
D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

THE QSM ALGORITHM AND ITS APPLICATION TO SOFTWARE
BEHAVIOR MODEL INDUCTION

Pierre Dupont & Department of Computing Science and Engineering (INGI),
Université Catholique de Louvain, Belgium, and the UCL Machine Learning Group

Bernard Lambeau, Christophe Damas, and Axel van Lamsweerde &

Department of Computing Science and Engineering (INGI), Université Catholique
de Louvain, Belgium

& This article presents a novel application of grammatical inference techniques to the synthesis
of behavior models of software systems. This synthesis is used for the elicitation of software require-
ments. This problem is formulated as a deterministic finite-state automaton induction problem from
positive and negative scenarios provided by an end user of the software-to-be. A query-driven state
merging (QSM) algorithm is proposed. It extends the Regular Positive and Negative Inference
(RPNI) and blue-fringe algorithms by allowing membership queries to be submitted to the end user.
State merging operations can be further constrained by some prior domain knowledge formulated as
fluents, goals, domain properties, and models of external software components. The incorporation
of domain knowledge both reduces the number of queries and guarantees that the induced model is
consistent with such knowledge. The proposed techniques are implemented in the ISIS tool and
practical evaluations on standard requirements engineering test cases and synthetic data illustrate
the interest of this approach.

INTRODUCTION

It has been claimed that the hardest part in building a software system is
deciding precisely what the system should do (Brooks 1987). This is the
general objective of requirements engineering (RE). Formal models are
increasingly recognized as an effective means for elaborating requirements
and exploring software designs. For complex systems, model building how-
ever is far from an easy task. Automating parts of this process can be
addressed by learning behavior models from scenarios of interactions
between the software-to-be and its environment. Indeed, scenarios can be

Address correspondence to Pierre Dupont, Department of Computing Science and Engineering
(INGI), Université Catholique de Louvain, Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium.
E-mail: Pierre.Dupont@uclouvain.be

Applied Artificial Intelligence, 22:77–115
Copyright # 2008 Taylor & Francis Group, LLC
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839510701853200

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 represented as strings over an alphabet of possible events and they can be

generalized to form a language of acceptable behaviors. Whenever
behaviors are modeled by finite-state machines, the problem of behavior
model synthesis becomes equivalent to automaton induction from positive
and negative strings. The learning examples are assumed here to be
positive and negative scenarios provided by an end-user involved in the
requirements elicitation process. Whenever available, additional domain
knowledge can also help the induction process and force the resulting
model to be consistent with this knowledge.

In the present work, we address the problem of the synthesis of a beha-
vior model of a software system by extending state-of-the-art automaton
induction techniques: the RPNI (Oncina and Garcı́a 1992) and blue-fringe
algorithms (Lang, Pearlmutter, and Price 1998). Both algorithms can
indeed profit from the presence of an end user. The proposed techniques
are incremental, since they deal with a growing collection of examples, and
interactive, since the end user may be asked to classify as positive or nega-
tive additional scenarios, which are automatically generated. In learning
terminology, the end user is assumed to be an oracle who can answer
membership queries (Angluin 1981).

The first section describes why the proposed application of grammatical
inference techniques seems particularly relevant. Our main contributions
and the organization of the rest of this article are summarized in the
second section.

System Behavior Modeling and Automaton Induction

We argue here that automaton induction is a particularly well-suited
approach to model software system behaviors. This application domain also
offers potentially new perspectives for defining relevant domain knowledge
to constrain the learning process.

Behaviors are conveniently modeled by labeled transition systems
(LTS). The class of LTS models is properly included in the deterministic
finite-state automaton (DFA) class, as detailed in Section 2.2. Hence, LTS
synthesis is a DFA induction problem, which is arguably the most studied
problem in grammatical inference.

Hardness results of the minimal consistent DFA identification problem
are known (Angluin 1978; Gold 1978). However, positive results exist for
approximate identification of randomly generated DFAs in the average case
(Lang 1992). Extensions of the above technique, such as the blue-fringe or
Evidence-Driven State Merging (EDSM) algorithms, were shown to be parti-
cularly effective in the context of the Abbadingo DFA induction compe-
tition (Lang et al. 1998). This competition and its successor Gowachin
illustrate that available techniques can learn DFAs of several hundred
states. A behavior model hardly contains such a large number of states.

78 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 Hence, current DFA learning techniques seem directly applicable as tools

for software analysts.
The above applicability issue must be taken with a grain of salt however.

Firstly, the positive results observed in DFA learning benchmarks were
generally obtained with very small alphabets, typically containing two
symbols. Standard test cases in requirements engineering, such as those
detailed in Section 6, may deal with alphabets an order of magnitude
larger. More importantly, according to the practical setting considered in
the DFA learning competitions mentioned above, successful learning of
DFAs with hundred states requires training sets containing typically several
thousand strings. This is far beyond the available data one could reasonably
ask an end user to provide. Increasing the alphabet size and reducing the
available learning data both significantly increases the complexity of the
induction problem (Lang et al. 1998).

Fortunately, the end user may also be asked to answer membership
queries apart from the initial scenarios she provides. The presence of an
oracle does not only change the theoretical limits of learning (Angluin
1981) but also forms a fully realistic assumption in the applicative context
considered here. In contrast, the model of a minimally adequate teacher
introduced by Angluin (1987) also assumes that the oracle can answer
equivalence queries. In such a case, a candidate model is submitted to
the oracle who has to decide whether it perfectly defines the target beha-
vior. If it is not the case, the oracle is asked to return a counterexample.1

We consider that the practical availability of such a well-informed end user
is unrealistic. Interestingly, in practice, membership queries alone may
very well be sufficient to learn an adequate model. This point is further
discussed in Sections 6 and 7.

The induction algorithms considered here are state-merging techni-
ques. They start from a machine that accepts strictly the positive examples
initially provided. States of this original machine are subsequently merged
under the control of the available negative examples. State merging gener-
alizes the accepted language (see Section 3). Negative examples can also be
represented in the original machine as accepting states with a negative
label. Consistency with the positive and negative examples is guaranteed
if the merging process is constrained to prevent merging a negative accept-
ing state with a positive accepting state. In other words, the positive and
negative information define equivalence classes between states. Only states
belonging to the same equivalent class are allowed to be merged. This
strategy can readily be extended to incorporate domain knowledge by
refining the equivalence state partition (Coste et al. 2004). The novelty
in our approach is the specific kinds of domain knowledge considered
here, which is often available as declarative properties in the RE context,
and the way they are reformulated as equivalence classes (see Section 5).
Our practical evaluations reported in Section 6.1 illustrate that these

Induction of Software Models with QSM 79

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 additional constraints can significantly reduce the number of interactions

with the end user, while enforcing the proposed model to be consistent with
such prior knowledge. This extension could also be useful for other
application domains whenever such declarative properties can be stated.

Outline

The rest of this article is structured as follows. Section 2 gives a brief
introduction to a model-driven approach to the elaboration of software
requirements. It includes a description of scenarios in terms of message
sequence charts and the particular class of automata considered in this
work. It also introduces a running example of a simple train system which
is used throughout this article to illustrate the proposed techniques.

Section 3 recalls a few important notions relative to DFA induction. In
particular, the notion of characteristic sample for the RPNI induction algor-
ithm is reviewed. This characterization is subsequently used to define which
additional scenarios should be submitted to be classified by an end user
during the learning process.

Section 4 describes our first contribution: the QSM algorithm (a Query-
driven State Merging induction approach). It is an interactive DFA learning
algorithm that extends the RPNI algorithm by including membership
queries. The blue-fringe algorithm can be considered as an adaptation of
this state merging approach by changing the order in which state pairs
are considered. The extension of our interactive methodology within the
blue-fringe strategy is also discussed.

Section 5 details our second contribution: how domain knowledge, spe-
cific to the RE application context, can be included in the learning process.
This domain knowledge is by no means mandatory for the inference process.
However, when it is used, it speeds up the induction process and also guar-
antees that the proposed model is consistent with this domain knowledge.

The proposed techniques are implemented in Java 5.0 to form the
Interactive State Machine Induction from Scenarios (ISIS) tool. Experi-
mental evaluations of this tool are presented in Section 6. They illustrate
that the use of the blue-fringe strategy and domain knowledge allows the
reduction of the number of interactions with the end user. The first evalua-
tions are performed on standard RE test cases (Section 6.1). They corre-
spond to relatively small target machines (up to 23 states). The number
of actual scenarios initially provided is also limited—typically less than
10—but the end user is asked to classify additional scenarios generated
automatically. These test cases can be considered small from a learning
perspective but we argue that they are fully representative of the existing
RE literature. Hence, Section 6.2 addresses the question of how the pro-
posed approach scales with the size of the target machine on synthetic data.

80 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 We address in particular the accuracy of the induced automata while

varying the amount of training data. Comparative results are reported for
the RPNI, blue-fringe, and QSM algorithms. The number of queries asked to
the end user and the total CPU time of the induction process are also reported.

Related works are presented in Section 7, including a discussion on
the theoretical limits and practical issues of learning with queries. Our
conclusions and perspectives are presented in Section 8.

MODEL-DRIVEN ELABORATION OF SOFTWARE
REQUIREMENTS

Software requirements have been repeatedly recognized to be a real
problem. In their early empirical study, Bell and Thayer observed that
inadequate, inconsistent, incomplete, or ambiguous requirements are
numerous and have a critical impact on the quality of the resulting software
(1976). Boehm estimated that the late correction of requirements errors
could cost up to 200 times as much as correction during such requirements
engineering (1981). In his classic article on the essence and accidents of
software engineering, Brooks stated that ‘‘the hardest single part of build-
ing a software system is deciding precisely what to build’’ (Brooks 1987).
Recent studies have confirmed the requirements problem on a much larger
scale. A survey of over 8000 projects undertaken by 350 U.S. companies
revealed that one-third of the projects were never completed and one-half
succeeded only partially, that is, with partial functionalities, major cost
overruns, and significant delays (The Standish Group 1995). When asked
about the causes of such failure, executive managers identified poor
requirements as the major source of problems.

Improving the quality of requirements is thus crucial. Requirements
engineering is concerned with the elicitation, negotiation, specification,
analysis, and evolution of the objectives, functionalities, qualities, and
constraints to be achieved by a software system within some organizational
or technical environment.

Model-driven elaboration, validation, and documentation of require-
ments call for rich models of the system-to-be. Such models need to cover
the intentional, structural, and behavioral aspects of the system (van
Lamsweerde 2001)—by system we mean both the target software and its
environment. The intentional aspect captures the purposes and rationales
of the system (goals). The structural aspect represents the concepts of the
application domain (class diagrams) and the behavioral dimension defines
how agents react to events (scenarios and state machines).

Goals are prescriptive statements of intent whose satisfaction requires
cooperation among the agents forming the system. Goal models are
AND=OR graphs that capture how functional and non functional goals

Induction of Software Models with QSM 81

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 contribute positively or negatively to each other. Such models support

various forms of early, declarative, and incremental reasoning, e.g., goal
refinement and completeness checking, conflict management, hazard
analysis, threat analysis, requirements document generation, etc. (van
Lamsweerde 2004). On the down-side, goals are sometimes felt too
abstract by end users of the system-to-be. They cover classes of intended
behaviors but such behaviors are left implicit. Goals may also be hard to
elicit in the first place. A typical goal for a train system is to require that
the train doors shall remain closed while the train is moving. This pro-
perty is not guaranteed to be satisfied by some physical law and thus
must be enforced as a system goal.

Scenarios capture typical examples or counterexamples of system behavior
through sequences of interactions among agents. They support an
informal, narrative, and concrete style of description. Scenarios are
therefore easily accessible to end users involved in the requirements
engineering process. On the down-side, scenarios are inherently partial
and cover few behaviors of specific instances. They leave intended sys-
tem properties implicit. Scenarios must thus be generalized to elicitate
additional system properties.

State machines capture classes of required agent behaviors in terms of
states and events firing transitions. They provide visual abstractions of
explicit behaviors for any agent instance in some corresponding class.
State machines can be composed sequentially and in parallel, and are
executable. They can be validated through animation and verified
against declarative properties. State machines also provide a good basis
for code generation. On the down-side, state machines are too oper-
ational in the early stages of requirements elaboration. Their manual
elaboration may turn out to be quite hard.

In this study, we show how a scenario-driven model synthesis can be
achieved through the use of automaton learning techniques. Goals are intro-
duced further as a particular type of optional domain knowledge that can
constrain the learning process. Whenever goals are formulated they help to
speed up learning and guarantee that the induced model is consistent with
this knowledge. Section 2.1 describes the formalism of message sequence
charts to represent scenarios, which can also be seen as strings over an alpha-
bet of events. Section 2.2 introduces labeled transition systems, which form
the particular class of automata considered throughout this article.

Scenarios and Message Sequence Charts

A scenario is a temporal sequence of interactions among system compo-
nents. A system is made of active components, called agents, which control

82 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 system behaviors. Some agents form the environment, others form the

software-to-be. An interaction in a scenario originates from some event syn-
chronously controlled by a source agent instance and monitored by a target
agent instance. Positive scenario describe typical examples of desired inter-
actions, whereas negative scenarios described undesired ones. The set of
possible events defines an alphabet R and a scenario is an element of R�,
that is, a finite-length string defined over R. In the sequel, jxj denotes
the length of a string x belonging to R� and k denotes the empty string.

A simple message sequence chart (MSC) formalism is used for repre-
senting end user scenarios. An MSC is composed of vertical lines represent-
ing timelines associated with agent instances, and horizontal arrows
representing interactions among such agents. A timeline label specifies
the type of corresponding agent instance. An arrow label specifies some
event defining the corresponding interaction. Every arrow label uniquely
determines the source and target agent instances that control and monitor
the event in the interaction, respectively. We choose a simple input lan-
guage in order to allow end users to submit their scenarios, leaving aside
more sophisticated MSC features such as conditions, timers, coregions, etc.

A simple train system fragment will be used throughout the article as a
running example. The system is composed of three agents: a train control-
ler, a train actuator=sensor, and passengers. The train controller controls
operations such as start; stop; open doors, and close doors. A safety
goal requires train doors to remain closed while the train is moving. If
the train is not moving and a passenger presses the alarm button, the
controller must open the doors in an emergency. When the train is moving
and the passenger presses the alarm button, the controller must stop the
train first and then open the doors in an emergency. Figure 1 shows a
MSC capturing this last scenario.

FIGURE 1 Positive scenario for a train system.

Induction of Software Models with QSM 83

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

Scenarios are positive or negative. A positive scenario illustrates some
desired system behavior. Any prefix of a positive scenario is also a positive
scenario. A negative scenario captures a behavior that may not occur. It is
represented by a pair ðp; eÞ, where p is a positive MSC called precondition,
and e is a prohibited subsequent event. The meaning is that once the
admissible MSC precondition has occurred, the prohibited event may not
label the next interaction among the corresponding agents. A negative
scenario is a string composed of the prefix p 2 R�, which forms a positive
scenario, and a single event e 2 R such that the concatenated string pe
should be labeled as negative.

Figure 2 shows a negative scenario. The MSC precondition is made of
the interaction start; the prohibited event is open doors. Prohibited
events in negative MSCs appear below a dashed line in our ISIS tool. The
scenario in Figure 2 is used to express that the train controller may not
open the doors after having started the train (without any intermediate
interaction).

Starting from an initial set of positive and negative scenarios, additional
scenarios are automatically generated during the learning procedure
described in Section 4. Such scenarios are submitted to the end user to
be classified as positive or negative. Typical examples produced by the ISIS
tool are presented in Figure 3. The prefix (above the dashed line) p is
already known to correspond to an acceptable behavior. The suffix must
be accepted or rejected by the end user as a valid continuation. In practice,
the end user is allowed to move down the dashed line to indicate that an
extended prefix p0 should be considered as positive as well and the first
event e after p0, if any, defines a negative scenario p0e.

Finite Automata and Labeled Transition Systems

A system can be behaviorally modeled as a set of concurrent state
machines—one machine per agent. Each agent is characterized by a set

FIGURE 2 Negative scenario for a train system.

84 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

of states and a set of transitions between states. Each transition is labeled by
an event. Strictly speaking, such machines do not model the agents them-
selves but how they interact between them. This is how system models are
typically used by system analysts.

The state machines in this article are a particular class of automata
called LTS (Magee and Kramer 1999). The QSM algorithm described in
Section 4 induces a global LTS from end users scenarios. This LTS repre-
sents a global model of the acceptable behaviors. Simple techniques from
automata theory (Hopcroft and Ullman 1979) can subsequently be used to
build agent-specific LTS as described in Damas et al. (2005).

FIGURE 3 Typical scenario queries.

Induction of Software Models with QSM 85

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 Definition 1 (Finite Automaton). A finite automaton is a 5-tuple

ðQ ;R; d; q0; F Þ where Q is a finite set of states, R is an alphabet, d is a transition
function mapping Q � R to 2Q ; q0 is the initial state, and F is a subset of Q identi-
fying the accepting states. The automaton is called a DFA if for any q in Q and
any e in R, dðq; eÞ has at most one member.

A string u is accepted by an automaton if there is a path from the initial
state to some accepting state such that u is the concatenation of the tran-
sition symbols along this path. The language LðAÞ accepted by an automa-
ton A is the set of strings accepted by A. A LTS is an instance of DFA such
that all states are accepting, that is, Q ¼ F . This property is consistent with
the fact that the strings accepted by a LTS are considered here as positive
scenarios and that any prefix of a positive scenario must also be accepted.

One can question whether the finite state representation described
here is fully adequate to model agent interactions. The first concern is the
possibility of learning these models from scenarios simple enough to be pro-
posed initially or classified interactively by end users. Fast induction algo-
rithms are also required in order to guarantee a real-time response of this
interactive learning procedure. Finite state modeling is also particularly
adequate because of the existence of several automatic tools to analyze and
check the induced models. Finally, they also offer a good starting point
for automatic code generation. In a nutshell, even though finite-state model-
ing may seem crude, it is considered particularly convenient in the RE
literature. Most of these models, however, are generally built by hand or
semi-automatically with additional input information (see Section 7). The cur-
rent article describes a novel application of learning techniques to construct
these models fully automatically based on simple interactions with end users.

DFA INDUCTION

The reader familiar with DFA-induction techniques and the character-
ization of the RPNI algorithm can skip this section. Some of these notions
are reviewed here to help newcomers to the field.

Quotient Automata and DFA Induction Search Space

Learning a language L aims at generalizing a positive sample Sþ ,
possibly under the control of a negative sample S�, with Sþ � L and
S� � R�nL. When the induction technique produces a DFA, the learned
language is regular. Any regular language L can be represented by its
canonical automaton A(L), that is, the DFA having the smallest number
of states and accepting L. A(L) is unique up to a renumbering of its states
(Hopcroft and Ullman 1979).

86 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 Generalizing a positive sample can be performed by merging states

from an initial automaton that only accepts the positive sample. This initial
automaton, denoted by PTA(Sþ), is called a prefix tree acceptor (PTA). It is
the largest trimmed DFA accepting exactly Sþ(see Figure 4). The general-
ization operation is formally defined through the concept of quotient
automaton.

Definition 2 (Quotient Automaton). Given an automaton A and a partition
p defined on its state set, the quotient automaton A=p is obtained by merging all
states q belonging to the same partition subset B(q, p). A state B(q, p) in A=p thus
corresponds to a subset of the states in A. A state B(q, p) is accepting in A=p if and
only if at least one state of B(q, p) is accepting in A. Similarly, there is a transition
on the letter a from state B(q, p) to state B(q 0, p) in A=p if and only if there is a
transition on a from at least one state of B(q, p) to at least one state of B(q 0,p) in A.

By construction of a quotient automaton, any accepting path in A is also
an accepting path in A=p. It follows that for any partition p of the state set
of A;LðA=pÞ � LðAÞ. In words, merging states in an automaton generalizes
the language it accepts.

Learning a regular language is possible if Sþ is representative enough
of the unknown language L and if the correct space of possible solutions is
searched through. These notions are stated precisely hereafter.

Definition 3 (Structural Completeness). A positive sample Sþ of a lan-
guage L is structurally complete with respect to an automaton A accepting L if, when
generating Sþ from A, every transition of A is used at least once and every final state
is used as accepting state of at least one string.

Rather than a requirement on the sample, structural completeness
should be considered as a limit on the possible generalizations that are

FIGURE 4 PTAðSþÞ (a) where Sþ ¼ fk; a; bb; bba; baab; baaabag is a structurally complete sample for the
canonical automaton A(L) (b). AðLÞ ¼ PTAðSþÞ=p with p ¼ f0; 1; 4; 6; 8; 9; 10g; f2; 3; 5; 7gf g.

Induction of Software Models with QSM 87

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 allowed from a sample. If a proposed solution is an automaton in which

some transition is never used while parsing the positive sample, no evi-
dence supports the existence of this transition and this solution should
be discarded.

Theorem 1 (DFA Search Space). If a positive sample Sþ is structurally
complete with respect to a canonical automaton A(L), then there exists a partition
of the state set of PTA(Sþ) such that PTA(Sþ)=p ¼ A(L) (Dupont, Miclet, and
Vidal 1994).

This result defines the search space of the DFA induction problem as the
set of all automata which can be obtained by merging states of the PTA.
Some automata of this space are not deterministic but an efficient determi-
nization process can enforce the solution to be a DFA (see Section 4).

Figure 4 presents the prefix tree acceptor built from the sample
Sþ ¼ fk; a; bb; bba; baab; baaabag, which is structurally complete with respect
to the canonical automaton. This automaton is a quotient of the PTA for
the partition p ¼ ff0; 1; 4; 6; 8; 9; 10g; f2; 3; 5; 7gg of its state set.

To summarize, learning a regular language L can be performed by iden-
tifying the canonical automaton A(L) of L from a positive sample Sþ . If the
sample is structurally complete with respect to this target automaton, it can
be derived by merging states of the PTA built from Sþ . A negative sample
S� is used to guide this search and avoid overgeneralization. In the sequel,
jjSjj denotes the sum of the lengths of the strings in a sample S.

The size2 of this search space makes any trivial enumeration algorithm
irrelevant for any practical purposes. Moreover, finding a minimal consis-
tent DFA is a NP-complete problem (Gold 1978; Angluin 1978). Interest-
ingly, only a fraction of this space is efficiently searched through by the
RPNI algorithm or the QSM algorithm described in Section 4.

Characteristic Samples for the RPNI Algorithm

We do not fully detail the RPNI algorithm in the present section, but
the original version forms a particular case of our interactive algorithm
QSM, as discussed in Section 4. The convergence of RPNI to the correct
automaton A(L) is guaranteed when the algorithm receives a sample as
input that includes a characteristic sample of the target language (Oncina
and Garcı́a 1992). A proof of convergence, is presented in Oncina, Garcı́a,
and Vidal (1993) in the more general case of transducer learning. We
review here the notion of a characteristic sample as the definition of rele-
vant membership queries is related with this notion. Some additional
definitions are required here.

88 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 Definition 4 (Short Prefixes and Suffixes). Let Pr(L) denote the set of

prefixes of L, with PrðLÞ ¼ fuj9v;uv 2 Lg. The right quotient of L by u, or set
of suffixes of u in L, is defined by L=u ¼ fvjuv 2 Lg. The set of short prefixes
Sp(L) of L is defined by SpðLÞ¼fx 2PrðLÞj:9u2R� with L=u¼L=x and u<xg.

In a canonical automaton A(L) of a language L, the set of short prefixes
is the set of the first strings in standard order3 <, each of which leads to a
particular state of the canonical automaton. Consequently, there are as
many short prefixes as states in A(L). In other words, the short prefixes
uniquely identify the states of A(L). The set of short prefixes of the canonical
automaton of Figure 4 is SpðLÞ ¼ fk; bg.

Definition 5 (Language Kernel). The kernel N(L) of the language L is
defined as N ðLÞ ¼ fxajx 2 SpðLÞ; a 2 R; xa 2 PrðLÞg [fkg.

The kernel is made of the short prefixes extended by one letter and the
empty string. By construction SpðLÞ � N ðLÞ. The kernel elements rep-
resent the transitions of the canonical automaton A(L), since they are
obtained by adding one letter to the short prefixes that represent the states
of A(L). The kernel of the language defined by the canonical automaton of
Figure 4 is N ðLÞ ¼ fk; a; b; ba; bbg.

Definition 6 (Characteristic Sample). A sample Sc ¼ ðSc
þ; S

c
�Þ is character-

istic for the language L and the algorithm RPNI if it satisfies the following conditions:

1. 8x 2 N ðLÞ; if x 2 L then x 2 Sc
þ else 9u 2 R� such that xu 2 Sc

þ:
2. 8x 2 SpðLÞ; 8y 2 N ðLÞ if L=x 6¼ L=y then 9u 2 R� such that
ðxu 2 Sc

þ and yu 2 Sc
�Þ or ðxu 2 Sc

� and yu 2 Sc
þÞ:

Condition 1 guarantees that each element of the kernel belongs to Sc
þ if

it also belongs to the language or, otherwise, is prefix of a string of Sc
þ. One

can easily check that this condition implies the structural completeness of
the sample Sc

þ with respect to A(L). In this case, Theorem 1 guarantees that
the automaton A(L) can be derived by merging states from PTAðSc

þÞ. When
an element x of the short prefixes and an element y of the kernel do not
have the same set of suffixes ðL=x 6¼ L=yÞ, they necessarily correspond to
distinct states in the canonical automaton. In this case, condition 2 guaran-
tees that a suffix u would distinguish them. In other words, the merging of
a state corresponding to a short prefix x in PTAðSc

þÞ with another state
corresponding to an element y of the kernel is made incompatible by the
existence of xu in Sc

þ and yu in Sc
� or the converse.

To sum up, good examples to learn a canonical automaton A(L)
guarantee to avoid merging of nonequivalent states q and q 0 (two states

Induction of Software Models with QSM 89

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 are equivalent if and only if they have the same set of suffixes in the target

language). These good examples are the short prefixes of q and q 0, respect-
ively, concatenated with the same suffix u to form a positive example from
one state and a negative example from the other.

There may exist several distinct characteristic samples for a given
language L as several suffixes u may satisfy condition 1 or 2. Note that if
jQ j denotes the number of states of the canonical automaton A(L), the
set of short prefixes contains jQ j elements and the kernel has OðjQ j � jRjÞ
elements. Hence, the number of strings in a characteristic sample is
given by

jSc
þj ¼ OðjQ j

2 � jRjÞ and jSc
�j ¼ OðjQ j

2 � jRjÞ:

One can verify that S ¼ ðSþ; S�Þ, with Sþ ¼ fk; a; bb; bba; baab; baaabag
and S� ¼ fb; ab; abag, forms a characteristic sample for the language
accepted by the canonical automaton in Figure 4.

Note that the definition of a characteristic sample given above may be
considered quite strong. It is, however, the standard definition of such a
sample for the RPNI algorithm (Oncina and Garcı́a 1992; Dupont 1996).
It is based on a worst case analysis which does not make full use of the exact
order in which state pairs are considered during the merging process. It
does not rely on a specific order between the letters of the alphabet either.
As observed in the experiments described in Section 6.2, a fraction of such
a sample is often enough to observe very high generalization accuracy for
randomly generated target DFAs. This observation is also consistent with
the results reported in Lang et al. (1998).

QSM: AN INTERACTIVE STATE-MERGING ALGORITHM
WITH MEMBERSHIP QUERIES

Algorithm 1 gives the pseudo-code of the QSM algorithm, a query driven
state-merging DFA induction technique. The QSM algorithm takes a scenario
collection as input and produces a consistent DFA as output. The completion
of the initial scenario collection with classified scenarios that are generated
during learning is another output of the algorithm. The input collection
must contain at least one positive scenario. The generated DFA covers all
positive scenarios in the final collection and excludes all negative ones.

The induction process can be described as follows: it starts by construct-
ing an initial DFA covering all positive scenarios only. The induced DFA is
then successively generalized under the control of the available negative
scenarios and newly generated scenarios classified by the end user. This
generalization is carried out by successively merging well-selected state pairs
of the initial automaton. The induction process is such that, at any step, the

90 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 current DFA covers all positive scenarios and excludes all negative ones,

including the interactively classified ones. In the sequel, a DFA is said to
be compatible with respect to a set of scenarios if it covers all positive sce-
narios in that set and excludes all negative ones. By extension, two states are
said compatible for merging (resp. incompatible) if the quotient DFA
which results from their merging is compatible (resp. incompatible) with
the current set of scenarios.

Algorithm QSM
Input: A nonempty initial scenario collection ðSþ; S�Þ
Output: A DFA A consistent with an extended collection ðSþ; S�Þ
A InitializeðSþ; S�Þ
while ðq; q 0Þ ChooseStatePairsðAÞ do

Anew MergeðA; q; q 0Þ
if CompatibleðAnew; Sþ; S�Þ then

while Query GenerateQueryðA;AnewÞ do
if CheckWithEndUserðQueryÞ then

Sþ Sþ [Query
else

S� S� [Query
return QSMðSþ; S�Þ

A Anew

return A; ðSþ; S�Þ
ALGORITHM 1 QSM, an interactive state-merging algorithm with membership queries.

The Initialize function of QSM returns an initial candidate automa-
ton built from Sþ and4 S�. Next, pairs of states are iteratively chosen from
the current solution according to the ChooseStatePairs function.5 The
quotient automaton obtained by merging such states, and possibly some
additional states, is computed by the Merge function. The compatibility
of this quotient automaton with the learning sample is then checked by
the Compatible function using available negative scenarios. When compat-
ible, new scenarios are generated through the GenerateQuery function and
submitted to the end user for classification (see Section 4.2). Scenarios
classified as positive or negative are added to the initial collection with their
respective labels. If all generated scenarios are classified as positive, the
quotient automaton becomes the current candidate solution. The process
is iterated until no more pair of states can be considered for merging.
When a generated scenario is classified as negative, the algorithm is recur-
sively called on the extended scenario collection.

The original RPNI algorithm can be seen as a particular instance of
QSM when no query is generated or, equivalently, without the inner while

Induction of Software Models with QSM 91

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 loop. The advantage of QSM is that a finer control of the generalization

offered by the state-merging operations can be obtained by validating these
generalizations with an oracle. Section 4.1 describes the general process of
merging compatible state pairs, while section 4.2 focuses on the generation
of queries submitted to the end user. Section 4.3 discusses the adaptation of
QSM to the blue-fringe strategy.

Merging Compatible State Pairs

The various functions that control how merging is performed from an
initial automaton are described below.

Initialize The Initialize function returns the prefix tree acceptor built
from Sþ and the proper prefixes from S�. The PTA built from the initial
scenario collection in Figure 5 is shown on top of Figure 6. According
to the modeling hypothesis discussed in Section 2.2 (all states in a LTS
are accepting states), all PTA states are labeled as accepting. This is a
specificity of the application domain considered here, since any prefix
of a positive scenario is also a positive scenario. Hence, a single positive
scenario defines several positive examples. The algorithm proposed
here would actually work for arbitrary positive samples not satisfying
this property.

ChooseStatePairs The candidate solution is refined by merging well-
selected state pairs. The ChooseStatePairs function determines
which pairs to consider for such merging. It relies on the standard

FIGURE 5 Initial positive and negative scenarios for a train system.

92 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

order < on strings. Each state of PTA(Sþ) can be labeled by its unique
prefix from the initial state. Since prefixes can be sorted according to
that order, the states can be ranked accordingly. For example, the PTA
states in Figure 6 are labeled by their rank according to this order.
The algorithm considers states q of PTA(Sþ) in increasing order. The
state pairs considered for merging only involve such state q and any state
q 0 of lower rank. The q 0 states are considered in increasing order as
well. This particular ordering is specific to the original RPNI algorithm.

Merge The Merge function merges the two states (q, q 0) selected in order to
compute a quotient automaton, that is, to generalize the current set of
positive examples. In the example of Figure 6, we assume that states 0, 1,
and 2 were previously determined not to be compatible for merging
(through negative scenarios initially submitted or generated scenarios
that were rejected by the user). Merging a candidate state pair may pro-
duce a nondeterministic automaton (NFA). For example, after having
merged q ¼ 3 and q 0 ¼ 0 in the upper part of Figure 6, two transitions
labeled start from state 0 lead to states 2 and 6, respectively. In such a
case, the Merge function merges states 2 and 6, and recursively, any
further pair of states that introduces nondeterminism.

FIGURE 6 A typical induction step of the QSM algorithm.

Induction of Software Models with QSM 93

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 We call merging for determinization this recursive operation of remov-

ing nondeterminism. This operation guarantees that the current solution
at any step is a DFA. It produces an automaton that may accept a more gen-
eral language than the NFA it starts from, and as such, it is not equivalent to
the standard algorithm to transform a NFA into a DFA accepting the same
language (Hopcroft and Ullman 1979). The time complexity of merging
for determinization is a linear function of the number of states of the
NFA it starts from. When two states are merged, the rank of the resulting
state is defined as the lowest rank of the pair; in particular, the rank of
the merged state when merging q and q 0 is defined as the rank of q 0 by con-
struction. If no compatible merging can be found between q and any of its
predecessor states according to < , state q is said to be consolidated (in the
example, states 0, 1, and 2 are consolidated).

Compatible The Compatible function checks whether the automaton
Anew correctly rejects all negative scenarios. As seen in Algorithm 1, the
quotient automaton is discarded by QSM when it is detected not to be
compatible with the negative sample.

Generating Queries Submitted to the End User

This section describes how membership queries are generated in the
QSM algorithm and how the answers provided by the end user are
processed. A complexity analysis of this algorithm is provided afterwards.

GenerateQuery When an intermediate solution is compatible with the
available scenarios, new scenarios are generated for classification by
the end user as positive or negative. The aim is to avoid poor generali-
zations of the learned language. The notion of characteristic sample
drives the identification of which new scenarios should be generated
as queries. Recall from Section 3.2 that a sample is characteristic of a
language L, called here the target language, if it contains enough posi-
tive and negative information. On the one hand, the required positive
information is the set of short prefixes Sp(L), which form the shortest
histories leading to each target DFA state. This positive information
must also include all elements of the kernel N(L) which represents all
system transitions, that is, all shortest histories followed by any admiss-
ible event. If such positive information is available, the target machine
can always be derived from the PTA by an appropriate set of merging
operations. On the other hand, the negative scenarios provide the
necessary information to make incompatible the merging of states
which should be kept distinct. A negative scenario that excludes the
merging of a state pair ðq; q 0Þ can be simply made of the shortest history

94 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 leading to q 0 followed by any suffix, i.e., any valid continuation from

state q as detailed below.
Consider the current solution of our induction algorithm when a

pair of states ðq; q 0Þ is selected for merging. By construction, q 0 is always
a consolidated state at this step of the algorithm, that is, q 0 is considered
to be in SpðLÞ. State q is always both the root of a tree and the child of a
consolidated state. In other words, q is situated at one letter of a conso-
lidated state, that is, q is considered to be in N ðLÞ. States q and q 0 are
compatible according to the available negative scenarios; they would
be merged by the standard RPNI algorithm. In our extension, the tool
will first confirm or infirm the compatibility of q and q 0 by generating
scenarios to be classified by the end user. The generated scenarios
are constructed as follows.

Let A denote the current solution, LðAÞ the language generated by A,
and Anew the quotient automaton computed by the Merge function at
some given step. Let x 2 SpðLÞ and y 2 N ðLÞ denote the short prefixes
of q 0 and q in A, respectively. Let u 2 LðAÞ=y denote a suffix of q in A. A
generated scenario is a string xu such that xu 2 LðAnewÞnLðAÞ. This
string can be further decomposed as xvw such that xv 2 LðAÞ. A gener-
ated scenario xu is thus constructed as the short prefix of q 0 concate-
nated with a suffix of q in the current solution, provided the entire
behavior is not yet accepted by A. Such scenario is made of two parts:
the first part xv is an already accepted behavior, whereas the second part
w provides a continuation to be checked for acceptance by the end user.
When submitted to the end user, the generated scenario can always be
rephrased as a question: after having executed the first episode (xv),
can the system continue with the second episode (w)? Consider the
example in Figure 6 with selected state pair q ¼ 3, q 0 ¼ 0. As q 0 is the
root of the PTA, its short prefix is the empty string. The suffixes of q
here yield one generated question (Figure 7), which can be rephrased
as follows: when having started and stopped the train, can the control-
ler restart it? One can see that the first episode of this scenario in
Figure 6 is already accepted by A, whereas the entire behavior is
accepted in Anew . The suffixes selected by our tool for generating
queries are always the entire branches of the tree rooted at q. The
aim is to help the end user to determine more easily whether the gen-
erated scenario should be rejected. The boundary between the first (xv)
and second (w) episodes of this scenario can be easily determined by
comparing A and Anew as a side product of the merging for determiniza-
tion implemented in the Merge function.

Check WithEndUser When a new scenario is generated, it is submitted as a
membership query to the end user. If the end user classifies the Query as
positive, it is added to the collection of positive scenarios. This addition

Induction of Software Models with QSM 95

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

changes the search space as it extends Sþ and consequently PTAðSþÞ.
However, this extension is implicit as the new solution Anew is, by con-
struction, also a quotient automaton of this extended PTA. When the
Query is classified as negative the induction process is recursively
started6 on the extended scenario collection.

The QSM algorithm has a polynomial time complexity in the size of
the learning sample. An upper bound on the time complexity can be
derived as follows.

Let n & OðjjSþjj þ jjS�jjÞ denote the number of states of the PTA
built from the initial collection of scenarios. For a fixed collection of sce-
narios, there are Oðn2Þ state pairs which are considered for merging.
The Merge and Compatible functions have a time complexity linear in
n. The GenerateQuery is a side product of the Merge function and does
not change its complexity. The function CheckWithEndUser is assumed
to run in constant time. Hence, for a fixed scenario collection, the time
complexity is the same as for the RPNI algorithm and is upper bounded
by Oðn3Þ. This bound is obviously not very tight. It assumes that all pairs
of states considered by ChooseStatePairs appears to be incompatible,
which is a very pessimistic assumption. Practical experiments often show
that the actual complexity is much closer to the lower bound XðnÞ.

The global complexity of QSM depends on the number of recursive
calls, that is, the number of times a new scenario submitted to the end
user is classified as negative. The way new scenarios are generated by
the GenerateQuery function guarantees that the PTA built from the
extended scenario collection has at mostOðn2Þ states. During the whole
incremental learning process, there is at most one query for each

FIGURE 7 A new scenario to be classified by the end user.

96 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 transition in this tree. Consequently, the number of queries is bounded

by Oðn2Þ.
When QSM received a characteristic sample in the initial scenario

collection (or any scenario collection considered when calling it recur-
sively), it is guaranteed that no additional scenario can be classified as
negative. It follows that QSM will no longer be called recursively and
stops by returning the target model. Note that the size of such a
characteristic sample is not necessarily reduced by the fact that any
prefix of a positive scenario is also a positive scenario, since the number
of negative examples it must contain is not affected by this property. An
experimental study of the actual sample size required to observe the
convergence of QSM and the number of queries submitted to the
end user is detailed in Section 6.2.

Reducing the Number of Queries with Blue-Fringe

The order in which states are considered for merging by the
ChooseStatePairs function described in Section 4.1 follows from the
implicit assumption that the current sample is characteristic. Consequently,
two states are considered compatible for merging if there is no suffix to dis-
tinguish among them. This can lead to a significant number of scenarios
being generated to the end user, to avoid poor generalizations, when the
initial sample is sparse and actually not characteristic for the target global
LTS. To overcome this problem, our tool implements an optimized strategy
known as Blue-Fringe (Lang et al. 1998). The difference lies in the way state
pairs are considered for merging. The general idea is to detect early incom-
patible state pairs and, subsequently, first consider state pairs for which
compatibility has the highest chance to be confirmed by the user through
positive classification. The resulting ‘‘please confirm’’ interaction may also
appear more appealing to the user.

Figure 8 gives a typical example of a temporary solution produced by
the original algorithm. Three state classes can be distinguished in this
DFA. The red states are the consolidated ones (0, 1, and 2 in this example).

FIGURE 8 Consolidated states (red) and states on the fringe (blue) in a temporary solution.

Induction of Software Models with QSM 97

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 Outgoing transitions from red states lead to blue states unless the latter

have already been labeled as red. Blue states (4 and 5 in this case) form
the blue fringe. All other states are white states.

The original ChooseStatePairs function described in Section 4.1
considers the lowest-rank blue state first (state 4 here) for merge with the
lowest-rank red state (0). When this choice leads to a compatible quotient
automaton, generated scenarios are submitted to the end user (in this case,
a scenario equivalent to the string alarm propagated, emergency stop,
emergency open). The above strategy may lead to multiple queries
being generated to avoid poor generalization. Moreover, such queries may
be nonintuitive for the user, e.g., the alarm propagated event is sent to
the train controller without having been fired by the alarm pressed event
to the sensor.

To select a state pair for merging, the blue-fringe strategy evaluates all
(red, blue) state pairs first. The ChooseStatePairs function now calls the
Merge and Compatible functions before selecting the next state pair. If a
blue state is found to be incompatible with all current red states, it is
immediately promoted to red; the blue fringe is updated accordingly and
the process of evaluating all (red, blue) pairs is iterated. When no blue state
is found to be incompatible with red states, the most compatible (red, blue)
pair is selected for merging. Note that the Initialize function now
returns an augmented prefix tree acceptor PTAðSþ; S�Þ. It stores the pre-
fixes of all positive and negative strings, with accepting states being labeled
either as positive or negative. The Compatible function now returns a com-
patibility score instead of a boolean value. The score is defined as �1,
when in the merging process for determinization, merging the current
(red, blue) pair requires some positive accepting state to be merged with
some negative accepting state; this score indicates an incompatible mer-
ging. Otherwise, the compatibility score measures how many accepting
states in this process share the same label (either þ or �). The (red, blue)
pair with the highest compatibility score is considered first. The above strat-
egy can be further refined with a compatibility threshold a as additional
input parameter. Two states are considered to be compatible if their com-
patibility score is above that threshold. This additional parameter controls
the level of generalization, since increasing a decreases the number of state
pairs that are considered compatible for merging; it thus decreases the
number of generated queries.

On the simple train example of this article, the QSM algorithm with the
original RPNI state-merging order learns the global LTS correctly by sub-
mitting 20 scenarios to the end user (17 should be rejected and only 3
should be accepted). With the blue-fringe strategy, the same LTS is synthe-
sized with only three scenarios being submitted (one to be rejected and two
to be accepted). Further comparative results are detailed in Section 6.

98 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 INTEGRATION OF OPTIONAL DOMAIN KNOWLEDGE

The interactive QSM algorithm described in Section 4 always provides a
DFA consistent with the available positive and negative scenarios. The
blue-fringe strategy can also be applied to reduce the number of additional
scenarios submitted to the end user. This strategy relies on two equivalence
classes partitioning the states of an augmented PTA. These classes corres-
pond to the positive and negative accepting states respectively.7 All states
belonging to the same class are not necessarily merged in the final solution
but the Compatible function guarantees that only states belonging to the
same class can be merged.

This approach can be extended to incorporate various sources of
domain knowledge. This knowledge refines the equivalence partition and
further constrains the compatible merging operations. From an algorith-
mic point of view, inclusion of domain knowledge is thus straightforward
but the resulting approach both speeds up the search and guarantees that
the proposed solution is consistent with the domain knowledge.

Let us stress that domain knowledge is optional here as the QSM algo-
rithm can work without it. However, if available, domain knowledge helps
to further reduce the number of queries submitted to the end user. The
next sections describe how to include fluents, models of external system
components, descriptive statements, and goals in the induction process.

Propagating Fluents

The notion of fluent has been introduced in Giannakopoulou and
Magee (2003).

Definition 7 (Fluent). A fluent is a proposition defined by a set InitFl of
initiating events, a set TermFl of terminating events, with InitFl \ TermFl ¼ ;,
and an initial boolean value.

For example, the fluent DoorsClosed describes states of the train doors as
being either closed (DoorsClosed ¼ true) or open (DoorsClosed ¼ false), and
describes which event is responsible for which state change:

DoorsClosed ¼ hfclose doorsg; fopen doors; emergency opengi
initially true:

The value of every fluent can be computed on each PTA state by sym-
bolic execution, starting from the initial state associated with the initial
value for each fluent. The PTA states are then decorated with the conjunc-
tion of such values. Two states in PTAðSþ; S�Þ belong to the same equival-
ence class if they have the same value for every fluent. The decoration of
the merged states is simply inherited from the states being merged.

Induction of Software Models with QSM 99

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

Figure 9 shows the result of propagating the values of the fluent DoorsClosed
along the augmented PTA built from the scenarios described in Figure 5.

Unfolding Models of External Components

Quite often, the components being modeled need to interact with
other components in their environment, e.g. legacy components in a big-
ger existing system, foreign components in an open system, etc. In such
cases, the behavior of external components is generally known—typically
through some behavioral model (Hall and Zisman 2004). Here we assume
that external components are known by their LTS model. For example,
Figure 10 shows the LTS for a legacy alarm sensor in our train system. When
the alarm button is pressed by a passenger, this component propagates a
corresponding signal to the train controller.

The PTA states can also be decorated with state labels from this external
LTS by unfolding the latter on the PTA. Such decoration is performed by
jointly visiting the PTA and the external LTS. The latter synchronizes on
shared events and stays in its current state on other events. Figure 11 shows
the result of unfolding the alarm sensor LTS from Figure 10 on the aug-
mented PTA built from the scenarios described in Figure 5. Each state in
Figure 11 is labeled with the number of the corresponding state in the
alarm sensor LTS. Two states belong to the same equivalence class if they
have the same external LTS state label.

FIGURE 9 Propagating fluents. dc is a shorthand for DoorsClosed; a : pres; a : prop; e : open stand for
alarm pressed; alarm propagated; emergency open, respectively.

FIGURE 10 Alarm sensor LTS.

100 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

Injecting Descriptive Statements and Goals
in the Induction Process

Descriptive statements about the domain, called domain properties, or
prescriptive statements of intent about the target system, called goals, can
be expressed declaratively with fluents in linear temporal logic (LTL)
(Giannakopoulou and Magee 2003). Linear temporal logic assertions use
standard operators for temporal referencing such as:

&ðalways in the futureÞ; � ðsome time in the futureÞ;
! ðimplies in the current stateÞ;) ðalways impliesÞ:

For example, in an extended version of our running example, the
statement

&ðHighSpeed ! Moving Þ

expresses a physical law stating that all scenarios for which a train is
running at high speed while not moving should be considered as negative.
A goal requiring train doors to remain closed while the train is moving is
formalized as

DoorsClosedWhileMoving ¼ &ðMoving ! DoorsClosedÞ:

We restrict here our attention to statements that can be formalized as
LTL safety properties. For such properties, a tester can be automatically
generated (Giannakopoulou and Magee 2003). A tester for a property is
a LTS extended with a negative accepting state such that every path leading
to this state violates the property. The tester LTS for the goal DoorsClosed-
WhileMoving is represented in Figure 12 (the black state is the negative
accepting state). Any event sequence leading to the black state from the

FIGURE 11 Unfolding the alarm sensor model.

Induction of Software Models with QSM 101

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

initial state corresponds to an undesired system behavior. In particular, the
event sequence start, open corresponds to the initial negative scenario in
our running example (see Figure 5). The tester of Figure 12 provides many
more negative scenarios, actually an infinite number of negative scenarios
due to the cyclic nature of such LTS. The property tester is used to con-
strain the induction process in the same way as an external component
LTS. The PTA and the tester are traversed jointly in order to decorate each
PTA state with the corresponding tester state. Two states belong in the same
equivalence class if they have the same property tester state. This technique
has the additional benefit of ensuring that the synthesized global LTS satis-
fies the considered goal or domain property.

PRACTICAL EVALUATIONS

We compare here how the techniques described in Sections 4 and 5
perform in practice. Section 6.1 describes experiments on three typical
(in the RE literature) case studies of varying complexity. Section 6.2
addresses specifically the question of how the QSM algorithm scales with
the size of target machines. Since standard RE test cases are relatively small,
these additional experiments are performed on synthetic data without
domain knowledge.

Requirement Engineering Case Studies

The first case study is a mine pump system inspired from Joseph (1996).
The second is an extended version of the train system used here as a

FIGURE 12 Tester LTS for the goal DoorsClosedWhileMoving. e : stop; e : open stand for emergency stop,
emergency open, respectively.

102 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 running example. The third is a phone system handling communications

between a caller and a callee.
The first objective is to measure the impact of the blue-fringe strategy

versus the original RPNI state merging order. The second objective is to
assess the impact of constraining induction through fluents, models of
external components, domain descriptions, and goals. Impact is measured
in terms of the number of queries and the adequacy of the induced models,
as estimated by a software analyst.

For each case study, we proceed in two steps:

1. (a) Design a scenario collection allowing for meaningful subsequent
comparison, that is, a scenario collection sufficiently rich to allow
an adequate global LTS to be induced under one setting of the
experiment at least.

(b) Define a common set of fluent definitions identifiable from this
scenario collection.

2. Evaluate the techniques on this scenario collection, without and with
fluents, goals, domain descriptions, or models of external components.

Condition (1a) amounts to require the scenario collection to be struc-
turally complete. We used the ISIS tool itself to incrementally set up such a
scenario collection. We started from an initial set of scenarios that end
users would typically provide. By generating scenario queries, adding
domain properties, and validating induced LTSs, we found a number of
additional scenarios that were missing. These scenarios are added to the
collection for the comparisons in step 2.

The size of the scenario collection resulting from step 1 is shown in
Table 1. SCþ and SC� correspond to the number of positive and negative
scenarios, respectively. A single positive scenario defines several positive
examples as any prefix of a positive scenario is also positive. Similarly, a sin-
gle negative scenario defines positive examples (all proper prefixes) and a
single negative example (the full string). The average scenario length is
reported in the last column. The sizes of the target global LTS in terms
of the number of different event labels (alphabet size), states, and transi-
tions are also reported. To perform the comparisons, an oracle was imple-
mented to simulate the end user. This oracle knows the target LTS for each

TABLE 1 Case Studies

Problem Events States Transitions SCþ SC� Avg. length

Mine Pump 8 10 13 3 0 8
Train 13 17 23 3 0 9
Phone 16 23 33 6 4 11

Induction of Software Models with QSM 103

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

problem and correctly classifies scenario queries as positive or negative.
Figure 13 presents the target LTS for the complete train system.

RPNI Search Order Versus Blue-Fringe Strategy
Table 2 shows the number of queries the oracle had to answer and the

adequacy of the induced model, in the three case studies, when no
additional knowledge is used to constrain induction. Qþ and Q� denote
the number of accepted and rejected scenario queries, respectively. The
number of rejected scenario queries is drastically reduced thanks to the
blue-fringe search strategy. Finally, the number of rejected scenarios tends
to be much larger on these test cases than the number of accepted ones.
This observation confirms the usefulness of scenario queries. Negative
answers force the induction algorithm to be restarted when an incorrect
search path has been taken.

The superiority of blue-fringe over RPNI had already been observed in
a noninteractive setting (Lang et al. 1998) when the learning sample is not
characteristic. Interestingly, the blue-fringe strategy also pays off in our
QSM interactive learning algorithm by reducing the number of member-
ship queries to be submitted to an oracle. As blue-fringe is seen to be far
superior to the RPNI strategy, subsequent comparisons are made only with
blue-fringe.

Impact of Fluent Propagation
Table 3 shows the influence of fluent decorations to constrain the

induction process. Note that the number of rejected scenario queries is

FIGURE 13 Train system case study.

TABLE 2 RPNI Search Order Versus Blue-Fringe Strategy for the QSM Algorithm

Problem Search Qþ Q� Model Adequacy

Mine Pump RPNI 1 30 Missing=unauthorized paths
Blue-Fringe 1 4 target found

Train RPNI 4 83 target found
Blue-Fringe 5 5 target found

Phone RPNI 5 172 Missing=unauthorized paths
Blue-Fringe 6 17 target found

104 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

decreasing with the number of fluents. For the same induced model,
the number of accepted scenarios remains the same. Fluent-based state
information can only increase the number of incompatible states.

Combined Results
Table 4 shows the results of a blue-fringe induction constrained with all

available fluents, goals, and domain properties,8 and foreign component(s)
in each case study. A typical goal for the train system states that the train may
never run at high speed when it comes near a station. For each problem,
the first line corresponds to the simplest approach, that is, the RPNI
search order and no domain knowledge. Goals and domain properties
alone were observed as powerful as fluents to reduce the number of queries.

Real-Time Execution
Our interactive blue-fringe implementation has been tested for per-

formance evaluation on an Intel Pentium IV, 1.8 GHz, 512 Mb with Java
5.0. These tests illustrate that the maximum time between two queries
was 40 ms for the bigger case study. Hence, the interactions with the end

TABLE 3 Impact of Fluent Propagation

Problem Fluents Qþ Q� Model Adequacy

Mine Pump 0 1 4 target found
1 1 1 target found
2 1 0 target found
3 1 0 target found

Train 0 5 5 target found
1 5 3 target found
2 5 3 target found
3 5 3 target found
4 5 2 target found
5 5 0 target found

Phone 0 6 17 target found
1 6 11 target found
2 6 6 target found
3 6 5 target found

TABLE 4 Global Results of QSM on the RE Test Cases

Problem Search Fluents Goals External LTS Qþ Q� Model Adequacy

Mine Pump RPNI 0 0 0 1 30 missing=unauthorized paths
Blue-fringe 3 3 2 1 0 target found

Train RPNI 0 0 0 4 83 target found
Blue-Fringe 5 5 2 5 0 target found

Phone RPNI 0 0 0 5 172 missing=unauthorized paths
Blue-Fringe 3 3 1 7 3 target found

Induction of Software Models with QSM 105

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 user are performed in real-time. We do not expect any performance prob-

lem with respect to the user interactivity for typical sizes of requirement
models.

Experiments on Synthetic Datasets

The QSM algorithm is evaluated here on synthetic data in order to
study its performance when the problem size (in terms of the number of
states of the target machine) grows significantly beyond those of the stan-
dard RE test cases presented in Section 6.1. In this particular setting, we
do not rely on additional domain knowledge. Section 6.2.1 describes the
methodology used to generate automata, learning, and test samples. Sec-
tion 6.2.2 discusses the gain in terms of generalization accuracy of the
QSM algorithm with respect to the original RPNI or blue-fringe algorithms.
The number of generated queries by QSM is reported in Section 6.2.3. Sec-
tion 6.2.4 gives comparative performances in terms of induction CPU time.

Generation of Target Models, Training, and Test Data
The procedure described here is inspired from the Abbadingo compe-

tition (Lang et al. 1998). Experiments are made on automata of increasing
sizes: n ¼ 20, 50, 100, and 200 states with an alphabet of two letters. Ran-
domly generated automata are trimmed to remove unreachable states
and minimized to obtain canonical target machines. Moreover, only auto-
mata without sink state are kept for the experiments. Such states represent
deadlocks in multi-agent systems considered in the RE context and should
always be avoided. The number of states of a DFA generated using this
procedure is approximately 3=5 of the requested size. The latter has been
increased accordingly.

A sample composed of n2 different strings has been initially synthesized
by a random walk of the automaton. These strings have been generated
using a uniform length distribution ½0; p þ 5�, where p is the depth of
the automaton. The random walk procedure is implemented to provide
positive and negative strings in equal proportion.

A maximal sample size of n2=2 strings was experimentally observed as
offering the convergence for all tested algorithms. The learning experi-
ments are launched on increasing proportions of this nominal training
sample, i.e., 3%, 6%, 12.5%, 25%, 50%, and 100%. Test samples of at most
n2=2 strings are used to measure the generalization accuracy of the learned
model. Training and test samples are guaranteed not to overlap. Moreover,
in the case of the QSM algorithm, test samples do not contain the
additional strings which were submitted to the oracle during the interactive
learning phase.

106 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 An automatic oracle has been implemented to answer the questions

asked during the execution of the QSM algorithm. This oracle correctly
answers the membership queries since it has access to the target automa-
ton. Experiments are performed on 10 randomly generated automata for
each size and five randomly generated samples for each of them.

Generalization Accuracy
Figure 14 reports for several target sizes the proportion of independent

test samples correctly classified while increasing the learning sample size.
Comparative performances are given for RPNI, Blue Fringe, QSM-RPNI
(QSM with the RPNI merging order), and QSM-Blue Fringe (QSM with
the Blue Fringe strategy).

Known results are confirmed here since Blue Fringe outperforms RPNI
for sparse training samples. Moreover, significant improvements of the gen-
eralization accuracy is observed thanks to the oracle. The QSM algorithm
outperforms the original RPNI and Blue Fringe systematically. Interestingly,
QSM-RPNI also overcomes the original Blue Fringe algorithm. When the
classification rate of test samples reached 100%, the proposed solutions
were always isomorphic to the target machines.

FIGURE 14 Classification accuracy.

Induction of Software Models with QSM 107

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 The relative performances described above do not depend much on

the target size. It should be noted that the learning sample sizes are well
chosen to illustrate the convergence of the standard RPNI and Blue Fringe
algorithms. When the target size grows (especially for n ¼ 200) the QSM-
Blue Fringe has already nearly converged with only 1.5% of the nominal
learning sample size. Such a gain can also be explained by the role played
by the oracle. The QSM algorithm tends to elicit a characteristic sample by
submitting queries to the user. This issue is further investigated in Section
6.2.3, where the number of queries is reported as function of the learning
sample size.

Number of Queries
An important aspect of QSM is the number of queries submitted to the

oracle. When the oracle is an end user, as in the RE context, this factor
indeed drives the usability of the approach in practice. Figure 15 presents
the number of generated queries depending on the learning sample size
for several target sizes. Results are given for QSM-RPNI and QSM-Blue
Fringe. In each case, the number of generated strings that are classified
by the oracle either as positive or negative are reported separately.

FIGURE 15 Number of queries.

108 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 The number of strings classified as positive tends to increase initially

with the learning sample size before staying roughly constant when the
learning process has nearly converged. The additional information
required to guarantee correct identification depends mostly on the nega-
tive strings.

Figure 15 shows that QSM-Blue Fringe tends to generate fewer strings
classified as negative by the oracle as compared to QSM-RPNI. The figure also
shows that the number of negative strings decreases with the learning sample
size. In other words, the number of strings classified as negative decreases
while the algorithm converges. This illustrates that the generalization
obtained while merging states is more sound when performed with more data.

Induction Time
Figure 16 reports the induction time while varying learning sample size

and target size. All tests on synthetic data were executed with Java 5.0 on an
Intel Pentium-IV 3 GHz computer with 1 Gb of RAM.

The RPNI and Blue Fringe algorithms go through different phases
according to the amount of available data. Initially, the CPU time tends
to increase with the learning sample size. In this first phase, the learning

FIGURE 16 Induction time.

Induction of Software Models with QSM 109

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 time follows the increase of the PTA size. When the learning sample

becomes richer, better generalizations can be obtained by merging states
in a more sound way. The classification rates of new data increases while
the learning time reaches its maximum. The last phase is observed when
the algorithm rapidly converges to a good model. Classification accuracy
tends to 100% and the CPU time is decreased because the right merging
operations are performed directly.

These known tendencies of the RPNI and Blue Fringe algorithms are
confirmed in our experiments. They also apply to the QSM algorithm
but left shifted with respect to the learning sample size. As already observed
in Figure 14, convergence is indeed faster for the QSM algorithm. The rela-
tive time performance of the QSM algorithm with respect to RPNI or Blue
Fringe depends on two contradictory effects. On the one hand, whenever a
string is classified as negative by the oracle, QSM is called recursively on an
extended sample. Each new call increases the CPU time as it could be con-
sidered as a new run of the RPNI or Blue Fringe algorithm. This run can be
interrupted, however, and replaced by another one if a new negative
example is included after an additional query. On the other hand, due
to its faster convergence, QSM can obtain better results with fewer data
originally provided.

The CPU times should thus be compared while considering the relative
classification results of the various approaches. For instance, when the tar-
get size is 200 and 3% of the full training sample is used, QSM-Blue Fringe
runs an order of magnitude slower than Blue Fringe. However, the classi-
fication accuracy of QSM-Blue Fringe is 95%, while it is 67% for Blue
Fringe for the same amount of data. When the training size increases
QSM-Blue Fringe actually becomes slightly faster than Blue Fringe because
it has already nearly converged to the optimal solution.

DISCUSSION AND RELATED WORKS

The approach described in this article induces a behavior model of a
software system from positive and negative scenarios and membership
queries submitted to an end user. Additional domain knowledge is useful
to reduce the number of queries but this knowledge is optional.

Alternative approaches to the synthesis of such models from scenarios
have been proposed in the RE literature, but all of them require additional
input information: a high-level message sequence chart showing how low-
level MSC scenarios are to be flow-charted (Uchitel, Kramer, and Magee
2003), pre- and post-conditions of interactions expressed on global state
variables (van Lamsweerde and Willemet 1998; Whittle and Schumann
2000), local MSC conditions (Kruger et al. 1998) This additional infor-
mation is difficult to formulate for an end user.

110 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 The approach described in Mäkinen and Systä (2001) is, to the best of

our knowledge, the unique previous attempt to use grammatical inference
techniques for modeling software system behaviors. It is inspired from the
model of a minimally adequate teacher proposed in Angluin (1987). We
see two important limitations of this approach. Firstly, the inputs are not
only global system scenarios but also state machine traces local to some spe-
cific agents. These traces are the sequences of events seen by a single agent
(e.g., the events starting from or leading to a single vertical line in Figure 1).
The alphabet of possible events and the learning strings are then specific to
each agent and the learning problem has to be tackled separately for each
agent while losing a global view of the system. Practical tests with our
approach have shown that the learning task becomes simpler if one restricts
it to the induction of separate agent models. This is much less adequate,
however, from an RE perspective since it requires the end user to be able
to classify traces in a different target language for each agent. It is much
more convenient to interact with the end user in the scenario language
of the global system because this is the language she used in the first place.
Secondly, the end user is asked to answer both membership and equi-
valence queries. As claimed by Angluin herself, the availability of such a
well-informed oracle is likely to be problematic in practice. She proposed
to replace equivalence queries by a random sampling oracle in the PAC
model (Valiant 1984). However, the sampling process is likely to require
a large collection of scenarios and, in any case, this alternative was not
followed by Mäkinen.

The possibility of learning with membership queries only has been
proposed in Angluin (1981) with some theoretical limits but also positive
results. In particular, the number of queries is shown to be exponential
in jQ j, the size of the target model, if the only known information is indeed
jQ j. The proof of such a result is based on a worst-case analysis which need
not be relevant on average in practice. Moreover, the number of required
membership queries is shown to be polynomial in jQ j if the oracle receives
a representative sample of the target language L. A structurally complete
sample for the canonical automaton A(L) (see Definition 3) is a represen-
tative sample of L.

There is no theoretical guarantee that the initial collection of positive
scenarios provided by an end user in our approach forms a structurally
complete sample with respect to the target model. However, the lack of
structural completeness can be automatically detected in some useful cases
in our application domain. In a global LTS, such as the one represented in
Figure 13, there must be a continuation from any state (no deadlock).
This property can be checked in the induced model and additional
queries can be generated to the end user to ask for possible continuations
from any state that would fail to satisfy this property. Finally, the practical

Induction of Software Models with QSM 111

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 experiments reported in Section 6.1 illustrate that the number of queries

actually submitted to an end user for these test cases is always limited with
the blue-fringe strategy.

The QSM algorithm described in Section 4 is called recursively on an
extended scenario collection whenever a generated scenario query is classi-
fied as negative by the end user. An alternative approach would implement
the incremental version described in Dupont (1996) to update the search
space and the current solution whenever new positive or negative examples
are added. This refinement has not been implemented in the ISIS tool
because, even without it, a real-time execution is already guaranteed on
representative test cases. This incremental version also relies on the orig-
inal RPNI search order and it might be a bit challenging to extend it to
the blue-fringe strategy.

The idea of incorporating domain knowledge by defining equivalence
classes on the states of the initial machine and by propagating these con-
straints during the learning process has already been proposed in Coste
et al. (2004). The novelty in our approach is the specific kinds of domain
knowledge considered here (fluents, goals and domain properties, external
system models) and the way they are reformulated as equivalence classes.

The technique described in Coste and Nicolas (1998) back-propagates
state labels, initially only defined for positive or negative accepting states,
and maintains these constraints while reducing the search for a DFA.
The implementation in our ISIS tool goes a step further by back-propagat-
ing all constraints on the fly whenever a merging operation is observed
compatible. This strategy implies to propagate more constraints at run-time
but reduces the cost of a full initial propagation which would prevent
merging attempts that might never be actually considered.

A first version of our approach is described in Damas et al. (2005, 2006)
but the focus was specific to the software engineering community while the
present article is formulated with a much more detailed learning perspec-
tive. The experimental evaluations (Section 6) have been significantly
extended. Section 6.2 studying how the QSM algorithm scales with the size
of the target machine, the discussion in Section 1.1, and the present section
are all new. The revised pseudo-code of the QSM algorithm given in
Algorithm 1 also better matches the actual implementation in the ISIS tool.

CONCLUSION AND PERSPECTIVES

This article presents an application of grammatical inference techni-
ques to learn software requirements from end-user scenarios. Elicitation
of software requirements is addressed as a DFA induction problem from
positive and negative strings. These strings consist of interactions between

112 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 agents of the software-to-be and of its environment. The end user is also

assumed to be an oracle who can answer membership queries.
We propose here the QSM algorithm that extends the RPNI and blue-

fringe algorithms with membership queries. This state-merging approach
can be further constrained by incorporating domain knowledge to limit
the search for the target machine while reducing the number of queries.
This prior knowledge is formalized here as fluents, goals, and domain
properties expressed in fluent linear temporal logic, and state models of
external software components. Whenever available, domain knowledge
offers the additional advantage of guaranteeing that the induced model
is consistent with it.

The time complexity of QSM is a polynomial function of the learning
sample size. Theoretical limits and practical issues of learning with queries
are discussed. The QSM algorithm is implemented in the ISIS tool. We
report practical evaluations on standard test cases in requirements
engineering. Additional experiments on synthetic data show that the
QSM algorithm scales well when the size of the target machine increases.
In particular, the QSM algorithm systematically offers better generalization
accuracy as compared to the RPNI and blue-fringe algorithms for sparse
learning data.

Our future work includes the consideration of scenarios that would not
always start from the initial state. From the learning perspective this case
corresponds to learning a language from partial strings. The domain
properties considered in this work are likely to be useful to suggest which
state each partial scenario should be considered to start from.

Other application domains could also benefit from the particular
formalization of domain knowledge proposed here and its translation into
a set of constraints on the induction process.

An important open question is robustness to possible misclassifications
by the end user. Traditional ways to deal with noisy inputs include probabil-
istic learning methods. The availability of domain knowledge and model
checking techniques could also help to correct such mistakes.

REFERENCES

Angluin, D. 1978. On the complexity of minimum inference of regular sets. Information and Control
39:337–350.

Angluin, D. 1981. A note on the number of queries needed to identify regular languages. Information
and Control 51:76–87.

Angluin, D. 1987. Learning regular sets from queries and counterexamples. Information and Computation
75(2):87–106.

Bell, T. and T. Thayer. 1976. Software requirements: Are they really a problem? In: 2nd International
Conference on Software Enginering (ICSE), pp. 61–68. San Francisco, CA.

Boehm, B. 1981. Software Engineering Economics. Upper Saddle River, NJ: Prentice-Hall.

Induction of Software Models with QSM 113

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08

Brooks, F. 1987. No silver bullet: Essence and accidents of software engineering. IEEE Computer
20(4):10–19.

Coste, F., D. Fredouille, C. Kermorvant, and C. de la Higuera. 2004. Introducing domain and typing bias
in automata inference. Grammatical Inference: Algorithms and Applications, pp. 115–126. Athens,
Greece: Springer-Verlag.

Coste, F. and J. Nicolas. 1998. How considering incompatible state mergings may reduce the DFA
induction search tree. Grammatical Inference, ICGI’98, pp. 199–210. Ames, IO: Springer-Verlag.

Damas, C., B. Lambeau, P. Dupont, and A. van Lamsweerde. 2005. Generating annotated behavior
models from end-user scenarios. IEEE Transactions on Software Engineering 31(12):1056–1073.

Damas, C., B. Lambeau, and A. van Lamsweerde. 2006. Scenarios, goals, and state machines: A win–win
partnership for model synthesis. International ACM Symposium on the Foundations of Software Engineer-
ing, pp. 197–207. Portland, OR.

Dupont, P. 1996. Incremental regular inference. In: Grammatical Inference: Learning Syntax from Sentences,
ICGI’96, pp. 222–237. New York: Springer-Verlag.

Dupont, P., L. Miclet, and E. Vidal. 1994. What is the search space of the regular inference? Grammatical
Inference and Applications, ICGI’94, pp. 25–37. Alicante, Spain: Springer-Verlag.

Giannakopoulou, D. and J. Magee. 2003. Fluent model checking for event-based systems. In: 9th
European Software Engineering Conference=11th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 257–266. Helsinki.

Gold, E. 1978. Complexity of automaton identification from given data. Information and Control 37:
302–320.

Hall, R. and A. Zisman. 2004. Omml: A behavioral model interchange format. In: 12th IEEE Joint Inter-
national Requirements Engineering Conference, pp. 272–282, Kyoto, Japan.

Hopcroft, J. and J. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Reading,
MA: Addison-Wesley.

Joseph, M. 1996. Real-Time Systems: Specification, Verification and Analysis. Upper Saddle River, NJ:
Prentice-Hall.

Kruger, I., R. Grosu, P. Scholtz, and M. Broy. 1998. From mscs to statecharts. International Workshop on
Distributed and Parallel Emebedded Systems, pp. 61–71, Scholoß Eringerfeld, Germany: Kluwer.

Lang, K. 1992. Random DFA’s can be approximately learned from sparse uniform examples. In: 5th
ACM Workshop on Computational Learning Theory, pp. 45–52, Pittsburgh, PA, USA.

Lang, K., B. Pearlmutter, and R. Price. 1998. Results of the abbadingo one DFA learning competition
and a new evidence-driven state merging algorithm. In: Grammatical Inference, pp. 1–12. Ames,
IO: Springer-Verlag.

Magee, J. and J. Kramer. 1999. Concurrency: State Models and Java Programs. New York: Wiley.
Mäkinen, E. and T. Systä. 2001. Mas – an interactive synthetiser to support behavorial modeling in UML.

In: 27th International Conference on Software Engineering, pp. 15–24, Toronto, Canada.
Oncina, J. and P. Garcı́a. 1992. Inferring regular languages in polynomial update time. In: Pattern

Recognition and Image Analysis, eds. N. Pérez de la Blanca, A. Sanfeliu, and E. Vidal, Vol. 1, Series
in Machine Perception and Artificial Intelligence, pp. 49–61. Singapore: World Scientific.

Oncina, J., P. Garcı́a, and E. Vidal. 1993. Learning subsequential transducers for pattern
recognition interpretation tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence
15(5):448–458.

The Standish Group. 1995. Software chaos. http://www.standishgroup.com. Last accessed 21 January 2008.
Uchitel, S., J. Kramer, and J. Magee. 2003. Synthesis of behavorial models from scenarios. IEEE Transac-

tions on Software Engineering 29(2):99–115.
Valiant, L. 1984. A theory of the learnable. Communications of the Association for Computing Machinery

27(11):1134–1142.
van Lamsweerde, A. 2001. Goal-oriented requirements engineering: A guided tour. In: 5th Intl. Symp.

Requirements Engineering (RE), pp. 249–263. Toronto: IEEE Press.
van Lamsweerde, A. 2004. Goal-oriented requirements engineering: A roundtrip from research to

practice. In: 12th IEEE Joint International Requirements Engineering Conference, pp. 4–7, Kyoto, Japan.
van Lamsweerde, A. and L. Willemet. 1998. Inferring declarative requirements specifications from

operational scenarios. IEEE Transactions on Software Engineering 24(12):1089–1114.
Whittle, J. and J. Schumann. 2000. Generating statechart designs from scenarios. In: 22nd International

Conference on Software Engineering, pp. 314–323. Limerick, Ireland.

114 P. Dupont et al.

D
ow

nl
oa

de
d

B
y:

 [D
up

on
t,

P
ie

rr
e]

 A
t:

13
:4

4
29

 F
eb

ru
ar

y
20

08
 NOTES

1. A counterexample in this context is a string belonging either to the language of the proposed model
or to the target language but not both languages.

2. Let n be the number of states of PTAðSþÞ. By construction, n 2 OðjjSþjjÞ. The search space size is the
number of ways a set of n elements can be partitioned into nonempty subsets. This is called a Bell
number B(n). It can be defined by the Dobinski’s formula: BðnÞ ¼ 1

e

P1
k¼0

kn

n!. This function grows
much faster than 2n.

3. The standard order of strings on the alphabet R ¼ fa; bg is k < a < b < aa < ab < ba < bb <
aaa < � � �

4. As explained in Section 2.1, any proper prefix of a negative scenario is a positive scenario. Hence, the
initial PTA also stores all the proper prefixes of the negative scenarios. Besides, an augmented
PTAðSþ; S�Þ with positive and negative strings is considered in Section 4.3.

5. The assignment in the corresponding while loop is assumed to be true whenever a valid state pairs is
returned by ChooseStatePairs. When no more state pairs are considered for merging,
ChooseStatePairs returns (nil,nil) and the assignment is evaluated to false. This abuse of notation
in the pseudo-code allows to keep it more concise. A similar remark also applies to the inner while
loop of the QSM algorithm.

6. A more sophisticated strategy to update the current solution in such a case is mentioned in Section 7.
7. All states in a LTS are (positively) accepting. Hence, all states of PTAðSþÞ are positive accepting states.

Since a negative scenario is the concatenation of a positive prefix with a single additional symbol,
the augmented PTAðS�; S�Þ only contains states labeled either as positive accepting or negative
accepting.

8. The fact that the number of fluents and goals is the same for each case study is purely coincidental.

Induction of Software Models with QSM 115

