
Noisy Sequence Classification
with Smoothed Markov Chains

Pierre Dupont1,2

1 Department of Computing Science and Engineering (INGI)
Université catholique de Louvain

Place Sainte Barbe, 2
B-1348 Louvain-la-Neuve - Belgium
Pierre.Dupont@uclouvain.be

http://www.info.ucl.ac.be/∼pdupont/
2 UCL Machine Learning Group

http://www.ucl.ac.be/mlg/

Abstract :

This paper is concerned with sequence classification using Markov chains when
classification noise is included in the learning data. These models offer a direct
generalization of a Multinomial Naive Bayes classifier by taking into account de-
pendences between successive events up to a certain history length. Our study
shows that smoothed Markov chains are very robust to classification noise. The
relation between classification accuracy and test set perplexity, often used to mea-
sure prediction quality, is discussed. The influence of varying the model order is
also studied from an experimental viewpoint. Experiments are conducted both
on a gender classification task from spelling of first names and splicing region
classification in DNA sequences. The first set of experiments also illustrate the
superiority of smoothed Markov chains to classify noisy sequence over an au-
tomaton learning technique using boosting.

Keywords: Sequence Classification, Noisy Data, Markov chains, Smoothed N-
grams.

1 Introduction
Markov chains are used in a wide variety of contexts such as biological sequence mod-
eling (Durbin et al., 1998), language modeling for speech recognition (Katz, 1987) or
WEB pages indexing (Page et al., 1998), to name a few. Markov chains are generative
models of stochastic processes for which the dependence between successive events is
assumed to be bounded according to the so-called Markov property. In other words,
the prediction of future events is based solely on a fixed number of past events in the
sequence. These notions were already used by Shannon for relating the definition of
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entropy to the task of predicting English texts (Shannon, 1951). The fixed dependence
in the past can be generalized to a variable history length (see, e.g., (Kermorvant &
Dupont, 2002; Begleiter et al., 2004)) but in all cases a maximal model order, that is a
maximal relevant history, is assumed.

When Markov chains, also known as N-grams, are used for prediction, the quality of
the modeling is generally measured by computing the (log-)likelihood or, equivalently,
the perplexity of previously unseen sequences. These values measure how well the
model fits the underlying unknown process distribution being represented by indepen-
dent test samples. Better models offer higher test likelihoods (smaller test perplexities).

In the present work we are interested in using Markov chains for sequence classifica-
tion rather than prediction. At first glance, good predictive models should offer good
classification performances. Indeed, according to Bayesian decision theory (Duda et al.,
2000), minimizing classification probability of error follows from maximizing posterior
class probabilities. Maximum likelihood models are then optimal when uniform class
priors can be assumed. There are nevertheless several questions to be addressed.

Practical estimation of Markov chains relies on smoothing techniques since the num-
ber of parameters to be estimated grows exponentially with the model order. Smoothing
aims at attributing non zero probabilities to unseen events, which are (sub-)sequences
never observed in the learning data. Smoothing is generally performed by discount-
ing some probability mass from the observed events and by distributing this mass on
the unseen events. Extensive experimental works have shown that smoothing increases
prediction accuracy (Chen & Goodman, 1998). As smoothed models are no longer
maximum likelihood models, it is worth investigating whether better smoothed models
also offer better classification accuracy.

A related question is the choice of the optimal model order. Provided good smoothing
techniques are used, higher order models typically predict better than standard (order
1) Markov chains. Second or third order models (3-grams or 4-grams) are typically the
best predictors for language modeling tasks. If increasing the model order improves
prediction accuracy, how does it affect classification performances?

Finally, real data is very often noisy. Noise can introduce various type of sequence
distortions such as deletions, insertions or substitutions of individual symbols or sub-
sequences. Classification noise replaces the class label of a given sequence by another
class label. Classification noise is generally considered harder to deal with since a sin-
gle class swap generally corresponds to several editing operations to recover a sequence
from the original class. How does classification noise in the learning data affect clas-
sification accuracy of new sequences? Does the best Markov model selected in a noise
free setting also performs best if classification noise is added in the learning data? In
particular, how does noise influence the selection of the optimal model order?

We address in this paper the above questions from an experimental perspective. This
is also motivated by the comparison with an alternative, and much more sophisticated,
approach to noisy sequence classification (Sebban et al., 2004). The authors proposed
an automaton induction technique designed to deal with classification noise. To do so,
they relied on a Markov chain model to constrain an automaton learning technique by
state merging. The Markov model was used to evaluate the confidence of the class
labels and this information was subsequently introduced in a boosting scheme. This
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interesting work raises at least one question: what would be the classification result if
the confidence oracle, that is the Markov model, was used alone? Comparative experi-
mental results detailed in section 5 answer this question on a representative dataset.

The rest of this paper is structured as follows. Section 2 reviews briefly the defini-
tion of Markov chains and some related smoothing techniques. The computation of
sequence likelihood based on the Markov assumption and its use as a decision rule for
classification is detailed in section 3. This formulation illustrates that a Markov chain
classifier forms a direct generalization of the multinomial Naive Bayes classifier. Sec-
tion 4 describes the datasets used in our experiments. We present here several statistics
including sequence length histograms and class overlaps. Section 5 summarizes the
conclusions we can draw from our experiments.

2 Smoothed Markov Chains
Markov chains are models of stochastic processes for which the prediction of an event
is based solely on a fixed number of past events. They are formally defined as follows.

Definition 1
A discrete time Markov Chain (MC) is a stochastic process {Xt|t ∈ N} where the
random variable X takes its value at any discrete time t in a countable set W and such
that:

P [Xt = w|Xt−1, Xt−2, . . . , X0] = P [Xt = w|Xt−1, . . . , Xt−p].
This condition states that the probability of the next outcome only depends on the last
p values of the process (Markov property). When the set W is finite, the process forms
a p order finite state MC.

For sequence modeling, the set W is the finite alphabet from which the sequences are
built. The relevant history Xt−1, . . . , Xt−p is simply denoted h when the model order
is made implicit. Similarly, h−1 denotes the history restricted to the p− 1 last symbols:
h−1 = Xt−1, . . . , Xt−(p−1). The probability of a given symbol w in a sequence is thus
computed as P (w|h) where h is the relevant history considered. An N-gram simply
denotes, in the language modeling literature, an N − 1 order finite state Markov Chain
and a 2-gram thus corresponds to a standard (order 1) Markov chain.

N-grams estimation from learning data is based on the counts of some subsequences.
The count C(h), respectively C(h, w), refers to the number of times the subsequence
h, respectively h followed by the symbol w, occurs in the learning data. The maximum
likelihood estimation of P (w|h) is given by

P̂ (w|h) =

{
C(h,w)
C(h) if C(h) > 0

0 otherwise
(1)

An N-gram built on the alphabet W has |W |N parameters which define all possible
values P̂ (w|h). Hence possible events will be assigned a zero probability when their
associated counts are equal to 0. This is often observed, especially for high order mod-
els, even for very large datasets since the number of parameters grows exponentially
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with the model order. Such a large number of parameters also results in poorly esti-
mated probabilities even for seen events. The classical workaround relies on smoothing
techniques to correct the maximum likelihood estimates.

2.1 Back-off smoothing
One of the most popular scheme used for language modeling is based on a so-called re-
cursive back-off scheme (Katz, 1987). We recall below an improved back-off modeling
proposed in (Kneser & Ney, 1995).

P̂ (w|h) =


C(h, w)− dc

C(h)
+ γ(h)P̂back(w|h) if C(h, w) > 0, (2)

γ(h)P̂back(w|h) if C(h, w) = 0 and C(h) > 0, (3)
P̂back(w|h) if C(h) = 0, (4)

with

γ(h) =
∑

w:C(h,w)>0

dc

C(h)
. (5)

In equation (2), dc denotes a discounted value subtracted from the counts of seen
events (C(h, w) > 0). This discounted value may depend on the count C(h, w) as
in Turing-Good discounting (Katz, 1987), on the number of distinct seen events as
in Witten-Bell discounting (Witten & Bell, 1991) or may be constant as in the case
of absolute discounting (Ney et al., 1994). The discounted probability mass γ(h) is
distributed to unseen events in proportion to their back-off estimates P̂back(w|h) as
defined in equation (3). The factor γ(h) can also be considered as a normalization
factor to guarantee that the smoothed estimates P̂ (w|h) define a proper distribution:∑

w P̂ (w|h) = 1,∀h. Note that γ(h) is well defined only if the corresponding history
has been observed in the learning data (C(h) > 0). Otherwise, equation (4) applies and
the back-off distribution is used in all cases.

In the simplest case, the back-off distribution is defined as P̂back(w|h) = P̂ (w|h−1),
where h−1 denotes a smaller history (typically a 2-gram history when h denotes a 3-
gram history). In other words, the back-off distribution is given by the lower order
estimate. The same scheme is applied recursively down to a unigram model. The
recursive nature of this model implies that a N-gram smoothed in this way is actually
a variable order (from N − 1 to 0) Markov chain. The base case of the recursion is an
order 0 Markov chain (no history is considered) P̂ (w) = C(w)P

w C(w) , which is always
strictly positive provided every symbol of the alphabet has been observed at least once
in the learning data1.

The original back-off scheme proposed in (Katz, 1987) only included the first term
of equation (2) (and, consequently, a different normalization factor γ′(h) to be used in
equation (3)). Here the back-off distribution is used also for seen events (second term of

1Otherwise, an additional back-off to a uniform distribution P (w) = 1
|W | can be used.
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equation (2)). Indeed the back-off distribution can generally be more reliably estimated
as it is less specific and thus relies on more data. The resulting model is a mixture of
Markov chains of various orders.

Kneser and Ney proposed an alternative back-off distribution which was shown to
perform better in prediction (Kneser & Ney, 1995):

P̂back(w|h) =
C(., h−1, w)∑
w′ C(., h−1, w′)

(6)

where
C(., h−1, w) =

∑
g:g=h−1,C(g,w)>0

1.

Here, C(., h−1, w) corresponds to the number of different smaller histories h−1

where the word w has been observed ignoring the frequency of these events.

2.2 Underlying principles
The back-off scheme reviewed in section 2.1 was shown to offer significantly better
predictive models (Chen & Goodman, 1998) than Markov chains smoothed by adding
virtual counts (the add-one method in its simplest form), a method known as additive or
Laplace smoothing which is popular in text categorization (Peng & Schuurmans, 2003).
Interestingly, back-off smoothing is not only effective in practice but also follows from
some theoretical principles.

The first requirement (although not specific to back-off models) is symmetry, which
states that any two symbols having the same frequency (or count value c) in the learning
sample must also have the same probability estimate P̂c. This principle of symmetry
clusters the events into equivalence classes according to their respective counts. If nc

denotes the number of distinct events occurring c times2 in the learning sample, the
total number of events is given by E =

∑
c cnc and the maximum likelihood estimate

is simply P̂c = c
E .

In this context, a cross-validation technique such as the leave-one-out method can
be applied to estimate some unknown parameter, in particular the optimal discounting
factor dc (see equation (2)). By definition, the leave-one-out method removes iteratively
each observed event from the learning data to form a training set containing E − 1
samples and a single heldout sample. This process is repeated E times so that all E
samples are used as heldout sample. For events appearing once in the original learning
data, this procedure simulates unseen events automatically. Within this framework, the
training part is used to define the count equivalence classes and the parameters can be
estimated by maximum likelihood on the heldout samples. This approach was shown
to produce exactly3 the discounting factor defined by the Turing-Good estimate (Ney
et al., 1995):

dc = c− (c + 1)
nc+1

nc
with the corresponding estimate P̂c =

(c + 1)
E

nc+1

nc
. (7)

2nc is often called a frequency-of-frequency or count-of-count value.
3apart from a normalization constant.
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In this setting, the total probability mass assigned to unseen events is given by P̂0n0 =
n1
E , which indeed depends only on the number of events appearing once in the original
data set.

The Turing-Good estimate defined in equation (7) has two limitations. Firstly, it as-
sumes strictly positive values for the frequencies of frequencies nc of all events consid-
ered. This is generally true in practice only for small c values and the original maximum
likelihood estimate should then be used for larger count values, together with an appro-
priate renormalization of all estimates (Katz, 1987). Secondly, it does not necessarily
satisfy the additional requirement of monotony: P̂c−1 ≤ P̂c.

The absolute-discounting model relies instead on a fixed discounting value dc
4
= d, ∀c.

The addition of the monotony constraint to the leave-one-out estimation of this model
gives the following upper bound4 d∗ to the optimal discounting coefficient (Ney et al.,
1995):

d ≤ d∗ =
n1

n1 + 2n2
. (8)

In most practical cases n1 > 0 and n2 > 0, which guarantees that 0 < d∗ < 1.
The use of a lower order back-off distribution can be better understood if one con-

siders the joint distribution P (w, h). It can be rewritten as P (w, h−1, w−p), where
the history h of length p is decomposed into a smaller history h−1 of p − 1 symbols
and a symbol w−p occurring p steps before w. When the event (w, h) has not been
observed, the joint distribution can be approximated by the product of the marginals
P (w, h−1)P (w−p). Equivalently, the conditional distribution P (w|h) is then approxi-
mated by P (w|h−1).

Finally, the modified back-off distribution given in equation (6) results from an ap-
proximated solution to the leave-one-out procedure when the additional marginal con-
straint is considered. The basic idea is to determine the back-off distribution such that
the marginal distribution of the resulting joint distribution P̂ (h, w|h−1) is identical to
the given distribution P̂ (w|h−1):

P̂ (w|h−1) =
∑

g

P̂ (g, w|h−1).

3 Sequence likelihood and classification rule
Equation (9) defines the likelihood P (x|M) of a sequence x = x1 . . . x|x| according to
a MC M .

P (x|M) =
|x|∏
i=1

P (xi|h, M) (9)

The actual history h used to compute this likelihood depends on the order of the Markov
chain (see definition 1). In the above expression P (xi|h, M) = P̂ (w|h) where xi, the
i-th element of the sequence, corresponds to the symbol w and P̂ (w|h) is estimated
from learning data for the model M as detailed in section 2.

4The actual discounting factor d is generally set equal to this upper bound in practice.
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The quality of a model to predict a set of previously unseen sequences X is often
assessed with the per symbol log likelihood LL = 1

||X||
∑

x∈X log2 P (x|M), where
||X|| denotes the sum of the sequence lengths. Test set perplexity PP is a related mea-
sure defined as PP = 2−LL. The higher the log-likelihood, or the lower the perplexity,
the better the distribution defined by M fits the actual distribution observed in the test
sample X .

When Markov chains are used for sequence classification, a distinct model P̂ (x|Ci)
is built on each subset of the leaning data associated to a specific class i . According to
Bayes decision theory, the class Ĉ assigned to a new sequence x is the one maximizing
the posterior class probability:

Ĉ = argmax
i

P (Ci)P (x|Ci). (10)

When class priors can be assumed uniform, this decision rule reduces to maximizing
the class likelihoods: Ĉ = argmaxi P (x|Ci).

To sum up good predictive models assign high likelihoods to previously unseen se-
quences representative of the unknown process distribution while maximum likelihood
decision rule is optimal for classification when uniform priors can be assumed.

Equation (9) shows that the use of Markov chains for classification is a direct general-
ization of a multinomial Naive Bayes classifier. Indeed, in the simplest case, an order 0
model is considered. This is equivalent to assigning the probability of a symbol xi inde-
pendently of its history. Each symbol in a sequence are then considered independently
of the others and the sequence likelihood reduces to

∏|x|
i=1 P (xi). Markov chains thus

form a generalization of a Naive Bayes classifier when longer histories are considered.
The same observation was already made in the context of text classification (Peng

& Schuurmans, 2003). In this case, generalizing a Naive Bayes classifier by consider-
ing a non null history combined with appropriate smoothing techniques was shown to
be effective. The present work confirms these results in the particular case when the
sequences used to estimate the models include high classification noise.

4 Datasets

We describe in this section the datasets which were used to assess the performance
of smoothed N-grams (variable order Markov chains) to classify sequences when high
level of classification noise is added in the learning data. We selected two datasets
coming from very different domains and with different characteristics detailed below.

The WF dataset contains a set of first names which we aim at classifying according to
their gender. The Splice data sets contains fragments of DNA sequences which have
to be classified either as exon/intron or intron/exon boundaries. Some sequences are
repeated in those datasets, sometimes with distinct class labels. Since sequence repeti-
tions and class overlaps generally affect classification results, we detail these features.
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4.1 WF dataset
The WF dataset contains sequences of letters corresponding to male or female first
names. The number of sequences in each class is summarized in table 1. There are
313 male sequences appearing once and 366 male sequences appearing twice for a total
of 1045 male sequences. There is no repetition in the female class5 .

Male Female Total
Number of sequences 1045 842 1887
Number of distinct sequences 679 842 1521

Table 1: Class distribution in the WF dataset.

The WF sequences are drawn from an alphabet of 27 symbols (26 letters and the
symbol6 -). Figure 1 summarizes the histogram of sequence lengths for each class.
The Male class, respectively the Female class, has an average sequence length of 6.5,
respectively 7.2. This dataset thus contains relatively short sequences. Moreover, as all
names of this dataset start with the same letter (A), the first letter of each sequence is
useless for class discrimination.
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Figure 1: Histogram of sequence length in the WF dataset.

The original dataset was randomly split into 80% training and 20% test data7. Ta-
ble 2 summarizes the number of sequences in each dataset. The classes overlap since

5We describe here the WF dataset containing 1887 sequences which was kindly provided to us by the
authors of (Sebban et al., 2004). We mention here certain peculiarities such as the unbalanced number of
repetitions of this dataset. Even tough this unbalance is somewhat surprising, we did not edit the dataset to
remove these repeated sequences in order to be able to compare their experimental results with ours.

6The symbol - is used in composed names such as ANNA-CHRISTINA.
7We use here a single training/test split as we follow the experimental protocol proposed in the boosting

approach of (Sebban et al., 2004). A classical 10-fold cross-validation would have been better but the com-
putational cost of boosting was a limiting factor. Besides, we observed that our results were not significantly
different when computed on different random folds of the same size as those reported here.
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32 distinct sequences belong both to the Male and Female training sets while one
sequence8 is labeled both as Male and Female in the test set. The class overlap illus-
trates the natural ambiguity in gender classification based on first names. Additionally,
classification noise is introduced by swapping a given percentage (from 5% up to 50%)
of the class labels in the training data. The test labels are left unchanged.

Dataset Male Female Total
Number of sequences Training 836 674 1510
Number of distinct sequences Training 606 674 1280
Number of sequences Test 209 168 377
Number of distinct sequences Test 201 168 369

Table 2: Class distribution in the WF dataset.

4.2 Splice dataset

The Splice dataset is publicly available from the UCI Machine Learning Repository9.
Splice junctions are points on a DNA sequence at which ‘superfluous’ DNA is removed
during the process of protein creation in eukaryotes. The problem posed in this dataset
is to recognize, given a sequence of DNA, the boundaries between exons (the parts of
the DNA sequence retained after splicing) and introns (the parts of the DNA sequence
that are spliced out). This problem consists of two subtasks: recognizing exon/intron
boundaries (referred to as EI sites), and recognizing intron/exon boundaries (IE sites).
In the biological community, IE borders are referred to as “acceptors” while EI borders
are referred to as “donors”.

More specifically, given a position in the middle of a window of 60 DNA sequence
elements (called "nucleotides" or "base-pairs"), one has to decide whether this is a
"intron ⇒ exon" boundary (IE), a "exon ⇒ intron" boundary (EI), or neither of them
(N). Since we restrict here our attention to binary classification problems we used the
subset of 1535 sequences labeled either as EI or IE.

Each data instance is characterized by 61 attributes apart from its class label. The first
attribute is the instance name which we do not use in our experiments. The remaining
60 attributes denote the DNA nucleotide found at a given position in the window. In
contrast with the WF dataset, the sequences are significantly longer and they all have the
same length. The alphabet is composed of 8 letters10.

Table 3 summarizes the number of sequences in each class together with their fre-
quency of occurrence. This dataset contains 1352 distinct sequences out of which 123
sequences appear more than once. There is no class overlap in this dataset.

8The ambiguous test sequence is AISSA.
9The original data is available from ftp://ftp.ics.uci.edu/pub/machine-learning

-databases/molecular-biology/splice-junction-gene-sequences/
10A, T, C, G stands for the specific nucleotides and 4 additional characters are used to indicate ambi-

guity: D={A,G,T}; N={A,G,C,T}; S={C,G}; R={A,G}.
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Frequency Donor (EI) Acceptor (IE) Total
1 619 610 1229
2 39 40 79
3 14 15 29
4 7 7 14
5 0 1 1

Table 3: Number of distinct sequences occurring with a certain frequency in the Slice
dataset.

The original dataset was randomly split into 80% training (1228 sequences) and 20%
(307) test data. Due to the high number of repeated sequences, 54 sequences were found
both in the training and the test sets. These sequences were removed from the test set
to guarantee no overlap between training and test conditions. The class distribution of
the resulting 1481 sequences used in our experiments is summarized in table 4. Addi-
tionally, classification noise is introduced by swapping a given percentage (from 5% up
to 50%) of the class labels in the training data. The test labels are left unchanged.

Dataset Donor Acceptor Total
Number of sequences Training 614 614 1228
Number of sequences Test 126 127 253

Table 4: Class distribution in the Splice dataset.

5 Experimental results
This section presents the experimental results obtained on both datasets. They illustrate
the high resistance to classification noise offered by smoothed N-grams.

5.1 Gender classification from names (WF data).
Figure 2 illustrates the classification results obtained on the training sequences of the
WF dataset when classification noise is introduced. Each plot reports the sequence per-
plexity attributed by a smoothed 2-gram for the Male class (x-axis) and the Female
class (y-axis). Class priors are assumed equal here, which is a reasonable assumption
for Male/Female classification11. The decision rule, represented by the dashed line in
the figures, strictly corresponds to a minimum perplexity classifier, that is a maximum
(per symbol) likelihood classifier. The introduction of 20 % classification noise in the
training data results logically in more similar likelihoods assigned by both models (the
points are overall closer to the dashed line). However, the classification accuracy does
not degrade much: 85.76% (with 0% noise) versus 83.18% (with 20 % noise). In other

11Alternatively, class priors could have been estimated from the learning sample.
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words, even tough the prediction of the two classes are closer to each other, the number
of points on the wrong side of the decision boundary does not increase much. Interest-
ingly, the same conclusion can be drawn from figure 3 reporting classification results
on the test data. Here again, the introduction of 20% classification noise does not affect
much the classification accuracy (going from 81.96% down to 79.31%).

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

2-gram Model Training Data

Male
Female

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

2-gram Model Training Data (20% Noise)

Male
Female

Figure 2: Training classification results on the WF datasets with 0% and 20% classifica-
tion noise in the training data.
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Figure 3: Test classification results of smoothed 2-gram models on the WF datasets with
0% and 20% classification noise in the training data.

Table 5 gives a more detailed analysis of the robustness to noise of these models. On
the left, the classification confusion matrices are reported on the test data, respectively
with 0% and 20% classification noise in the training. The columns indicate the true
class labels while the rows indicate the predicted class based on the highest model
likelihood. On the right, the global perplexities assigned to the same sequences by each
model are reported. It can be observed that the addition of classification noise results in
a slight increase of the perplexities of correctly classified sequences. The perplexity of
incorrectly classified sequences is reduced showing that the construction of the models
is influenced by examples of the wrong class. However, the perplexity remains higher
for incorrectly classified examples and the confusion matrix is not drastically modified.
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Male Female
Male (predicted) 179 38
Female (predicted) 30 130

Male Female
Male (predicted) 7.4 10.1
Female (predicted) 12.0 7.3

Male Female
Male (predicted) 172 41
Female (predicted) 37 127

Male Female
Male (predicted) 7.6 8.5
Female (predicted) 9.2 7.4

Table 5: Confusion matrices on the WF test data (left) and associated test perplexities
(right). Results above, respectively below, refer to 0% classification noise, respectively
20% classification noise in the training data.
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Figure 4: Classification results on the WF test data for various model orders and classi-
fication noise rates in the training data.

Figure 4 summarizes the results obtained with several noise rate (from 0% up to
50%) while varying the model order. 1-grams are equivalent to a multinomial Naive
Bayes classifier (see section 3). Increasing the model order of well smoothed N-grams
does improve the performance. On this dataset a smoothed 2-grams offers the best
overall performance at various noise levels. Classification accuracy is fairly stable up
to 20% noise and still above 70% with 30% classification noise in the training data. We
attribute the relatively good performance12 of a 1-gram model even with 50% noise as
a consequence of the presence of repeated Male sequences. Hence classification into
the Male class is more likely both in the training and test data. This data artefact does
not compensate for the classification noise when higher order models are used.

Table 6 reports comparative13 results on the WF dataset of a 2-gram classifier and the

12One would have expected roughly a 50% classification rate with 50% classification noise in the training
data.

13We use here the same dataset and, to the best of our knowledge, we follow strictly the same experimental
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automaton boosting approach proposed in (Sebban et al., 2004). Classification error
rates are reported here. The 2-gram was only used in a preprocessing phase as a confi-
dence oracle in this alternative approach referred here as BOOST. Our results show that
a 2-gram alone is significantly more robust to classification noise.

Noise rate 2-gram BOOST
5% 18.3% 21.4%

10% 19.1% 22.7%
20% 20.7% 31.7%
30% 28.1% ?

Table 6: Classification error rates of a smoothed 2-gram and of the BOOST approach at
various noise levels.

5.2 Splicing region classification in DNA sequences (Splice data)
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Figure 5: Classification results on the Splice test data for various model orders and
classification noise rates in the training data.

Results similar to those presented in section 5.1 are obtained on the Splice dataset.
Figure 5 summarizes the results obtained with several noise rate (from 0% up to 50%)
while varying the model order. Increasing the model order of well smoothed N-grams
does again improve performances. On this dataset, a smoothed 3-gram model offers
the best overall performance at various noise levels. Classification accuracy is equal to
84.6 % with a 3-gram model and no noise and only goes down to 79.05 % with 30%
classification noise included in the training data.

protocol as the one proposed in (Sebban et al., 2004). We did not have access however to their actual split
into training and test sets but we use the same proportions. We do believe that the better performance we
observe especially with 20% classification noise are significant.
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A 1-gram model correctly classifies 72 % of the test examples when 50% noise is
introduced in the training data. We believe that this robustness is due to the repetitions
of some sequences in the data, even if there is no overlap between training and test as
explained in section 4.2. To confirm this hypothesis, all repetitions were removed both
from training and test sets. The overall performance is reduced roughly by 10 %, for
noise rate less or equal to 30%, as less data is available to estimate the models. More-
over all models have, as expected, roughly a 50% classification rate when 50% classifi-
cation noise is introduced. This suggests that repeated sequences are indeed interesting
to increase robustness to classification noise. Note that repetitions are legitimate in this
data since the 123 distinct sequences appearing more than once form 306 occurrences.
Among these 306 occurrences only 24 correspond to the same 12 instances repeated
twice. The remaining 282 occurrences correspond to distinct instances but sharing with
another instance the same fragment of DNA extracted. This redundancy is useful for
classification even under noisy conditions.

6 Conclusion
We study in the present work sequence classification using Markov chains when classi-
fication noise is introduced in the learning data. Back-off smoothed models, also known
as N-grams, are considered here. They define variable order Markov chains. These
models were shown to be effective for language modeling tasks where there are used
for prediction. Sequence classification is a distinct but related problem. The difference
and similarities between them are discussed.

Experiments are conducted on a gender classification task from spelling of first names
and splicing region classification in DNA sequences. They both illustrate the high ro-
bustness of smoothed Markov chains to classification noise. The results on the first task
also show the superiority of these models over an automaton learning technique using
boosting (Sebban et al., 2004). In this alternative approach, Markov chains were also
used but only as a preprocessing to estimate the confidence of the class labels. This
information was subsequently introduced in a boosting scheme. Our experiments show
that a well smoothed Markov chain alone performs significantly better and is more ro-
bust to noise.

The decision rule used here to classify unknown sequences is a minimal perplexity
classifier or, equivalently, a maximum likelihood classifier. In this respect, Markov
chains offer a natural generalization of a Multinomial Naive Bayes classifier by taking
into account dependences between successive events up to a certain history length. The
performance gain obtained with this generalization together with appropriate smooth-
ing techniques had already been observed for text classification (Peng & Schuurmans,
2003). The present work confirms these results under high classification noise condi-
tions in the learning data.

The proposed classifiers assign a single value to any new sequence. This value is di-
rectly related to the per-symbol log likelihood. A possible generalization would assign
several values possibly to several sub-sequences of the original sequence. This would
define a new feature space from which traditional classifiers could be built. We left this
extension for our future work.
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