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Abstract

Dealing with high-dimensional data becomes very common nowadays; visualization is a natural preprocessing
to have an overview of such data. A lot of dimensionality reduction methods exist; many of them require to tune
a parameter implementing a trade-off between conflicting objectives. Automatically choosing the appropriate
trade-off is usually a difficult task because in most cases the exact final goal of the visualization is ill-defined.
The approach developed here aims at taking advantage of the user’s capacities and feedback by allowing
him to control parameters in real-time and to see the resulting visualization. In order to have fast transitions
between visualizations resulting from different values of the parameter, interpolation on a grid is used as an
approximation. The accuracy of this approximation is estimated using Procrustes analysis and can be adjusted
through a threshold. Simulations provide an interpretation of this threshold and are validated on a real dataset.

Categories and Subject Descriptors (according to ACM CCS): [Human-centered computing]: Information
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1. Introduction

With the increasing possibilities to have access to data, deal-
ing with and analyzing very large datasets is a usual task to-
day. The datasets can be large in the number of observations
as well as in the number of dimensions. Visualization is a
powerful tool in the first steps of data analysis: it gives a fast,
intuitive and comprehensive view of the data. Many dimen-
sionality reduction tools exist to visualize high-dimensional
data. However, most algorithms implement a compromise
between conflicting objectives. For example, it is impossible
to project on a 2-dimensional space a 3-dimensional sphere,
both without flattening and without tearing the sphere. Mod-
ern methods such as NeRV [VPN*10] and JSE [Lee12] ex-
plicit this compromise by a trade-off parameter to be tuned.

Two main possibilities exist to tune this parameter: the
first one consists in defining an objective function, and to
let the algorithm minimize this mathematical criterion. The
second one is by trial and error, adjusting the parameter de-
pending on the visualization obtained.

The first approach is the best one if a specific objective
function to optimize exists. However it requires to know a
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priori what kind of visualization is wanted, which is contra-
dictory to the idea that visualization is mostly used to get a
first insight into the data. At that step it is hardly possible
to express the goals into a precise mathematical form, which
makes automatic setting of parameters difficult too.

The second approach has the advantage to introduce an
interaction with the user. It allows us to take advantage of
human intuition and background knowledge hard to write
in mathematical terms [KKEM10] [STMT12]. However an
important limitation in this approach is the time needed for
computing each visualization. When dealing with visualiza-
tion methods that use complex nonlinear optimization algo-
rithms, the computation time might be incompatible with
the real-time requirements of human interaction. Reduced
computation time can be obtained by use of adapted algo-
rithms [IMOO09] [IM12].

This paper develops the second approach using approxi-
mations to restrict the computation time. The main challenge
is to balance accuracy of approximations with computation
time. Section 2 gives an illustration of the problem; Section
3 details the proposed method while Section 4 emphasizes
on the choice of parameter values.

The definitive version of this manuscript is available at http://diglib.eg.org/.
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2. Example

Many nonlinear dimension reduction techniques use a pa-
rameter to tune a trade-off between two conflicting objec-
tives. In the NeRV [VPN*10] and JSE [Leel2] methods the
parameter is the relative weight given to false positives and
false negatives. The parameter to tune can also be a trade-
off between different types of features, as in MRE [MHO5],
or the rate of supervision as in [AG11] or [dRKO*03]. The
choice of this parameter can have a large influence on the
final result as can be seen in Figures 1 and 2. Figure 1
shows different projections, going from crushing to peeling
a sphere. On Figure 2, the clusters (identified by colors) are
more or less clearly separated depending on the balance be-
tween two types of features. The brown cluster is very clear
for A = 1, and all black points are concentrated for A = 0.4.
Separation between the red and blue clusters at A = 1 can be
improved by using A = 0.4. No visualization is better a priori
since those are just different views of a single problem.
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Figure 1: NeRV projection of a 3D sphere depending on K,
trade-off between false positives and false negatives.

Figure 2: JSE projection of [AA97] depending on A, trade-
off between two types of features.

3. Proposed method

In order to allow the user to efficiently explore the config-
urations resulting from different values of the parameters,
it is hardly possible to rely on real-time computations. This
would require a computation time (of a new visualization) in
less than e.g. 1 second, which is not compatible with most ef-
ficient nonlinear dimension reduction tools (on a stand-alone
computer). The solution suggested here is to pre-compute a
n-dimensional grid of projections (where n is the number
of parameters) and to interpolate for other parameters val-
ues. Of course the key question is the resolution of the grid,
which directly influences the computation time.

To avoid interpolating between too different projections,
dissimilarities between projections can be estimated us-
ing Procrustes analysis [SC70]. Depending on the accuracy
wanted, a threshold value can be chosen below which con-
figurations are considered as close enough to use the inter-
polation, otherwise a new projection is computed. This ap-

proach requires a few assumptions: the method used to vi-
sualize data must be known and accessible, and the point
to point correspondence between all visualizations is known
; these hypotheses are commonly met. Another underly-
ing assumption is that the projection algorithm gives suffi-
ciently continuous and smooth visualizations with respect to
a change in the parameters. In algorithms with local minima
some precautions could be needed, as fixing random compo-
nents [GFVLDI13].

This approach leads to two main questions:

e How to align the different visualizations in order to ef-
ficiently match them? Procrustes analysis aims to align at
best (in the least squares sense) two sets of points using rigid
transformations.

e How to avoid interpolation between too different projec-
tions, i.e. how to define the grid accurately enough? The
distance minimized by Procrustes analysis may be used to
evaluate the similarity between two visualizations.

3.1. Visualizations alignment using Procrustes analysis

To facilitate the transitions between different visualizations,
the pre-computed projections need to be aligned as best as
possible. Knowing the correspondence between points of
each projection allows us to use Procrustes analysis [SC70]
that centers, rescales and rotates the set of points to match
it as best as possible with a reference (in the least square
sense). To align the set A € RP*7 on the set B € RP*4, we
are looking for a transformation B = cAT + 1g where c is a
scalar scaling coefficient, 7' is an g X g orthogonal rotation
matrix , g is a 1 X ¢ translation vector and 1 is a p x 1 vector
of ones, such that

B* = argmin||(B— B)||} = argminzr((B—B)'(B—B))

Q)]

where F stands for Frobenius norm. Let Q =1 —11'/p be a

centering matrix, and VDW' a singular value decomposition
of A'QB. Then solutions to 1 are [SC70]

!

T = VW
tr(T'A' OB) /tr(A’ QA)
g = (B—cAT)'1/p.

Cc

Therefore at the optimum the criterion to minimize is equal
to ||(B—B*)||% = trB'QB — (1rT'A’ OB)* JtrA' QA.

However this criterion is neither symmetric nor scale-
independent, two properties very desirable to compare pro-
jections. One way to overcome those limitations is to divide
||(B— B*)||% by trB'QB [LIC74]. The final criterion, here-
after refered to as Procrustes value, is then

pv(A,B) = 1— (trT'A'OB)? /tr(A' QA)tr(B'OB)  (2)

which is symmetric and [0 1] bounded. Value of O is natu-
rally reached when A = B. This last criterion allows us to
measure in a general way if matrices A and B match better
than matrices C and D.
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The alignment of the visualizations computed with the
grid values of the parameters can be done at once before any
interpolation, or online. Pre-alignment on a grid of n > 1 pa-
rameters is less straightforward and depends on the path cho-
sen from the reference configuration, since Procrustes anal-
ysis allows to align two sets of points at once only. To deal
with more than two configurations at once, a possibility is to
use the generalized Procrustes analysis [Gow75].

3.2. Grid precision

Once the grid-based visualizations are aligned, the next step
is to evaluate if the grid is accurate enough. The assump-
tion is that if two configurations Ay, and B, (correspond-
ing to parameter values A; and A3 respectively) are similar
enough, then the transition between the visualizations will
be smooth enough to use interpolated X;’Lz as a good approx-
imation of the real visualization X, (corresponding to pa-
rameter value Ay). More mathematically, for A} < Ay < A3
and if similarity(Ay,,By,) is small enough then we assume
similarity(sz,Xiz) < similarity(Ay, ,B),) (see Figure 3).
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Figure 3: lllustration of the assumption of smoothness

The similarity between configurations can be evaluated
by the pv value provided by Procrustes analysis in Equa-
tion 2, noted pv,.4 for two successive configurations on
the grid. In case of a n > 1 dimensional grid, the maximum
value between pairs of configurations on the square (n = 2)
or (hyper-)cube (n > 2) is used (bi-, tri-,...,interpolation is
used). The idea is then to determine a threshold ¢ such that
if pvgiq <t interpolation is considered to be good enough,
otherwise new exact projections are computed to refine the
grid in this area of the parameter space.

4. Procrustes value interpretation

The main difficulty with the proposed procedure is to define
what a ’good enough’ approximation means, and to choose
a suitable threshold value ¢ accordingly. It implies to inter-
pret pv in terms of the difference between configurations, or
more precisely in terms of point displacements between the
two examined configurations. A bigger pv implies a weaker
match between the matrices compared, but the intuitive in-
terpretation of values between 0 and 1 is not straightfor-
ward. This section aims at evaluating the influence of the
point configuration and of the type of perturbations on pv
by means of simulations; then simulations results are con-
fronted to results on a real dataset.
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4.1. Understanding Procrustes parameter

To understand the relationship between the pv value and the
point displacements, simulations were performed where ran-
dom distributions of points are deliberately perturbed. As the
main aspect in Procrustes analysis is the magnitude of the
displacements, the orientation of the perturbations is drawn
at random from a uniform variable in simulations.

How to quantify the perturbations? In order to study
the relation between the Procrustes value and the amount
of perturbations applied to the points, we first have to de-
fine how to quantify the latter. As scale effects and the num-
ber of points (for a given distribution) should not intervene,
the perturbation magnitude |pert| must be proportional to
the distance to the neighbors: |pert;| ~ f(d;(k)), where i is
the perturbed point , f is a probability distribution func-
tion, and d;(k) the distance from i to its k nearest neigh-
bor. As exchanging positions of two neighbor points in a 10
points dataset has much more impact than in a 100 points
dataset, the neighborhood must be proportional to the total
number of points. So we take k = [ * p with p the number
of points and / in [0 1] represents the mean perturbation in
terms of neighborhood proportion. Taking / = 0.1 means that
in average x; will be displaced of the distance necessary to
cover its 10% nearest neighbors. The distribution f is cho-
sen here as an half normal distribution in order to have a
lot of small perturbations and a few large ones. Choosing
f = |N(0,d;(k)v/2m/2)| gives a mean displacement d; (k).

Influence of initial configuration. Figure 4 shows the
different types of distributions perturbated; the respective
distributions are uniform, Gaussian, composed of three sep-
arate clusters, of one cluster with 3 outliers, and of softly
separated clusters.

Figure 5 shows the Procrustes value with respect to pa-
rameter /, for the five distributions. As expected the Pro-
crustes value increases when the neighborhood grows. Two
curves have a clearly different behavior which can be easily
explained. For the three clearly separated clusters, the two
large steps in the Procrustes value appear when the neighbor-
hood grows to cover a second cluster. The same phenomenon
appears much earlier with the dataset with 3 outliers, be-
cause the smaller clusters contain only one observation.

Uniform Normal Hard clusters Outliers Soft clusters
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Figure 4: Example of initial configurations to perturbate

Considering the closeness of most of the curves in Figure
5 and the fact that the case with the perfectly separable clus-
ters is the less natural one, the configuration with the Gaus-
sian distribution is chosen as reference in the following.



E. Renard, P. Dupont & M. Verleysen / User control for adjusting conflicting objectives in parameter-dependent visualization of data

1

Procruste value
o
n

——Bieta (1.20)]

. . i
Gamma

——Esta5.2)

a i i H i N

a 05 1
| (perturbation in proportion of nearest neighboors)

Figure 5: Mean Procrustes values with respect to the mean

displacement in terms of % of the nearest neighbors, for dif-

ferent initial configurations.

Influence of the perturbation distribution. To see in-
fluence of the perturbation distribution, the chosen (Gaus-
sian) distribution of points is perturbed by the Bera(1,20),
N, Gamma(2.9,1/2.9) and Beta(5,2) distributions (the or-
der of this list corresponds to increasing modes of the per-
turbation distribution). Figure 6 shows the evolution of the
Procrustes values for the different types of perturbation dis-
tributions. The difference between the curves is easily ex-
plained: as Procrustes analysis is /;-norm based, the distri-
butions with a concentration of the perturbations (or mode)
near zero, and so implying fewer but larger strong perturba-
tions, tend to give larger Procrustes values.
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Figure 6: Mean Procrustes values with respect to the mean
displacement in term of % of the nearest neighbors, for dif-
ferent perturbation distributions.

4.2. Test on real data

To confront simulations to results on a real dataset, interpo-
lated visualizations based on a rough grid were compared to
the exact visualizations. The latter correspond here to the re-
sult obtained using the dimensionality reduction algorithm
from [Leel2], used as an example. The parameter to ad-
just can be interpreted as a way to choose the trade-off be-
tween false positives and false negatives. A second parame-

ter was added to allow a balance between two types of fea-
tures. Exact visualizations on a 2-parameters grid with val-
ues of [0, 1] x [0, 1] by step of 0.025 were compared to in-
terpolated visualizations based on a grid with step of 0.2.
The dataset used is the handwritten digits pendigits dataset
[AA97] available on [FA10]. The first type of features is
made of the images themselves (16 x 16 pixels), the sec-
ond one consists of eight successive pen points on a two-
dimensional coordinate system (8 X 2 coordinates).

Procrustes value depending on neighborhood pertur-
bations. Figure 7 (left) shows the same type of results for
the pendigits dataset as in Figure 6. The shape of the curve
is very similar to the simulated ones, however the Procrustes
values increase more slowly with the perturbations: simula-
tions seem to slightly overestimate real Procrustes value.

Estimated Procrustes value depending on neighbor-
hood perturbations. Comparing pv,,4 (cf. Section 3) to
[ (cf. Section 4.1) in Figure 7 (right), a threshold ¢ of 0.5
(corresponding to / < 0.2) seems a good trade-off between
accuracy and the number of recomputed visualizations.
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Figure 7: With respect to I, Procrustes values between:

-left) interpolated and exact visualizations (A and B in Fig-

ure 3) -right) grid projections used to interpolate (X and

X' in Figure 3).

5. Conclusion

Many dimensionality reduction methods imply to tune a pa-
rameter corresponding to a trade-off between conflicting ob-
jectives. The proposed approach is to let the user choose be-
tween different parameter values by means of visualization.
To avoid heavy recomputations for each parameter value,
approximations are provided using linear interpolation be-
tween precomputed configurations. Accuracy of the approx-
imations is evaluated using Procrustes analysis. The com-
promise between accuracy and computation time can be ad-
justed via a threshold value ¢. An interpretation of the value
of ¢ in terms of points displacements is given to help the user
choose an appropriate value. The main hypothesis behind
this work is the stability of the projections, which remains
an open question in the field of dimension reduction.
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