) or input compounds
(Antonov et al., 2009). Query nodes (genes or compounds) separated
by one edge are added to a growing sub-network that may consist
of several components. The component covering most query nodes
is considered as the inferred pathway. The procedure is repeated
for distances of 2, 3,... edges, resulting in a set of distance-specific
predictions. This sub-network extraction procedure is available via
two Web tools specific to metabolic data.
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In previous publications (Croes et al., 2006; Faust et al., 2009;
van Helden et al., 2002), we investigated different ways to apply
two-ends path finding to predict metabolic pathways from a pair
of query reactions or compounds. However, path finding requires
to specify a single start and a single end node. It cannot deal
with branched pathways or with sets of query reactions. A more
challenging question is to predict pathways from multiple seed nodes
(e.g. reactions catalyzed by a cluster of co-expressed genes), by
extracting the sub-network that connects them at best.

In this article, we assess the capability of sub-network extraction
algorithms to predict metabolic pathways given a metabolic network
and a set of seed reactions. We evaluate the performance of four
different algorithms (combined in seven approaches) on the basis
of 71 pathways obtained from MetaCyc. One of these algorithms
(pairwise K-shortest paths) has been developed for this study
and two other algorithms (Takahashi–Matsuyama, kWalks) have
apparently not yet been applied before to sub-network extraction
in biological networks.

The extraction techniques considered here are not specific
to metabolic networks or gene expression clusters. They can
in principle be applied to any biological network (reactions,
protein interactions and signal transduction) and to any dataset
generating specific nodes of interest (e.g. functionally related groups
of genes/enzymes as derived from phylogenetic co-occurrence,
operons, gene fusion events, etc.).

2 METHODS

2.1 Weight policies
Metabolic networks contain hub compounds such as H2O, NADP and
ATP, which are involved in a large number of reactions. A naive graph
traversal algorithm would preferentially cross these compounds, resulting in
biochemically invalid paths that connect for instance D-glucose with pyruvate
in one reaction step via ADP. Various solutions to this problem have been
proposed, among others to filter out pool metabolites (van Helden et al.,
2002), to consider compound structures (Arita, 2000; Blum and Kohlbacher,
2008; Rahman et al., 2004) or to weight compounds according to their degree
(Croes et al., 2005, 2006). We adopted the weighting approach and tested
three different weight policies. The simplest one (‘unit weight’) sets all node
weights to one. The second policy (‘compound degree weight’) penalizes
highly connected compounds by assigning to each compound a weight equal
to its degree, whilst setting to each reaction a weight of one. The third
weight policy (‘inflated compound degree weight’) takes the square of the
node weights defined by the second weight policy. The purpose is to enlarge
weight differences between highly and weakly connected compound nodes.
For most algorithms, the node-weighted network had to be converted to an
edge/arc-weighted network, by taking for each edge/arc the mean of weights
of its two adjacent nodes.

2.2 Metabolic network construction
To predict metabolic pathways, we need to represent metabolic data as a
network (or a graph, to use the mathematical term).

BioCyc (Caspi et al., 2008) is a metabolic database storing both predicted
and experimentally elucidated metabolic information. MetaCyc (Krieger
et al., 2004) belongs to the well-curated tier (Tier 1) of BioCyc and contains
only experimentally validated pathways.

We constructed a bipartite, directed graph from all small molecule
entries and their associated reactions contained in the OWL file of
MetaCyc (Release 11.0). The resulting graph consists of 4 891 compound
nodes and 5 358 reaction nodes. As discussed in Croes et al. (2005),
reactions that are annotated as irreversible can be reversed depending

on physiological conditions (substrate and product concentrations, and
temperature). Consequently, we represent each reaction as a pair of nodes,
for the forward and the reverse directions, respectively. To prevent the paths-
based algorithms from crossing the same reaction twice, forward and reverse
direction are mutually exclusive. After this duplication of reaction nodes,
we obtain a directed network with 15 607 nodes and 43 938 edges, referred
hereafter as the MetaCyc network.

We constructed two variants of the MetaCyc network: the directed one
described above and an undirected network, in which reaction nodes are
not duplicated. However, in both cases the weight matrix is designed to be
symmetric.

2.3 Reference pathways
We obtained a selected set of 71 known Saccharomyces cerevisiae pathways
from MetaCyc (Release 11.0). All pathways in this reference set consist of
at least five nodes and are included in the largest connected component of
the MetaCyc network. On average, the pathways are composed of 13 nodes
and in addition, more than half of them are branched and/or cyclic.

In our previous work on two-end path finding (Croes et al., 2006; Faust
et al., 2009) we had to linearize the reference pathways in order to evaluate
path finding. Since multiple-end pathway prediction is designed to handle
branched pathways, this processing step is no longer necessary.

2.4 Algorithms
2.4.1 Common features of the extraction algorithms All algorithms
extract sub-networks by connecting a set of selected nodes (the seed nodes)
in the input network. The problem of connecting seed nodes in a weighted
network such that the weight of the resulting sub-network is minimized is an
instance of the Steiner tree problem, which is known to be NP-complete
(Karp, 1972). The Takahashi–Matsuyama, the Klein–Ravi and pairwise
K-shortest paths algorithms all call a (K-) shortest paths algorithm to tackle
the Steiner tree problem approximately with different heuristics.

The kWalks approach takes a qualitatively different approach to subgraph
extraction by efficiently computing the set of edges most likely to be used
while randomly walking from a seed node to any other one. The weights in
the network obviously influence the random walks together with the network
topology.

2.4.2 Challenges faced by metabolic pathway inference algorithms The
metabolic pathway inference algorithms face the following challenges:

(1) Be able to cope with weighted networks.

(2) Allow the input graph to be directed. In undirected graphs the paths-
based approaches would not differentiate between reaction products
and substrates, and would thus establish artefactual links from
substrate to substrate, or from product to product. This requirement
is not met by the implementation of Klein–Ravi used for evaluation.

(3) Treat forward and reverse direction of reactions as mutually exclusive.
Without mutual exclusion of forward and reverse reaction direction
nodes, the same reaction may appear twice in a shortest path. The
kWalks method does not distinguish between forward and reverse
reactions because it is not based on the explicit computation of paths.

(4) Be able to process seed node groups instead of seed nodes. The
reaction mechanism(s) of an enzyme is (are) usually described by its
EC number(s). But this annotation is ambiguous, because reactions
with the same EC number may differ by their co-factor or by their
substrate. For instance, homoserine dehydrogenase with EC number
1.1.1.3 converts L-homoserine into L-aspartate 4-semialdehyde. There
are two reactions associated to this EC number (having either NAD+
or NADP+ as a co-factor), but only one of these may actually occur
in the pathway to be inferred. An algorithm handling seed node
groups can treat all reactions of EC number 1.1.1.3 as belonging
to the same group. As soon as one of the group members is
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connected to the sub-network, the seed node group is considered to
be connected as well. To address this last requirement, we applied
the graph transformation suggested by Duin et al. (2004). The idea
is to introduce pseudo nodes, which connect all members of a seed
node group in the input graph. Thus, when we mention seed nodes,
these nodes may be artificial nodes that represent a group of seeds
considered as equivalent, and from which only one has to be included
in the result.

Each algorithm takes as input the graph, the seed nodes and a weight
policy. kWalks requires additional parameters discussed in Section 2.4.6.

We will first discuss the shortest paths-based approaches. Except for
Klein–Ravi, they rely on the Recursive Enumeration Algorithm (REA)
(Jimenez and Marzal, 1999) to compute K-shortest paths. REA enumerates
all paths between a start and an end node in the order of their length. In
a weighted graph, paths are listed in the order of their weight. Note that
according to the definition of a path, a node can occur only once in the path.
The value of K is dynamically set such that all paths of minimal weight are
collected. The paths returned by REA are filtered to avoid paths containing
mutually exclusive nodes.

The computational complexities of all algorithms described below are
expressed in terms of n and m, the number of nodes and edges, respectively,
in the input graph, as well as s, the number of seed nodes.

2.4.3 Klein–Ravi The algorithm by Klein and Ravi (1995) is a heuristic
to solve the node-weighted variant of the Steiner tree problem. First, the
distance between any node pair in the graph is obtained with an all-to-all
shortest paths algorithm such as Dijkstra (1959). A set of trees is considered
where each tree initially consists of a single seed node. At each step of the
algorithm, a node and a subset of the remaining trees are selected such that
the cost of tree merging is minimized. At least two trees have to be merged in
each step. The cost of tree merging is computed as the sum of the weight of the
selected node and the weights of the shortest paths between the selected node
and the selected tree subset. This sum is divided by the number of trees in
the selected subset. The algorithm terminates when all trees are merged. The
same implementation as in Scott et al. (2005) has been used to evaluate this
algorithm. The implementation was kindly provided by Betzler (2005). The
computational complexity of this approach is O(n2 logn+nm +ns3 log s).

2.4.4 Takahashi–Matsuyama The algorithm by Takahashi and
Matsuyama (1980) initializes the sub-network with a node chosen at
random among the s seeds. It then proceeds by identifying in each step the
lightest path(s) between any of the remaining seed nodes and any node in
the sub-network (note that pseudo nodes can be introduced to treat all nodes
in the sub-network as equivalent start nodes and all remaining seed nodes as
equivalent end nodes). The lightest path(s) is merged with the sub-network.
The computational complexity of this approach is O(s(m+Knlog(m/n))).

2.4.5 Pairwise K-shortest paths In the first step, REA is called
successively on each pair of seed nodes. The resulting path sets are stored in
a path matrix, and the minimal weight between each node pair is stored in a
distance matrix. In the second step, the sub-network is constructed from the
path sets, starting with the lightest path set. Step-wise, path sets are merged
with the subgraph by increasing order of their weight. The process stops if
either all seeds belong to one connected component of the sub-network or
all path sets have been merged with the sub-network.

The computational complexity of this approach is O(s2(m+
Knlog(m/n))), because the REA algorithm is called O(s2) times.

2.4.6 kWalks The kWalks method is a generic algorithm (Dupont et al.,
2006) to build a most relevant subgraph connecting seed nodes in a large
graph, in the present case a metabolic network. The subgraph contains the
most relevant edges and the nodes induced by those edges. The relevance
of an edge is measured as the expected number of times it is visited along
random walks connecting seed nodes. These expected passage times reflect

both the topology of the network and the edge weights. They follow from
an interpretation of the graph as a Markov chain (Kemeny and Snell, 1983)
characterized by a transition probability matrix P.

The probability of transition from node i to node j is given by Pij = wij∑
j wij

where wij denotes the weight assigned to the edge i→ j. For each seed node
x, the sub-matrix xP denotes the transition probability matrix restricted to
the lines and columns associated to x and all non-seed nodes. Expected
passage times can be computed from the fundamental matrix xN = (I−xP)−1.
The entry xNxi gives the expected number of times node i is visited during
walks starting in x and ending in any other seed node. The expected passage
time xE(i,j) along an edge i→ j is obtained by multiplying xNxi with the
transition probability Pij . Finally, the relevance of an edge i→ j is obtained
by averaging xE(i,j) over the s seed nodes.

A straightforward implementation of the kWalks algorithm is
computationally demanding for a large graph: its complexity is O(sn3), since
it would rely on s matrix inversions for a graph with n nodes. In practice, the
fundamental matrix can, however, be approximated by limiting the walks
to a maximal number of L steps and using forward–backward recurrences
(Callut, 2007). The computational complexity of the bounded kWalks is
O(sLm). Since s, the number of seed nodes, as well as L are typically fixed
and have values orders of magnitude lower than m, this approach essentially
offers a linear time complexity with respect to the number of graph edges.
Bounding the walk length is not only convenient from a computational
viewpoint, it also allows to control the level of locality (or, conversely, the
level of diffusion through the network) while connecting seed nodes. In all
the reported experiments, L was fixed to 50 based on preliminary evaluations
(Dupont et al., 2006).

As such the kWalks algorithm computes edge and node relevance from
random walks connecting the seed nodes. A subgraph is obtained by keeping
only those edges above a minimal relevance threshold. In our experiments,
the relevance threshold is automatically fixed such that the subgraph induced
by the selected edges is weakly connected. The sub-networks extracted by
kWalks may contain branches ending in non-seed nodes. We remove these
branches in a final pruning step.

The edge relevances computed by kWalks can serve as new edge
weights. kWalks can then be run on the input graph with updated weights.
This iterative process may be repeated a number of times to increase
the discrimination between more and less relevant edges. The parameter
that determines how often kWalks is iterated is named kWalks iteration
number.

2.4.7 Hybrid approaches On one hand, the kWalks approach is designed
to be more sensitive than specific by returning a sub-network whose edges
are more likely to be used along walks connecting the seed nodes. Such
a sub-network may be significantly smaller than the initial network yet
not highly specific to form relevant pathways. On the other hand, the
computational complexity of paths-based approaches may prevent them from
being effective when applied to a large network. Those observations motivate
the use of an hybrid strategy where the kWalks method is combined with
paths-based algorithms. Such a hybrid approach runs in two steps: kWalks
extracts a sub-network representing a fixed proportion of the input network
and the shortest paths-based algorithm is launched on this intermediate sub-
network to obtain the final pathway. In the first step of the hybrid algorithm,
kWalks may be iterated.

Combining kWalks with paths-based approaches requires two new
parameters: (i) Size of the sub-network. kWalks extracts a sub-network
whose size is fixed to a given percentage of the number of nodes in the
input network. In our experiments, this parameter is usually fixed between
0.5% and 5%. The extracted sub-networks tend to be larger than with the
weak connectivity constraint but are subsequently filtered with a paths-based
approach. (ii) Input or computed weights. The paths-based algorithms may
either use the input weights or the edge/node relevances computed by kWalks
in the first step. These relevances can be obtained from a single kWalks run
or from the last iteration of repeated kWalks.
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2.5 Evaluation procedure
2.5.1 Accuracy of sub-network extraction We define as true positive (TP)
a non-seed node that is present in the reference as well as the inferred
pathway. A false negative (FN) is a non-seed node present in the reference but
missing in the inferred pathway and a false positive (FP) is a non-seed node
found in the inferred pathway but absent from the reference. The sensitivity
(Sn) is defined as the ratio of correctly inferred nodes versus all reference
nodes:

Sn= TP
(TP+FN) , whereas the positive predictive value (PPV) gives the ratio

of correctly inferred nodes versus all inferred nodes: PPV= TP
(TP+FP) . We

calculate the accuracy as the geometric mean between sensitivity and PPV
(accg = √

Sn ·PPV).

2.5.2 Experiments For each of the 71 reference pathways, we first select
the terminal reactions as seeds, we infer a pathway that interconnects them,
and we compare the nodes of the inferred pathways with those of the
annotated pathway. Then, we progressively increase the number of seeds
by adding reactions randomly selected from the reference pathway, and re-
do the inference and evaluation, until all reactions of the pathway are selected
as seeds. We define as one experiment the set of all the pathway inferences
performed for a given parameter value combination (e.g. pairwise K-shortest
paths on directed MetaCyc network with compound degree weight). In total,
we carried out 110 such experiments.

3 RESULTS

3.1 Global performance of pathway inference
algorithms

3.1.1 Comparison of algorithms The average geometric accuracy
of a selected number of experiments is listed in Table 1. The full
experiment table is available as Supplementary Table ST1. The
strategy resulting in the highest accuracy combines the Takahashi–
Matsuyama algorithm with kWalks. All the top experiments involve

a compound-weighted, directed MetaCyc network and, in case of
the kWalks algorithm, an iteration number larger than one.

The performance of paths-based algorithms in the unweighted
(unit weight), directed MetaCyc network is at most 53% whereas
kWalks (without iteration) reaches an average accuracy of 62% in
the same conditions. Hence kWalks is able to assign edge relevances
even without a dedicated weight policy for the problem at hand, such
as the compound degree weighting scheme for metabolic networks.
All approaches however benefit from such a dedicated weight policy.

In the pairwise K-shortest paths/kWalks hybrid approach, kWalks
is configured to extract 5% of the input network. If this percentage
is reduced to 0.5% (the optimum among 22 different sub-network
sizes tested), the average accuracy increases by 3%. Obviously, the
size of the intermediate sub-network should not go below a certain
limit as it should be large enough to contain a metabolic pathway.

Combining a paths-based algorithm with kWalks tends to reduce
its runtime. Supplementary Figure SF1 compares run-times for all
seven pathway inference algorithms.

3.1.2 Influence of parameter setting We measured the impact of
alternative parameter values over a subset of the experiments as
measured by a paired signed Wilcoxon rank test (Supplementary
Table ST2). The parameter values having highest impact on the
pathway inference accuracy are in this order: compound degree
weight and inflated compound degree weight outperform unit
weight, directed network outperforms undirected network, kWalks
supersedes hybrid approaches and three kWalk iterations are better
than a single run.

The superiority of the two degree-based weighting schemes
over unit weights is in agreement with previous results (Croes
et al., 2005, 2006), which show that weighting the metabolic
network avoids irrelevant hub compounds. It is also no surprise

Table 1. Selected set of experiments, their conditions and results

Algorithm Directed Input kWalks Size of kWalks Mean Sn Mean PPV Mean
graph weighting iteration sub-network weights accg

scheme number extracted by re-used
kWalks (%) in hybrid

Takahashi–Matusyama/kWalks TRUE Compound degree 1 5 FALSE 77.13 77.97 76.81
Takahashi–Matsuyama TRUE Compound degree 0 – – 75.90 77.25 75.83
pairwise K-shortest paths/kWalks TRUE Compound degree 1 0.5 FALSE 68.89 78.90 71.79
pairwise K-shortest paths/kWalks TRUE Compound degree 6 5 FALSE 70.20 69.10 68.22
pairwise K-shortest paths TRUE Compound degree 0 – – 69.95 68.73 68.03
kWalks TRUE Compound degree 3 – – 71.49 68.54 67.96
kWalks TRUE Inflated compound 6 – – 71.06 68.62 67.90

degree
pairwise K-shortest paths/kWalks TRUE Compound degree 3 5 FALSE 69.19 69.37 67.86
Klein–Ravi/kWalks FALSE Compound degree 1 5 FALSE 63.21 68.03 64.10
kWalks TRUE Unit 3 – – 61.40 71.33 64.30
kWalks TRUE Unit 6 – – 60.00 71.75 63.53
Klein–Ravi FALSE Compound degree 0 – – 62.55 66.27 63.05
kWalks TRUE Unit 1 – – 62.13 65.93 61.83
pairwise K-shortest paths/kWalks TRUE Unit 1 5 TRUE 46.91 69.38 55.32
Takahashi–Matsuyama TRUE Unit 0 – – 60.02 53.83 52.74
pairwise K-shortest paths TRUE Unit 0 – – 71.37 35.87 42.86

Each table row represents one experiment. Each experiment was performed on 71 reference pathways with varying seed reaction number, comprising 406 launches of the tested
pathway inference algorithm for the indicated conditions; accg, geometric accuracy.
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A B C

Fig. 1. Pathway inference results for the pyrimidine ribonucleotides
de novo biosynthesis pathway (MetaCyc identifier: PWY0-162) in E.coli.
(A) Reference pathway. (B) Pathway inferred with two seeds in the
compound-weighted, directed MetaCyc network. (C) Pathway inferred with
four seeds in the same network. Ellipses represent compounds, rectangles
reactions. Compounds and reactions are labeled with their MetaCyc
identifiers in capital letters, compounds in addition with their name and
reactions with their associated EC number. Seed nodes have a blue border,
TP nodes a green and FPs an orange border.

that the directed MetaCyc network yields higher accuracies than the
undirected one, because the directed network prevents the traversal
from substrate to substrate or from product to product.

It might seem surprizing that when all experiments are taken
together, kWalks alone outperforms the pairwise K-shortest paths
hybrid, whereas the five top-raking approaches rely either on hybrid
approach or path finding alone. The reason is that kWalks, as
explained above, deals well with the unit weight policy, whereas
the hybrid only performs well if it can either use weights generated
by kWalks or by a weight policy that penalizes hub compounds.
However, if run with optimal parameter values, both algorithms are
among the top experiments (Table 1). Iterating kWalks improves
the accuracy, as it increases the difference between relevant and
irrelevant edges.

3.2 Study cases
All study cases were analyzed with the hybrid algorithm combining
Takahashi–Matsuyama and kWalks in the directed, compound-
weighted MetaCyc network.

The kWalks was not iterated and the original compound degree
weights (instead of the relevances computed by kWalks) were given
as input weights to Takahashi–Matsuyama’s algorithm. The size of
the subgraph extracted by kWalks in the first step of the hybrid was
set to 5%.

Since we cannot infer reaction directions due to the way we
constructed the MetaCyc network, inferred pathways are displayed
as undirected graphs. The annotated pathways have been obtained
from EcoCyc version 13.1 (Keseler et al., 2009).

3.2.1 De novo synthesis of pyrimidine ribonucleotides in
Escherichia coli The de novo synthesis of pyrimidine ribo-
nucleotides pathway in E.coli produces CDP from L-glutamine in
a series of 10 subsequent reaction steps (Fig. 1A).

Two-end path finding results in a metabolic pathway that bypasses
a large segment of the annotated pathway by taking a shortcut via
L-glutamine (Fig. 1B). Consequently, the geometric accuracy is low
(28%). The pathway in Figure 1B is biochemically irrelevant, as it
suggests that CTP can be synthesized from glutamine within one
step.

With two additional seed nodes (Fig. 1C), a large part of the
reference pathway is recovered (geometric accuracy reaches 59%).

Not surprizingly, the result is more accurate when more
information can be provided in the form of additional seed nodes.
Such additional information could, however, add spurious paths
between seed nodes, hence decreasing PPV, but the overall effect
is clearly positive in this case.

3.2.2 Lysine, threonine and methionine biosynthesis in E.coli
The previous example illustrates the benefit of multi-seed pathway
inference in the case of linear pathways. Another interest of the
approach is its capacity to deal with branched metabolic pathways
or super-pathways.

The lysine, threonine and methionine biosynthesis super-pathway
of E.coli is a good example of a branched pathway that cannot be
treated with two-end path finding (Fig. 2A). This pathway starts
from oxaloacetate, the common precursor of the three amino acids
L-lysine, L-methionine and L-threonine. The pathway is linear up to
L-aspartyl-semialdehyde, after which it branches towards the three
different end products.

Given the terminal reactions with MetaCyc identifiers
ASPAMINOTRANS-RXN, THRESYN-RXN,
DIAMINOPIMDECARB-RXN, HOMOCYSMETB12-RXN
and HOMOCYSMET-RXN, the pathway shown in Figure 2B is
inferred from the MetaCyc network. It recovers large parts of the
reference pathway, but misses parts of the annotated lysine and
threonine branches, resulting in a geometric accuracy of 65%.

However, the inferred lysine branch is a biochemically valid
metabolic pathway, which is known to be active, e.g. in Clostridium
tetani (MetaCyc pathway identifier: PWY-2942).

Additional seed reactions are needed to distinguish the E.coli
variant of lysine biosynthesis from this alternative. Such seeds may
for instance be derived from expression microarray experiments,
revealing a set of enzymes whose transcription is regulated in
response to some substrate or culture condition. Such expression
clusters are likely to include terminal as well as a few intermediate
enzyme-coding genes, such as the argD, whose product catalyzes
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A B C

Fig. 2. Pathway inference results for the superpathway of lysine, threonine and methionine biosynthesis I (MetaCyc identifier: P4-PWY) in E.coli.
(A) Reference pathway. (B) Pathway inferred with the five terminal reactions as seeds in the compound-weighted, directed MetaCyc network. (C) Pathway
inferred with the terminal and two additional intermediate reactions in the same network. Ellipses represent compounds, rectangles reactions. Compounds and
reactions are labeled with their MetaCyc identifiers in capital letters, compounds in addition with their name and reactions with their associated EC number.
Seed nodes have a blue border, TP nodes a green and FPs an orange border.

the intermediate seed reaction SUCCINYLDIAMINOPIMTRANS-
RXN, and which is negatively regulated by the transcription factor
ArgR.

When repeating pathway inference with two additional
reactions from the lysine branch (DIAMINOPIMEPIM-RXN
and SUCCINYLDIAMINOPIMTRANS-RXN), the E.coli lysine
biosynthesis pathway is found (Fig. 2C) and the geometric accuracy
reaches 85%.

4 DISCUSSION
In this article, we presented different sub-network extraction
techniques that can be applied to predict metabolic pathways from
metabolic networks, given a set of seed reactions.

From our evaluation, we can conclude that a combination of
Takahashi–Matsuyama and kWalks is globally most suited. The
evaluation also shows that a directed, weighted metabolic network
performs better than an undirected, unweighted one. Consequently,
if a good weight policy for the metabolic network under study is
at hand, it should be given as input to both algorithms, else the
paths-based algorithm can be launched on the weights computed by
kWalks. The accuracy of pathway inference can be further increased
by iterating kWalks and/or by reducing the size of the sub-network
extracted by kWalks in the first step of the hybrid.

The hybrid approach combines the strengths of two different
sub-network extraction strategies: kWalks is designed to capture
the part of a network that is most relevant to connect the
given seed nodes, resulting in a high sensitivity, but at the cost

of a low PPV. FPs introduced by kWalks can be discarded by a more
stringent shortest paths-based algorithm. In addition, combining
shortest-paths-based algorithms with kWalks not only increases their
accuracy but also their speed. KWalks, as the fastest of all tested
algorithms, quickly reduces the input network size and thus the
runtime of the subsequent shortest-paths-based algorithm.

Our pathway prediction approach is subjected to a number of
limitations. Paths-based approaches only partly infer cyclic or spiral-
shaped pathways (the same enzymes acting repeatedly on a growing
chain, e.g. fatty acid biosynthesis). kWalks alone is able to return
general subgraphs but possibly at the cost of decreasing specificity.
For certain pathways situated in the densely interconnected region
of the metabolic network (such as the TCA cycle and the glycolysis
pathway), a large number of seed nodes is required in order to
distinguish them from alternative pathways. In addition, prediction
accuracy is of course dependent on data quality. To infer a metabolic
pathway from a metabolic network, the network must contain all
nodes and edges of the pathway.

A strength of sub-network extraction is its ability to handle large
networks (several thousands of nodes) efficiently. The approach
is sufficiently generic to be applied to any biological network. In
addition, it has a capacity to integrate other data (e.g. scores from
high-throughput experiments) by weighting the network. Another
strength is its capability to handle seed node groups, which allows
to cope with ambiguous gene-reaction mappings.

The sub-network extraction method proposed here is distinct from
and complementary to other metabolic network analysis methods
such as flux balance analysis (FBA; Edwards and Palsson, 2000;
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Lee et al., 2006) or elementary mode (EM) analysis (Schuster et al.,
1999; Trinh et al., 2009). Those respective approaches differ by
their input types, output types and by their potential applications,
and can provide complementary insights into the metabolism of a
given organism. FBA aims at predicting a set of feasible metabolic
flux distributions optimizing a specific objective (such as biomass
production) for a given organism in a specific environment. FBA
requires as input a metabolic network including stoichiometric
coefficients plus an objective function to constrain the number of
solutions. EM analysis is similar to FBA, but does not require an
objective function. Thus, it enumerates all allowable metabolic states
satisfying an additional non-decomposability constraint (Schuster
et al., 1999). These methods have important applications in
bioengineering, especially for microbe-based production of organic
molecules.

In contrast, the presented method aims to predict metabolic
pathways given a metabolic network and a set of seed nodes, which
can be compounds, reactions or enzyme-coding genes. Seed genes
can be collected from a variety of data sources: co-expression
clusters, operons, regulons, synteny groups, metabolomic profiles
or any other criterion suggesting that a set of enzyme-coding genes
is potentially involved in a common function.

An immediate application of sub-network extraction is to interpret
expression profiles obtained from microarray data, in order to
understand the specific metabolic processes that are up- or down-
regulated in response to changed conditions.

Another application is the inference of bacterial metabolic
pathways from genome organization (operons, regulons and
synteny), and the analysis of cross-species pathway variants.
Metabolic sub-network extraction can be applied to predict
metabolic pathways for an organism whose genes are functionally
annotated but whose metabolism is not yet known. In such a case, a
network constructed from metabolic information taken from related
organisms might be more appropriate than a complete metabolic
network containing all known reactions and compounds in a given
database as in this study.

There are various ways to build and weight an organism-specific
metabolic network: the first is to simply build the network from
reactions occurring in the selected set of organisms. In a less
restrictive approach, the complete network could be weighted in
such a way that reactions occurring in the given organisms are
favored over other reactions. Similarly, gene expression and other
high-throughput data could be taken into account during network
construction by converting expression ratios (or other scores derived
from the dataset) into node weights.

The pathway inference algorithms were added to NeAT (Brohée
et al., 2008) at http://rsat.ulb.ac.be/neat/. A generic kWalks
implementation is freely available at www.ucl.ac.be/mlg/index.php?
page=Softwares.
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