Construction de Modeles de Langages par
Inférence d’ Automates Typés a partir de
Données Etiquetées Automatiqguement

Christopher Kermorvant*, Colin de la Higuera®, Pierre Dupont?

* EURISE, Université Jean Monnet, Saint-Etienne, France,
{kernorva, cdl h} @ni v-st-etienne.fr

t INGI, Université de Louvain, Louvain-la-Neuve, Belgique,
pdupont @ nf o. ucl . ac. be

Résumé :! Nous proposons deux facons d’établir des classifications prélimi-
naires en inférence grammaticale d’automates probabilistes, dans le but de cons-
truire des modéles de langages. La premiere consiste a considérer des classes de
mots et a inférer sur les classes de mots plutdt que sur les mots eux-mémes ; la se-
conde a inférer des automates typés. Nous comparons ces approches en utilisant
deux sources d’information, ou deux fagons distinctes de classifier les données
avant I’inférence grammaticale : un algorithme de classification non supervisée et
un part-of-speech tagger ont été utilisés pour étiqueter de fagcon automatique les
données soit en fonction d’information statistique, soit en fonction d’information
syntaxique. Ces données étiquetées sont ensuite utilisées pour I’inférence. Les
meilleurs résultats sont obtenus avec les données étiquetées statistiquement dans
un automate typé. Ces résultats sont comparables a ceux obtenus par les meilleurs
modéles statistiques (n-grammes) sur les données ATIS (Air Travel Information
System).

Mots-clés : Modéles de langage, Inférence Grammaticale, Connaissances du do-
maine

1 Motivation

The possibility to include prior knowledge in models is an important and successful
feature in machine learning. Very often, the complexity of the intended model is such
that the quantity of learning data is insufficient. The success of a model and a learning
algorithm depends on their ability to include prior knowledge, in order to compensate
for the lack of data. Alternatively, with only a fixed set of data, prior knowledge allows
to learn more complex functions.

In the specific context of language modeling, the importance of prior knowledge has
been shown in two applications of Hidden Markov Models. Whereas mathematically

1. To appear in Conférence d’Apprentissage, Laval, France, July 2003.

CAp 2003

founded methods exist to estimate the parameters of the probability distribution in these
models (the EM algorithm (Dempster et al., 1977)), the quality of these estimations wi-
dely depend on the chosen structure of the models (humber of states, number of transi-
tions and topology). The success of HMMs in several application domains, like speech
recognition or computational biology, is partly due to the use of prior knowledge to
design the structure of the models. In speech recognition, the knowledge on the pho-
nemic structure of utterances induces the left-to-right structure of the HMM (Bakis
models) and also facilitates the learning process with data segmentation (Rabiner &
Biing-Hwang, 1993). In computational biology, prior knowledge regarding the mean
length of proteins and prior distribution of amino acids is used to design the models
(Durbin et al., 1999).

Grammatical inference consists in learning formal grammars for unknown languages
when provided with examples of strings belonging (or not) to the languages. Regular
grammatical inference, in which the target grammar is supposed to be regular, has re-
ceived most of the attention. There are many efficient algorithms to process regular
grammars and several positive learning results are known for this class. If one is provi-
ded with positive and negative examples, algorithm RPNI (Oncina & Garcia, 1992) can
be used to infer deterministic finite automata. In the case where only positive examples
are available, one may choose to learn a stochastic finite automaton: several algorithms
have been proposed (Carrasco & Oncina, 1994; Stolcke & Omohundro, 1994; Thollard
et al., 2000) for this task.

The interest of using prior knowledge in grammatical inference is threefold. First, the
search space of the deterministic finite automata inference task is well defined (Dupont
et al., 1994). This space depends on the learning data available, and can be extremely
large. The use of prior knowledge on the structure of the target automaton reduces the
search space by excluding from the search automata which do not conform with this
knowledge. Second, prior knowledge can complete the learning data, for example by
providing implicit counter-examples: strings known not to belong to the target language.
Finally, prior knowledge can introduce in the inference procedure real world constraints
that the induced formal language must satisfy.

From a more general point of view, the use of prior knowledge can allow some of the
rewriting rules inherent to a grammar to be in some way fed into the learning algorithm,
thus allowing, as proposed in (McAllester & Schapire, 2001), to “seed the search with
sufficient initial regularities”.

It is generally accepted that prior knowledge is taken from a different source than the
actual data the learning process is going to use. Yet in the sequel we will be allowing
the prior knowledge to be merely another point of view on the learning data.

Prior knowledge has already been used in grammatical inference by Bernard & de la
Higuera (Bernard & de la Higuera, 2001) in their ILP system called GIFT 2. GIFT learns
a tree automaton from a set of terms, which is later translated into a logic program. The
algorithm is applied to structured data, and a typing system of this data is also inferred
(for instance, rules that state that a person has two parents one of which is male and the
other female). Typing is used to avoid impossible situations (for example, in a family
relationship, someone with two fathers). Kermorvant & de la Higuera (Kermorvant &

2. Grammatica Inference For Terms.

Modeéles de Langages et Automates Typés

de la Higuera, 2002) have proposed a framework to include prior knowledge in the au-
tomaton inference algorithms. In this framework, prior knowledge regarding sequences
to be modeled can be included in automata using typing.

In this paper, we propose to infer typed automata from labeled sequencial data. Ty-
ping is performed through the use of an initial parse of the data where either statistical
clusters of strings are formed (inducing one type per class) or by part-of-speech labe-
ling through an adapted Brill tagger (Brill, 1992). It should be noticed that the adapted
tagging will be limited in the sense that prefixes will have to be tagged in an uniform
way. This constraint is due to the actual limitations of our typing model. The induced
types are used by a classical grammatical inference algorithm, Alergia, that constructs
a stochastic finite state automaton.

We compare the use of these two kinds of prior knowledge in the framework of lan-
guage modeling: on the Air Travel Information System (ATIS) task, the results we re-
port are comparable with those achieved by state-of-the art n-grams models.

2 Regular Language Learning from Tagged Data

The search space for regular languages inference is finite but huge (Dupont et al.,
1994): a partition lattice defined by the set of states of the prefix tree acceptor (PTA)
which is the smallest tree-shaped deterministic automaton accepting exactly I,.. The
least upper bound of the lattice is the partition corresponding to the universal automaton
which accepts all strings on the alphabet. Under the hypothesis of the presence of a
structurally complete sample (i.e. a set of strings that makes use of all edges, nodes and
final states of the target), this target automaton is guaranteed to belong to the lattice. A
negative sample is generally used to control the generalization while searching for the
target. However, since the size of the lattice is exponential in the size of the sample set,
a good strategy is required to explore this lattice. Evidence driven strategies have been
proposed (Lang et al., 1998) to cope with the difficulty of the search.

Regular language inference from real data, such as natural language sentences or
biological sequences, raises additional difficulties. First, negative information is not
always available. Second, real data is generally noisy. If we choose to learn stochas-
tic finite automata we can, in principle, handle both the lack of negative information
and the presence of noise. Besides, background knowledge of the application domain
is often available. In (Kermorvant & de la Higuera, 2002) a framework that includes
prior knowledge in the automaton inference algorithms is proposed. This framework
is the application of typing, as known for terms and trees, to finite state automata. In
this paper, we study how to incorporate background knowledge in stochastic automata
inference.

2.1 Typed Stochastic Finite State Automata

We consider stochastic finite state automata (SFA), which provide a stochastic exten-
sion of finite state automata. A SFA Aisatuple < Q,X%, 4,7, ¢, F > where:

— @ is a finite set of states,

CAp 2003

3} is an alphabet,

d:Q x X — @ isatransition function,

T : @ x X —]0..1] is a function which returns the probability associated with a
transition;

qo 18 the initial state,
- F: @ — [0..1] is a function which returns the probability for a state to be final.

Furthermore, we only consider SFA which are structurally deterministic. This means
that from any given state ¢ at most one state can be reached on any given alphabet
symbol. This has two implications. First, we restrict our attention to the particular class
of distributions that can be generated by deterministic SFA (SDFA). Second, inference
algorithms explicitly searching for SDFA, such as Alergia (Carrasco & Oncina, 1994),
can be used.

In order to define a probability distribution on X* (the set of all strings built on),
the automaton must be trimmed (without useless states) and 7 and F' must satisfy the
following consistency constraint:

Vg€ Q, lZT(q,a) +F(g) =1

a€EX

A string ag - - - a;—1 iS generated by an automaton A iff there exists a sequence of states
eg - - - €7 such that

— € =4qo
- Vie0,l—1], §(es,a;) = €1
- F(e)) #0.
The automaton assigns to the string the probability
1—1
Psra(ao---aj-1) = lH 7(ei, a;) | * Fer)
=0

Note that a SFA can be seen as a particular case of Markov models with discrete
emission probabilities on transitions and with final probabilities.

Typed automata are introduced in (Kermorvant & de la Higuera, 2002). A typed SFA
Aisdefinedasatuple < Q,%,6, 7, ¢, F,S,o > where:

- @,X%,9,T,qo, F are the same as in classical SFA,
— Sis aset of sorts,

— o is atyping function which associates a single sort to each state of the automaton.

Modeéles de Langages et Automates Typés

Algorithm 1 Generic SFA induction algorithm
Require:
I, training set (sequences)
«, a precision parameter
Ensure: a stochastic finite state automaton
A + build_SPTA(I,)
while (g;,q;) < choose_states(A) do
if is_compatible(g;, g;, @) then
merge(A,g;, ;)
end if
end while
return A

A typed stochastic automaton is a stochastic automaton with typed states. There are

several ways to define the typing function o. In (Kermorvant & de la Higuera, 2002),
it was proposed to define the typing function o by a type automaton constructed by an
expert, on the basis of some knowledge he may have of the domain. In this paper, we

propose to infer the typing function from labeled sequential data. Labeled sequential

data corresponds to strings where the symbols that appear are tagged. Such data is

very often available and can take the form of a tagging over the sequences, for example

part-of-speech tagging for natural language sentences or secondary structure for protein

sequences. To be compatible with finite state automata, the labeling must obey some
natural rules: it must be prefix-consistent, i.e. a prefix must always have a label, and
regular in the sense that this label must not depend of the righthand context. It should

be noticed that this is a strong condition: in most cases tags are computed by taking into

account both left and righthand contexts.

Hence one can associate various types to a symbol, but only one type to a string.
Furthermore this is the case for any prefix. Technically, denoting a finite set of data by
I, and the type of the prefix u in the context of a string uv by oy, (u), we must have:
Vu € I;,0(u) is defined, and Vu € ¥, uv € I1 Auw € I} = 04y (u) = oy (1).

2.2 Learning Typed Automata from Automatically Labeled
Data

Several algorithms have been proposed to infer SFA from examples using frequencies
(Carrasco & Oncina, 1994; Ron et al., 1995; Thollard et al., 2000). All these algorithms
are based on a similar scheme, which is presented in algorithm 1. Our inference algo-
rithm for typed automata from labeled data is also derived from this scheme that we
explicit below.

Given a set of labeled positive examples I, the algorithm first builds the typed sto-
chastic prefix tree acceptor (SPTA). The typed SPTA is an automaton accepting all
examples of I, in which the states corresponding to common prefixes are merged and
such that a training count is attached to each state and each transition. This count de-
notes the number of times this state, or transition, is used while parsing the sample. An

CAp 2003

Baltimore

from Atlanta o
e p=1 0 p=1 @ p=1 m p=1 e
=0) 10
with bredest
= = &_/:‘
from /
p=1 Baltimore \
p=1 \
)
to J
p=1 Philadelphia
.
)

FIG. 1 — A typed stochastic prefix tree acceptor.

estimate 7 (resp. F) of the function = (resp. F)) can be computed from these counts.
C'(q) denotes the number of times the state q is used while parsing I, C(q, a) denotes
the number of times the transition (g, a) is used while parsing I, and C(g) denotes
the number of times ¢ is used as final state in L. For each state ¢ € @, we have:

C(q, CL) ﬁw(q) — CYf (q)

C(q) C(q)
The typing function of the typed SPTA is defined by the labels of the strings in Z,.. When
a string with label L is used to reach a state ¢ of the typed SPTA, the label L is the type
of the state ¢: o(q) = L. Note that a typed SPTA cannot always be built from a given
labeling since each state must have a single label and since we only consider structurally
deterministic automata. A sufficient condition to be able to construct a typed SPTA from
a labeling is that each prefix has always the same label in I.. We only consider this case
in the present work.

In the framework of language modeling, text corpora manually or automatically anno-

tated with Part-of-Speech (POS) tags are available. An example of an annotated corpus
of English sentences is:

VYa € ¥,7(q,a) =

I/PRP fly/VBP from/IN Dallas/NNP to/TO Philadelphia/NNP ./.

I/PRP want/VBP a/DT flight/NN from/IN Baltimore/NNP ./.

I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NNP to/TO Baltimore/NNP
A

I/PRP want/VBP a/DT flight/NN with/IN breakfast/NN ./.

The typed SPTA constructed from these labeled examples is presented on Figure 1.

The second step of the algorithm consists in visiting the states of the SPTA (function
choose_states(A)), and testing whether the states are compatible and can be merged. The
compatibility criterion (defined in algorithm 1) by function is_compatible(g, g;, o) de-
pends on a precision parameter «. If the states are compatible, they are merged (function
merge(A,g;, g;)). Usually, several consecutive merging operations are made in order to
maintain the deterministic structure of the automaton. The algorithm halts when no
more merging is possible. In the case of the Alergia algorithm (Carrasco & Oncina,
1994), the compatibility of two states is based on different tests: the compatibility of
their outgoing probabilities on the same letter, the compatibility of their probability to
be final and the recursive compatibility of their successors. Statistically, these tests are
derived from Hoeffding bounds (Hoeffding, 1963).

Modeéles de Langages et Automates Typés

In our framework, the introduction of type constraints in the learning algorithm is
straightforward. We must only consider for a merging operation states with the same
type. This constraint can easily be checked in constant time: it is sufficient to test
the equality of the types of g; and ¢; in function is_compatible(g;, ¢;, «). With this
constraint, we insure that the type of all the strings in the inferred language is consistent
with the tagger which provided the tagged learning set.

2.3 Learning Stochastic Automata from Clustered Data

Dupont & Chase (Dupont & Chase, 1998) proposed to use statistical clustering of
symbols to improve grammatical inference on large vocabularies. The first step of their
approach consists in building classes of symbols from the learning samples. For a given
number of clusters, the clustering algorithm iteratively constructs the classes so that the
average mutual information between the classes is maximized (see (Dupont & Chase,
1998) for details). Once the classes are defined, each symbol is associated to a class
and the probability of each symbol w in its class g(w), denoted by P(w|g(w)), can
easily be computed. The learning samples are then relabeled in terms of classes and an
automaton is inferred on the class labels using a classical inference algorithm such as
Alergia. Finally the automaton is expanded by replacing each class by all the symbols
it contains. More formally, once an automaton is inferred on the classes, each transition
(¢, G) from a state g with label G is replaced by as many transitions as there are symbols
w such that g(w) = G The probability estimates 7(g, w) of these transitions are given
by 7(q,w) = 7(¢,G) - P(w|G).

2.4 Mixed Strategies

Instead of inferring an automaton on the class labels, one can use the class information
as a type to infer a typed automaton directly on symbols. On the other hand, the POS
information can be used as classes instead of statistically induced clusters. This yields
a total of four approaches that are summarized in Table 1. We study in the sequel the
comparative performances of these four approaches.

typed automata inference on
inference classes + expansion
POS tag POS-typed POS-class
automata automata
Statistical | Statistical-typed Statistical-class
clusters automata automata

TaB. 1 — Two approaches to use two different kinds of information.

CAp 2003

ATISCorpus
train set
Data labeling POS Tagger Statistical clustering
method Algomh¢m
Datalabeled with POS Datajabdled with

Inference Classinference Typed automata Class inference Typed automata
methods and expansion inference and expansion inference

l

Smoothing Interpolation with unigram

method
ATIS Corpus
dev/test set

F1G. 2 — Overview of the experimental protocol.

3 Experiments

3.1 The ATIS Task

We have tested our approach on the Air Travel Information System (ATIS) corpus.
This corpus consists in information requests performed in American English. The sen-
tences have been collected in Wizard-of-Oz conditions in which a human secretly re-
place the speech recognition systems in an automated dialog system. We use the ATIS-2
sub corpus which is composed of a training set containing 13,044 utterances (130,773
tokens) and two test sets containing respectively 974 utterances (10,636 tokens) and
1001 utterance (11,703 tokens). We use the first test set as a validation set to tune the
parameters (see section 3.2) of the algorithms and the second one as an independent test
set. The task vocabulary is composed of 1,296 different words.

This corpus has been widely used in the speech recognition community and spe-
cifically for stochastic automaton induction tasks (see e.g. (Dupont & Chase, 1998);
(Thollard et al., 2000); (Llorens et al., 2002)).

3.2 The Experimental Setting

We compare the different approaches presented in Table 1 following the experimental
protocol described in Figure 2.

All the inferred automata are evaluated on the ATIS test set. The usual quality measure
in language modeling tasks is the average (per symbol) log-likelihood (LL) of the words
in the sequences of the test set .S. A directly related measure is known as the test set
perplexity:

PP — 9Ll — 97 TET X ues 1082 P(w)

The smaller the perplexity the better the automaton can predict the next symbol. It is
generally agreed that perplexity is a good quality criterion for language models. In order
to guarantee that every word can be predicted with a non null probability, the inferred
automaton must be smoothed. We interpolate the automaton with a unigram model. The

Modeéles de Langages et Automates Typés

unigram defines the probability R (w) of each word w in the training set, independently
of its context. The probability of a word w assigned by the smoothed automaton is then:

P(w) = ,BPSFA(U)) + (]. - B)Pl (U})

This smoothing technique is very rudimentary but, as such, it best reflects the qua-
lity of the induced SFA alone. As some words of the application vocabulary may not
occur in the training set, the unigram probability itself is smoothed by absolute dis-
counting (Ney et al., 1994). Let C'(w) denote the count of word w in the training set
containing a total of IV tokens. The smoothed unigram probability is defined as follows:

D .
Ny otherwise

C(w)—d .
Pu() = { C=d it C(w) >0
where d is a discounting parameter (set here to 0.5), D is the total discounted probabi-
lity mass and Ny is the number of unseen words in the training sample:

D:Z%N():Zl.

{w | C(w)>0} {w | C(w)=0}
The ATIS validation set is used to tune the learning parameters:

— the precision parameter a which controls the compatibility criterion and therefore
the number of compatible merging operations,

— the number & of distinct types,
— the interpolation parameter g.

Note that k£ can only be tuned when the types correspond to statistically induced
classes. In the case of POS tagging, the number of distinct types is defined a priori by
the tagger and cannot be tuned. The parameters « and & control the degree of genera-
lization allowed during the typed automaton induction. Hence these parameters control
the number of parameters of the inferred model (number of states and transitions of
the SFA). The parameter 8 controls the weight of the induced SFA in the combined
smoothed automaton.

The POS information was obtained by tagging the training set using the Brill tag-
ger (Brill, 1992). As a first approach, each word was tagged with its most likely tag,
disregarding the context rules. It has been shown on a French corpus, that this tagging
method can yield up to 90% of correct tags (Vergne & Giguet, 1998). The resulting
tagged training set contains 32 different POS types.

The statistical information leading to the class tagging was obtained by the cluste-
ring algorithm presented in (Dupont & Chase, 1998). Values for the number of clusters
ranging from 10 to 1000 have been tested.

3. Thisisthe case for 131 out of 1,296 symbols.

CAp 2003

Alergia —+—

POS-Typed —<—

90 Statistical-Typed —*—
POS-Classes —&—

40 Statistical-Classes —=—
100 +

80
60

40

0 . . .
1000 10000 100000 1e+06 1e+07
Number of transitions+states

Percent of sentences parsed

FI1G. 3 — Percentage of sentences correctly parsed in the validation set versus the num-
ber of parameters of the automaton

3.3 Results

The influence of the various learning parameters is first evaluated on the validation
set. Final results are reported next on an independent test set. Note that a better me-
thodology would rely on n-fold cross-validation. We did not follow this methodology
in the present case because comparative results exist mainly on the same splitting bet-
ween validation and test sets (e.g. see (Dupont & Chase, 1998)). It has been observed
experimentally that the test set is closer to the training set than the validation set is.

Figure 3, 4 and 5 compare the four selected methods on the ATIS validation set. For
the methods based on statistical classes, the results are given for the optimal number of
classes. In the case of typed automata inferred on statistically labeled data, the optimal
number of classes is 90. In the case of automata inferred at the class level and expanded
to words, the optimal number of classes is 40, as in (Dupont & Chase, 1998). In all
cases, the results are given for the inference parameter « that was observed to be optimal
for this particular setting.

Figure 3 shows the percentage of sentences from the validation set fully parsed by
the inferred automaton for the compared techniques with respect to the number of pa-
rameters of the automaton (number of states and number of transitions). In this case,
no smoothing is used. The typed SPTA parses only 7% of the validation set whereas
the universal automaton which accepts all the sentences built with words of the training
set, parses 94% of the sentences in the validation set (6% of the sentences are not fully
parsed since they contains out-of-vocabulary words). For a fixed number of parameters,
the four methods increase the number of sentences that can be parsed compared to stan-
dard Alergia inference. However, the number of parameters of the automata inferred by
class expansion based methods is significantly higher than the number for typed auto-
mata. Summarizing, class expansion based techniques generalize more but create less
compact automata than type-based methods.

Figure 4 presents the perplexity obtained by the inferred automata with respect to
the number of sentences parsed. The best results are situated in the bottom right corner
of figure 4 as they correspond to high coverage and small perplexity. The smoothed
unigram parses 100% of the sentences but yields a perplexity of 145. For a given number

Modeéles de Langages et Automates Typés

920 T
Alergia ——
POS-Typed —=— |
Statistical-Typed —=—
POS-Classes —&—

70 Statistical-Classes —=—

80 -

60

50

40

Partial Perplexity

30

20 -

o M—»——’*""’“/-

0 20 40 60 80 100
Percent of sentences parsed

FIG. 4 — Perplexity of the sentences correctly parsed in the validation set

180 L Alergia (@=0.2) —— |
POS-Typed (0=0.001) ——

90 Statistical classes-Typed (0=0.0001) —*— |
POS-Classes (0=0.2) —=—
40 Statistical Classes (0=0.2) —=—

160 -

140

Perplexity

20

0 0.2 0.4 0.6 0.8 1
Value of interpolation parameter 3

FIG. 5 — Perplexity on the ATIS validation set: inferred automaton with unigram inter-
polation.

of parsed sentences, both the POS-based and statistical-classes-based typed automata
yield a smaller perplexity. On the contrary, inferring on POS classes gives expanded
automata with higher perplexity. For a given number of fully parsed sentences, the
typed automaton inferred with statistical classes yields the smallest perplexity. It should
be stressed that, as no smoothing is performed in this case, the perplexity is only partial
as it is computed over those strings that can be parsed.

Figure 5 shows the perplexity obtained by the inferred automaton interpolated with
the smoothed unigram. The best perplexity reduction (39% as compared with standard
Alergia) is obtained when using typed inference with 90 statistically defined classes
with inference parameter « = 1.10~* and interpolation parameter 8 = 0.8. Table 2
summarizes the test set perplexity values for the four methods.

3.4 Improved smoothing techniques

The smoothing technique used in the evaluations described in section 3.3 is rudimen-
tary. We argued that interpolation with a smoothed unigram guarantees to bound the
perplexity while best reflecting the predictive power of the inferred SFA alone. Howe-

CAp 2003

typed automata | class inference
inference + expansion
POS tag 57 112
Statistical 42 59
classes

TAB. 2 — Best perplexity results on the ATIS test set with interpolation to unigram for
the four inference methods.

ver, if the objective is to minimize test set perplexity, more sophisticated smoothing
techniques are required.

The best trigram model on the ATIS task is obtained with Kneser-Ney back-off smoo-
thing (Kneser & Ney, 1995). This smoothed trigram model combines a trigram model
and two back-off distributions, respectively based on a bigram and a unigram model.
The ATIS test set perplexity of this combined model is 14.

Current (but preliminary) results for the best typed automata inferred with 90 statis-
tically defined classes and smoothed with a simple back-off to unigram (a simplified
version of the smoothing scheme described in (Llorens et al., 2002)) gives a perplexity
of 20. The trigram model smoothed with the same method (back-off to unigram) gives
a perplexity of 17. Further improvements of the smoothing techniques for automata
should therefore decrease the perplexity.

A language model can alternatively be viewed as a compressed version of the learning
data. In this case, the actual size of the model is very important. It should be noted that
the number of parameters needed by the best typed automata combined with a smoothed
unigramis 1.1x105. The trigram model with Kneser-Ney smoothing to both bigram and
unigram needs 6 = 105 parameters. The smoothed typed automata needs less parameters
to obtain a similar perplexity on this task.

4 Discussion

It has been shown in (Dupont & Chase, 1998) that the use of statistical class informa-
tion improves the quality of stochastic automata used as language models. The present
work illustrates that this is even more true when statistically induced classes are com-
bined with typed SFA inference.

The results obtained when using POS tag information are less convincing, even though
it has been shown that grammatical information can help language models (Charniak,
2001). Let us stress however that we did not use here the full information provided by
the POS tagger as each word was tagged according to its most likely tag, disregarding
the contextual rules. This approximation was required to construct a typed SPTA, which
is a deterministic SFA as explained in section 2.2. Extensions of the present approach
to infer (possibly) non-deterministic structures could lead to further improvements.

Modeéles de Langages et Automates Typés

5 Conclusion

We have proposed a way to use prior knowledge in grammatical inference with typed
automata. When manually or automatically labeled data is available, the labels can be
used as types and the inference algorithm we have proposed guarantees that the inferred
automaton is compatible with the labeled data. We have compared the use of two kinds
of labeling for stochastic automata inference in the framework of natural language mo-
deling. Part-of-speech labeling provided by a POS tagger and statistical clustering of
words have been compared as labeling for the data. The use of statistical word classes
information when inferring typed automata provides models which are competitive with
state-of-the-art n-grams with similar smoothing techniques while being more compact
and needing less parameters.

Références

BERNARD M. & DE LA HIGUERA C. (2001). Apprentissage de programmes logiques par
inférence grammaticale. Revue d’Intelligence Artificielle, 14(3/4), 375—396.

BRILL E. (1992). A simple rule-based part-of-speech tagger. In Proceedings of the Conference
on Applied Natural Language Processing, p. 152—155.

CARRASCO R. C. & ONCINA J. (1994). Learning stochastic regular grammars by means of
a state merging method. In Proc. Int. Coll. on Grammatical Inference, volume 862 of Lecture
Notes in Artificial Intelligence, p. 139—152: Springer.

CHARNIAK E. (2001). Immediate-head parsing for language models. In Proceedings of the
39th Annual Meeting of the Association for Computational Linguistics, p. 116—123.

DEMPSTERA. P., LAIRD N. M. & RuBIN D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society series B,
39, 1-38.

DUPONT P. & CHASE L. (1998). Using symbol clustering to improve probabilistic automaton

inference. In Proc. Int. Coll. on Grammatical Inference, volume 1433 of Lecture Notes in
Artificial Intelligence, p. 232 — 243: Springer.

DUPONT P., MICLET L. & VIDAL E. (1994). What is the search space of the regular infe-
rence? In Proc. Int. Coll. on Grammatical Inference, volume 862 of Lecture Notes in Artificial
Intelligence, p. 25—37: Springer.

DuURBIN R., EDDY S., KROGH A. & MITCHISON G. (1999). Biological Sequence Analysis :
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press.

HOEFFDING W. (1963). Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301), 13—30.

KERMORVANT C. & DE LA HIGUERA C. (2002). Learning languages with help. In Proc.
Int. Coll. on Grammatical Inference, volume 2484 of Lecture Notes in Artificial Intelligence, p.
161-173: Springer.

KNESER R. & NEY H. (1995). Improved backing-off for N-gram language modeling. In Proc.
Int. Conf. on Acoustics, Speech and Signal Processing, p. 181-184.

LANG K., PEARLMUTTER B. & PRICE R. (1998). Results of the Abbadingo One DFA learning
competition and a new evidence-driven state merging algorithm. In SPRINGER, Ed., Proc. Int.

CAp 2003

Coll. on Grammatical Inference, volume 1433 of Lecture Notes in Artificial Intelligence, p.
1-12.

LLORENS D., VILAR J. & CASACUBERTA F. (2002). Finite state language models smoothed
using n-grams. International Journal of Pattern Recognition and Artificial Intelligence, 16(3),
275-289.

MCALLESTER D. & SCHAPIRE R. (2001). Learning theory and language modeling. In G.
LAKEMEYER & B. NEBEL, Eds., Proc. Int. Joint Conf. on Artificial Intelligence: Morgan Kauf-
mann.

NEY H., ESSEN U. & KNESER R. (1994). On structuring probabilistic dependences in sto-
chastic language modelling. Computer Speech and Language, 8, 1-38.

ONCINA J. & GARCIA P. (1992). Identifying regular languages in polynomial time. In H.
BUNKE, Ed., Advances in Structural and Syntactic Pattern Recognition: Proc. of the Interna-
tional Workshop, p. 99—108. World Scientific.

RABINER L. & BIING-HWANG J. (1993). Fundamentals of Speech Recognition. Prentice Hall.

RON D., SINGER Y. & TISHBY N. (1995). On the learnability and usage of acyclic probabilistic
finite automata. In Proceedings of the Eighth Annual Conference on Computational Learning
Theory, p. 31-40: ACM Press.

STOLCKE A. & OMOHUNDRO S. (1994). Inducing probabilistic grammars by bayesian model
merging. In Proc. Int. Coll. on Grammatical Inference, p. 106—118: Springer.

THOLLARD F., DUPONT P. & DE LA HIGUERA C. (2000). Probabilistic DFA inference using
Kullback-Leibler divergence and minimality. In Proc. Int. Conf. on Machine Learning, p. 975—
982: Morgan Kaufmann.

VERGNE J. & GIGUET E. (1998). Regards théoriques sur le tagging. In Proceedings of the
conference Le Traitement Automatique des Langues Naturelles.

