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Abstract. Graph pattern matching is a central application in many
fields. However, in many cases, the structure of the pattern can only be
approximated and exact matching is then far too accurate. This work
aims at proposing a CSP approach for approximate subgraph match-
ing where the potential approximation is declaratively included in the
pattern graph as optional nodes and forbidden edges. The model, cov-
ering both monomorphism and isomorphism problem, also allows addi-
tional properties, such as distance properties, between pairs of nodes in
the pattern graph. Such properties can be either stated by the user, or
automatically inferred by the system. The model is built through the
definition of parametric morphism constraints, allowing an efficient im-
plementation of propagators. An Oz/Mozart implementation has been
developped. Experimental results show that our general framework is
competitive with a specialized C++ Ullman (exact) matching algorithm,
while also offering approximate matching.

1 Introduction

Graph pattern matching is a central application in many fields [1]. Many different
types of algorithms have been proposed, ranging from general methods to specific
algorithms for particular types of graphs. In constraint programming, several
authors [2, 3] have shown that graph matching can be formulated as a CSP
problem, and argued that constraint programming could be a powerful tool to
handle its combinatorial complexity. However, many issues should be considered
such as the evaluation of the performance of a CSP approach against traditional
algorithms, the development of new global constraints enhancing the pruning,
the extension of exact matching to approximate matching.

In many areas, the structure of the pattern can only be approximated and
exact matching is then far too accurate. Approximate matching is a possible
solution, and can be handled in several ways. In a first approach, the matching
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algorithm may allow part of the pattern to mismatch the target graph (e.g.
[4–6]. The matching problem can then be stated in a probabilistic framework
(see, e.g. [7]). In a second approach, the approximations are declared by the user
within the pattern, stating which part could be discarded (see, e.g. [8]). This
approach is especially useful in fields, such as bioinformatics, where one faces
a mixture of precise and imprecise knowledge of the pattern structures. In this
approach, which will be followed in this paper, the user is able to choose parts
of the pattern open to approximation.

Within the CSP framework, a model for graph monomorphism has been pro-
posed by Rudolf [3] and Valiente et al. [2]. Our modeling is based on these works.
Sorlin [9] proposed a filtering algorithm based on paths for graph isomorphism
and part of our approach can be seen as a generalization of this filtering. A
declarative view of matching has also been proposed in [10].

Objectives This work aims at proposing a CSP approach for approximate
subgraph matching where the potential approximation is declaratively included
in the pattern graph as mandatory/optional nodes/edges. We also want a frame-
work where additional properties between pairs of nodes in the pattern graph,
such as distance properties, can be either stated by the user, or automatically
inferred by the system. In the former case, such properties can define new ap-
proximate patterns. In the latter case, these redundant constraints enhance the
pruning.

Results The main contributions of this paper are the following:

– An extension of the CSP model for pattern subgraph matching covering both
monomorphism and isomorphism problems, and allowing the specification
of additional constraints between pairs of nodes, as well as the derivation of
redundant constraints providing more pruning.

– A definition of approximate subgraph matching, including the specification
of optional nodes and forbidden edges in the pattern graph, and its associated
CSP model.

– A definition of parametric morphism constraints, allowing a simple expres-
sion of the above problems.

– An implementation of propagators for the generic constraints.
– Experimentations showing that our general framework is competitive with

a specialized C++ Ullman (exact) matching algorithm, while also offering
approximate matching.

Outline Sections 2 and 3 introduce basic definitions of subgraph matching
and describe the basic framework for monomorphism. Section 4 generalizes the
basic monomorphism constraints to parametric constraints in the exact case.
Instances of these parametric constraints, such as isomorphism constraints and
path constraints, are described in Section 5. Section 6 introduces the approx-
imate matching problem and describes how this problem can be solved by an
approximate version of the parametric constraints. Section 7 presents a compar-
ison of our CSP approach with Ullman based graph matching algorithm and
shows that the proposed approach is competitive. Section 8 concludes this paper
and presents research directions.
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2 Background

Before presenting the basic CSP for exact and approximate subgraph matching,
we define the notion of subgraph matching.

A graph G = (N,E) consists of a node set N and an edge set E ⊆ N×N ,
where an edge (u, v) is a pair of nodes. The nodes u and v are the endpoints of
the edge (u, v).

The neighborhood function V (a) is the set of neighbors of a node a in
the underlying graph.

A subgraph of a graph G = (N,E) is a graph S = (N ′, E′) where N ′ is a
subset of N and E′ is a subset of E.

A subgraph isomorphism between a pattern graph Gp = (Np, Ep) and
a target graph Gt = (Nt, Et) is an injective function f : Np → Nt respecting
(u, v) ∈ Ep ⇔ (f(u), f(v)) ∈ Et.

A subgraph monomorphism between Gp and Gt is an injective function
f : Np → Nt respecting (u, v) ∈ Ep ⇒ (f(u), f(v)) ∈ Et.

A subgraph matching is either a subgraph isomorphism or a subgraph
monomorphism.

A constraint model to solve the exact subgraph matching problem has been
proposed by several authors [2] [3]. This model focuses on monomorphism and
will form our basic monomorphism constraints. The variables X = {x1, ..., xn}
are the nodes of the pattern graph and their respective domain D(xi) is the
set of target nodes. The assignment must respect two conditions: all variables
have a different value and the structure of the pattern must be kept (monomor-
phism condition). The first condition is implemented with the classical Alld-
iff (x1, ..., xn) constraint [11] [12]. The second condition is translated into a
monomorphism constraint.

2.1 Monomorphism Constraint

The monomorphism constraint states that if an edge exists between two pattern
nodes, then an edge must exist between their corresponding images :

∀ (i, j) ∈ Ep : (f(i), f(j)) ∈ Et .

The corresponding basic monomorphism constraint is defined as :

MC(xi, xj) ≡ (i, j) ∈ Ep ⇒ (xi, xj) ∈ Et .

In the rest of the paper, N = |Np|, E = |Ep|, D = |Nt| and d is the av-
erage degree of the target graph. A classical AC-consistency algorithm would
cost O(ED2) amortized time [2]. By using the problem structure, its amortized
complexity can be reduced to O(NDd) [2]. We note n the average degree of the
pattern graph.

A global constraint MC(x1, ..., xn) can be formulated, instead of having one
constraint MC per node pair:
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MC(x1, ..., xn) =
∧
i,j

MC(xi, xj) .

The global basic monomorphism constraint MC(x1, ..., xn) can be expressed
as:

∀ i ∈ Np ∀ a ∈ Nt : |D(xi) ∩ Vt(a)| = 0 ⇒ a /∈ D(xj) ∀ j ∈ Vp(i) ,

where Vp(i) = {j ∈ Np | (i, j) ∈ Ep} and Vt(i) = {j ∈ Nt | (i, j) ∈ Et}.
The proposed propagator keeps track of relations between all the target nodes

and the domain D(xi) in a structure S(i, a) = |D(xi) ∩ Vt(a)| representing the
number of relations between a target node a and D(xi). Whenever the neighbors
of a target node a have no relation with D(xi), that is when S(i, a) = 0, node a
is pruned from all neighbors of xi. The Algorithm 2.1 shows an implementation
of the global morphism constraint. It has a O(NDd) amortized time complexity,
and the structure S(i, a) has O(ND) spatial complexity [2]. The preprocessing
to compute S(i, a) costs O(NDd). The global MC constraint is thus algorith-
mically global as it achieves the same consistency than the original conjunction
of constraints, but more efficiently.

Algorithm 1: Morphism Constraint
Propagate MC(i,a)
// Element a exits from D(xi)
for b ∈ Vt(a) do

S(i, b)← S(i, b)− 1
if S(i, b) = 0 then

foreach j ∈ Vp(i) do
D(xj)← D(xj) \ {b}

2.2 Local Alldiff Constraint

A redundant constraint pruning the search space has been proposed in [2]. This
constraint is a local Alldiff constraint [11], enforcing that the number of candi-
dates available in the union of the domains of xi’s neighbors should not be less
than the actual number of xi neighbors in the pattern graph:

LA(xi) ≡ | ∪j∈Vp(i) D(xj) ∩ Vt(xi)| ≥ |Vp(i)| . (1)

An algorithmic global constraint LA(x1, ..., xn) can be formulated, instead
of having one constraint LA per node :

LA(x1, ..., xn) ≡
∧
i

LA(xi) .

A structure CT (i, a) = | ∪j∈Vp(i) D(xj) ∩ Vt(a)| is updated through the use
of an intermediate structure R(i, a) = |{j ∈ Vp(i) | a ∈ D(xj)}|. The structure
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R(i, a) counts the number of neighbors of xi which have a in their domain.
Whenever R(i, a) equals 0, CT (i, b) diminishes by 1 for all b in the neighbor of a
in the target graph. The expression |Vp(i)| can be obtained in O(1). Algorithm
2 describes an implementation of the LA(x1, ..., xn) constraint.

The amortized complexity of this redundant constraint is O(NDd) and its
space complexity is O(ND). The preprocessing time to build the CT (i, a) and
R(i, a) structures is O(NDd).

Algorithm 2: Local alldiff constraint
Propagate LA(i,a)
// Element a exits from D(xi)
for j ∈ Vp(i) do

R(j, a)← R(j, a)− 1
if R(j, a) = 0 then

foreach b ∈ Vt(a) do
CT (j, b)← Ct(j, b)− 1
if CT (j, b) < |Vt(j)| then

D(xj)← D(xj) \ {b}

3 Generic Subgraph Matching Constraints

In this section we present new parameterized global constraints able to handle
different type of constraints. These constraints will be instantiated to different
matching constraints.

The MC constraint is redefined as a parametric constraint, taking pattern
pair node relations A and target pair node relations B as parameter :

MCp(x1, ..., xn, A, B) ≡
∧
i,j

(i, j) ∈ A ⇒ (xi, xj) ∈ B .

The propagator of this parametric MC constraint is given by Algorithm 1,
where the neighborhood functions Vp(·) and Vt(·) are specialized to the consid-
ered instance of the constraint. More precisely, Vp(i, A) = {j ∈ Np | (i, j) ∈ A}
and Vt(a,B) = {b ∈ Np | (a, b) ∈ B} respectively. As a consequence, S(i, a) is
redefined as |D(xi) ∩ Vt(a,B)|.

The LA constraint can also be parameterized with the relations A and B :

LAp(xi, A, B) ≡ | ∪j∈Vp(j,A) D(xj) ∩ Vt(xi, B)| ≥ |Vp(i, A)|

LAp(x1, ..., xn, A, B) ≡
∧
i

LA(xi, A, B)

Algorithm 2, with suitable specific structures, is a possible implementation
for instances of this constraint.

The problem of subgraph monomorphism can then be expressed as :

alldiff(x1, ..., xn) ∧MCp(x1, ..., xn, Ep, Et) ∧ LAp(x1, ..., xn, Ep, Et)
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4 Specifying Additional Constraints

Additional constraints for the matching problem can be expressed as instances
of the parametric morphism constraint.

4.1 Isomorphism as Monomorphism Matching

Isomorphism condition states that if an edge does not exist between two pattern
nodes, then an edge should not exist between their corresponding images :

∀ (i, j) /∈ Ep : (f(i), f(j)) /∈ Et .

The problem of subgraph isomorphism can be stated easily by using comple-
mentary edge sets Ep = {(i, j) ∈ Np × Np | (i, j) /∈ Ep } and Et = {(i, j) ∈
Nt ×Nt | (i, j) /∈ Et } as parameters :

alldiff(x1, ..., xn) ∧ MCp(x1, ..., xn, Ep, Et) ∧ MCp(x1, ..., xn, Ep, Et)
∧ LAp(x1, ..., xn, Ep, Et) ∧ LAp(x1, ..., xn, Ep, Et)

4.2 Path and Shortest Path Distance Constraint

In this section we formulate a new constraint between pair of nodes based on
the path and shortest path distance. It can be seen as a generalization of other
works based on shortest path distance as filtering and checking methods [9] [13],
where only initial filtering and checking is achieved. In our method, the path
constraints does this initial filtering but also propagates.

Definition 1 A node a is at distance k from node b in a graph if and only if
there exists a shortest path of distance k between them. dist(a, b) denotes the
shortest path distance between a and b.

A shortest path monomorphism constraint (for a given distance k) can be
formulated as MCdist(x1, ..., xn, k) ≡

∧
i,j dist(i, j) = k ⇒ dist(xi, xj) ≤ k.

Similarly, a shortest path isomorphism constraint (for a given distance k) can
be formulated as MCdist(x1, ..., xn, k) ≡

∧
i,j dist(i, j) = k ⇒ dist(xi, xj) = k .

Suppose Ek
p = {(i, j) ∈ Np × Np | dist(i, j) = k} and Ek

t = {(a, b) ∈
Nt ×Nt | dist(a, b) ≤ k}. Then MCdist is equivalent to MCdist(x1, ..., xn, k) ≡
MC(x1, .., xn, Ek

p , Ek
t ).

The expression path(i, j, k) denotes that there is a path of length k be-
tween i and j. The path constraint can be formulated as MCpath(x1, ..., xn) ≡∧

i,j path(i, j, k) ⇒ path(xi, xj , k) .
Suppose Ek

p = {(i, j) ∈ Np × Np | path(i, j, k)} and Ek
t = {(a, b) ∈ Nt ×

Nt | path(a, b, k)}. We can see that MCpath is equivalent to MCpath(x1, ..., xn) ≡
MC(x1, .., xn, Ek

p , Ek
t ).

The number of (Ek
p , Ek

t ) couples is bound by the diameter of the pattern
graph, which is, in the worst case, O(N). The time complexity of all these new
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constraints is thus O(N2Dd) and their spatial complexity O(N2D). Prepro-
cessing time to compute path and shortest-path distance adjacency matrices is
O(D3).

Shortest path constraints lead to poor pruning when k increases since the
average degree of the graphs Ek

p and Ek
t is O(dk). All path constraints are

however redundant, meaning they are necessary conditions of the matching.
Only a subset of these constraints can be chosen. One could select only path
of distance two and three, resulting in a O(ND3d) = O(NDd) time complexity
and a O(3ND) = O(ND) spatial complexity. One could use the path distance
only from one specific node to all the another nodes. We call this kind of node
an orbit. Each orbit will cost an additional O(NDd). One could select specific
path distance constraints between chosen nodes.

5 Approximate Subgraph Matching

5.1 Problem Definition

A useful extension of subgraph matching is approximate subgraph matching,
where the pattern graph and the found subgraph in the target graph may differ
with respect to their structure.

Optional nodes In our framework, the approximation is declared upon the
pattern graph. Some nodes are declared optional, i.e. nodes that may not be in
the matching. Specifying optional edges in a monomorphism problem is useless
as it is equivalent to omitting the edge in the pattern. The status of the edges
depends on the optional state of their endpoints. An edge having an optional
node as one of its endpoints is optional. An optional edge is not considered in
the matching if one of its endpoints is not part of the matching. Otherwise, the
edge must also be a part of the matching.

Forbidden edges Edges may also be declared as forbidden between their two
endpoints (u, v), meaning that if u and v are in the domain of f , then (u, v) must
not exist in the target graph. A pattern graph with all its complementary edges
declared as forbidden induces a subgraph isomorphism instead of a subgraph
monomorphism.

A pattern graph with optional nodes and forbidden edges forms an approxi-
mate pattern graph.

Definition 2 An approximate pattern graph is a tuple (Np, Op, Ep, Fp) where
(Np, Ep) is a graph, Op ⊆ NP is the set of optional nodes and Fp ⊆ Np ×Np is
the set of forbidden edges, with Ep ∩ Fp = ∅.

The corresponding matching is called an approximate subgraph matching.

Definition 3 An approximate subgraph matching between an approximate
pattern graph Gp = (Np, Op, Ep, Fp) and a target graph Gt = (Nt, Et) is a partial
function f : Np → Nt such that :

1. Np \Op ⊆ dom(f)
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2. ∀ i, j ∈ dom(f) : i 6= j ⇒ f(i) 6= f(j)
3. ∀ i, j ∈ dom(f) : (i, j) ∈ Ep ⇒ (f(i), f(j)) ∈ Et

4. ∀ i, j ∈ dom(f) : (i, j) ∈ Fp ⇒ (f(i), f(j)) /∈ Et

The notation dom(f) represents the domain of f . Elements of dom(f) are
called the selected nodes of the matching. This means that dom(f) can be repre-
sented by a finite set variable. Its lower bound flb consists of all selected nodes,
and its upper bound fglb consists of selected nodes and nodes that could be
selected.

Condition 1 requires mandatory nodes to be in the matching. Condition 2
is the injective condition, also present in the exact case. Condition 3 enforces
that an edge between two selected endpoints must always be present in the
target. Condition 4 forbids the presence of an edge in the matching between
node (f(u), f(v)) if the edge (u, v) was declared forbidden and u, v are in the
matching. According to this definition, if Fp = ∅ the matching is a subgraph
monomorphism, and if Fp = Np ×Np \ Ep, the matching is an isomorphism.

Condition 3 has an important impact on the set of possible matchings, as
shown in Figure 1. In this figure, mandatory nodes are represented as filled
nodes, and optional nodes are represented as empty nodes. Mandatory edges
are represented with plain line, and optional edges are represented with dashed
lines. Forbidden edges are represented with a plain line crossed. Intuitively, one
could think that edge (5, 6) in the pattern could be discarded, while node 6 could
be selected together with edge (4, 6). In fact, because of condition 3, matching
of node 6 would require the edge (5, 6) to be present in the target. Only two
subgraphs match this pattern as shown on the right side of Figure 1. The nodes
and edges not selected in the target graph are grey.

Fig. 1. Example of approximate matching.

In an approximate subgraph matching, the number of possible solutions may
be higher than in exact matching. One could therefore add some optimization
criteria on the results, such as maximizing the number of edges in the matching.
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5.2 Parametric Constraints for Optional Nodes

Morphism constraint on this approximate matching should handle the optional
nodes, but also be parameterized, because expressiveness and pruning should be
kept. The approximate morphism constraint can be defined as follows :

MCpa(x1, ..., xn, A, B) ≡
∧

i,j(i, j) ∈ A ∧ i, j ∈ dom(f) ⇒ (xi, xj) ∈ B

The former constraint states that a morphism relation between two pattern
nodes xi and xj must be forced if and only if they are present in the domain of
f . Using a MC-like implementation, the MCpa constraint can be rewritten as :

∀ i ∈ Np ∀ a ∈ Nt : ( |D(xi) ∩ Vt(a)| = 0
∧ i ∈ dom(f) ) ⇒ a /∈ D(xj) ∀ j ∈ Vp(i) .

The additional condition i ∈ dom(f) states that only selected nodes should
propagate under the morphism condition. The propagation of the morphism
constraint of an optional i is computed but performed only when i is in the
domain of f .

As depicted in Figure 2, all selected nodes propagate in their neighborhood
but optional nodes propagate only when they are selected.

Fig. 2. Pruning method for the approximate morphism condition

MCpa is a simple extension of the implementation of MCp one (Algorithm
1). If i is not selected and there exists a such that S(i, a) = 0, the propagator
waits for node i to be selected to trigger the actual propagation.

5.3 Constraints for Forbidden Edges

A constraint for the forbidden edges (condition 4 in the matching) can be ob-
tained by using parameterized MCpa :

MCpa(x1, ..., xn, Fp, Et)

The constraints for the approximate matching problem are then :

alldiff(x1, ..., xn) ∧ MCpa(x1, ..., xn, Ep, Et) ∧ MCpa(x1, ..., xn, Fp, Et) .

Using these two MCpa constraints has a major drawback. The neighborhood
function V p(i) = {j | (i, j) ∈ Fp} and especially V t(a) = {b | (a, b) /∈ Et} may
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increase time complexity, because most of the time is spent in the loop upon
V t(a). Whatever the average degree of the target graph is, one of the constraints
has a O(ND2) complexity. Moreover, a second structure S(i, a) = |D(xi)∩V t(a)|
has to be created. These two constraints can however be expressed within a single
propagator, thanks to S(i, a) = 0 ⇔ S(i, a) = |D(xi)|. Indeed, S(i, a)+S(i, a) =
|D(xi)∩V (a)|+|D(xi)∩V (a)| = |D(xi)∩(V (a)∪V (a))| = |D(xi)∩Nt| = |D(xi)|.

The two propagators implementing the two instances of the MCpa constraint
can be implemented in an unique propagator MCFA described in Algorithm 3.
Record that S(i, a) = num represents the number of relations between target
node a and D(xi). Since S(i, a) is computed over D(xi) that may be different
from the actual D(xi), a counter size is added to S(i, a) structure, representing
the size of D(xi) over which value num is computed.

Algorithm 3: Morphism and Forbidden Edges Constraint
PropagateMCFA(i,a,Ep1 ,Ep2 ,Et)
// Element a exits from D(xi)
S(i, a, Et).size← S(i, a, Et).size− 1
for b ∈ V (a, Et) do

S(i, b, Et).num← S(i, b, Et).num− 1
num = S(i, b, Et).num
size = S(i, b, Et).size
if size == num then

PropaNeigh(i,b,Ep2)

if num == 0 then
PropaNeigh(i,b,Ep1)

Procedure PropaNeigh(i,b,Ep)
Wait until i ∈ dom(f)
for j ∈ V (i, Ep) do

D(xj)← D(xj) \ b

The LA constraint may also be adapted for approximate matching. Con-
straint LA infers propagation on its xi variable on the basis of xi neighborhood.

Definition 4 The selected neighborhood function V +
p (i), with respect to a finite

set variable D = [flb, fgb] representing dom(f) of a node i in an approximate
pattern graph is the set { j | j ∈ Vp(i) ∧ j ∈ flb}.

The function V +
p (i) creates an LA+

pa constraint, playing the same role as in
the exact case :

LA+
pa(xi, A, B) ≡ | ∪j∈V +

p (i,A) D(xj) ∩ Vt(xi, B)| ≥ |V +
p (i, A)|

LA+
pa(x1, ..., xn, A, B) ≡

∧
i

LA+
pa(xi, A, B) .
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Similarly to the LAp constraint, LA+
pa plays a pruning role. It can be im-

plemented by maintaining the neighborhood variable, with an O(d) time com-
plexity, whenever the domain of xi is pruned. The structure R+(i, a) = |{ j ∈
V +

p (i, A) | a ∈ D(xj) }| depends not only on the domain of the neighborhood of
xi but also on the neighborhood variable. Whenever the lower bound of V +

p (i, A)
changes, the structure R+(i, ·) must be updated in O(D), resulting in a O(ND2)
amortized complexity. Moreover, R+(i, a) may be incremented from zero to one,
resulting in an increment of CT+(i, a) = | ∪j∈V +

p (i,A) D(xj)∩ Vt(a,B)|, which is
not monotone. Nevertheless, when condition CT+(i, a) < |V +

p (i, A)| is fulfilled,
a can be safely pruned from xi, because if there is not enough candidates for a
subgroup of the neighborhood, node i cannot be mapped to node a, even if the
condition still holds for the group.

5.4 Extending approximate pattern

Until now parametric constraints has been used for designing global or redundant
constraints. In fact they can also be instantiated to constraints declaring distance
constraints between specific pattern nodes. Such properties state new informa-
tion on the pattern graph. For example, a constraint PathAtMost(xi, xj , k)
could state that there exists a shortest path of distance k or less between node
i and j :

PathAtMost(xi, xj , k) ≡ dist(xi, xj) ≤ k .

Similarly, a constraint Path(xi, xj , k) could state that there exists a path of
length k between node i and j :

Path(xi, xj , k) ≡ path(xi, xj , k) .

A matching declaring this Path constraint between two pattern nodes i and j
states the existence of a path of length k, in the target graph, between nodes f(i)
and f(j). Such additional constraints enriches the approximation on the pattern
graph. It is clear that parametric constraints can be instantiated to other types
of constraints as long as they are properties concerning pair nodes of the pattern
and that those properties can be precomputed or dynamically computed on the
target graph. For example, richer path constraints could state that there exists
a path of length k containing two nodes of a given type.

6 Experiments

Our CSP model for approximate subgraph matching has been implemented in-
side the CSP framework of Oz/Mozart (www.mozart-oz.org). Both parametric
propagators MCpa(x1, ..., xn, A, B) and LApa(x1, ..., xn, A, B) were implemented
as well as MCFA. Various transformations of Ep and Et were automated to in-
stantiate propagators for the forbidden edges and the distance constraints. We
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also included facility constraints to declare distance constraints between specific
pattern nodes.

First part of the experimental tests aims at comparing the CSP approach
with a dedicated algorithm for subgraph matching. The selected algorithm is an
improvement of Ullmann’s algorithm [14] called vflib, described into [13]. The
C++ implementation provided by the authors is used. We have also reimple-
mented the vflib algorithm in Oz/Mozart.

Two distinct sets of graphs were selected. The first set comes from [15] and
consists of 3000 directed instances divided in three classes : first one has prob-
ability η = 0.01 (noted r001 in Table 1) that an edge is present between two
distinct node n and n′, second one has a 0.05 probability (noted r005) and third
one has a 0.1 probability (noted r01). Those graphs were used to evaluate vflib
algorithm performance [13]. In our experiments, target graph size (the number
of nodes in the target graph) ranges from 20 to 200, pattern graph size is 20% of
the target graph size, and all solutions are searched. From a topological point of
view, a N nodes graph generated with a probability of η has a mean degree of
ηN and each node has a degree close to this mean degree. We call that kind of
graphs uniform because a subgraph has a structure close to another subgraph
in the same graph. The second set contains graphs having different topological
structures as explained in [2]. These graphs were generated using the Stanford
GraphBase [16] and are all graphs tested in [2], consisting of 406 directed in-
stances.

Tables 1,2 and 3 show the results for the first graph database and the Graph-
Base graphs. The subgraph matching is a monomorphism. Total and mean time
reported concern solved instances only. Following the methodology used into [2],
we put a time limit on any given run. In Table 1, left column describes the
number of problems solved within a time limit of 5 minutes and right column
within 10 minutes, for each set of a given target graph size 60, 80, 100, and 200.
All benchmarks were performed on an Intel Xeon 3 Ghz. The three algorithms
(original C++ vflib, vflib in Oz, and our CSP in Oz) solve all instances for
graph size 20 and 40 within time limit. On the first graph database, one can also
measure the overhead of implementing vflib algorithm in Oz. The CSP approach
is outperformed by the vflib algorithm for the first graph database in Table 1,
but outperforms the vflib algorithm for the Stanford GraphBase set. This comes
from the fact that topological properties in the first graph database set are dif-
ferent from GraphBase set. In uniform graphs, the probability that a variable
has an empty domain thanks to conjunction of MC(xi, xj) constraints is low.
This explains that CSP performances decrease as target size increases in Table
1. The vflib algorithm is effective in this case. When measuring performance on
the set of graphs which is not uniform, CSP outperforms the vflib algorithm
when looking either for one solution or for all solutions.

Benefits of the unique MCFA propagator instead of the conjunction of the
two MCpa are shown in Table 4. The subgraph isomorphism problem is solved
by using forbidden edges. Left column shows a set of runs with both MCpa

handling the isomorphism. Right column shows the same set of runs with the
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unique propagator MCFA handling the isomorphism. As expected, the MCFA
propagator solves more problems, and mean time over solved problems decreases.

In most cases redundant path constraints do not reduce the total time as
average degree increases with distance. Path constraints are useful for enhancing
the expressiveness of the pattern graph. We tested influence of specifying an
additional distance constraint between two nodes (left graph in Figure 3). The
pattern graph has size 20. As expected, the greater the distance, more time
is needed to find all solutions as the search space is higher. This experiment
underlies the feasibility using additional distance constraints between nodes,
viewed as expressive constraints instead of redundant constraints, in the pattern
graph if the distance is not too high (≤ 3). Such an approximate pattern may
be especially usefull in domains such as bioinformatics. Approximate matching
has been evaluated by declaring two constraints of distance 3 shortest path
on the pattern graph and 40% of its nodes as optional. The pattern graph is
matched against 100 distinct instances of a target graph made of 100 nodes,
searching for all solutions. Two curves are shown in the right graph in Figure 3
in a logarithmic scale. The lower one shows the matching of the pattern graph
without its distance constraints and optional nodes. The upper one represents
the running time of the approximate matching. A constant factor exists between
the two sets of runs and a majority of the executions are below 10 seconds.

Table 1. Comparison over uniform directed graphs.

vflib C++ 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 100 0 96 4
80 100 0 94 6 98 2
100 100 0 88 12 99 1
200 74 26 84 16 97 3

vflib C++ 10 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 100 0 96 4
80 100 0 94 6 98 2
100 100 0 89 11 99 1
200 81 19 87 13 99 1

ozvflib 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 85 15 76 24
80 100 0 76 24 83 17
100 100 0 56 44 88 12
200 16 84 53 47 69 31

ozvflib 10 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 89 11 81 19
80 100 0 79 21 85 15
100 100 0 62 38 91 9
200 18 82 57 43 79 21

CSP MC 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 96 4 86 14
80 100 0 84 16 91 9
100 100 0 82 18 93 7
200 33 67 77 23 51 49

CSP MC 10 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 96 4 91 9
80 100 0 86 14 93 7
100 100 0 86 14 99 1
200 40 60 87 13 86 14

Table 2. Comparison over GraphBase directed graphs.

One solution 5 min.
solved unsol total time mean time

vflib C++ 80,5% 19,5% 8.89 min. 0.02 min.
ozvflib 78,5% 21,5% 17.67 min. 0.04 min.
CSP 87% 13% 36.64 min. 0.09 min.

All solutions 5 min.
solved unsol total time mean time

vflib C++ 63,7% 36,3% 12.01 min. 0.02 min.
ozvflib 59,8% 40,2% 11.52 min. 0.02 min.
CSP 68,7% 31,3% 31.4 min. 0.07 min.
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Table 3. Comparison over GraphBase undirected graphs.

One solution 5 min.
solved unsol total time mean time

vflib C++ 64,4% 35,6% 8.14 min. 0.006 min.
ozvflib 58,2% 41,8% 8.6 min. 0.04 min.
CSP 64,4% 35,6% 18.24 min. 0.01 min.

All solutions 5 min.
solved unsol total time mean time

vflib C++ 48,3% 51,7% 9.31 min. 0.007 min.
ozvflib 39,5% 60,5% 4.43 min. 0.003 min.
CSP 57,7% 42,3% 11.39 min. 0.009 min.

Table 4. MCpa and MCfa versus MCFA

CSP MCp and MCfa 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
100 100 0 100 0 96 4
200 79 21 62 38 10 90

CSP MCFA 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
100 100 0 100 0 99 1
200 83 17 80 20 34 66

7 Conclusion

In this paper, we proposed a CSP approach for approximate subgraph match-
ing. The model handles both monomorphism and isomorphism problems. It also
allows the specification of additional constraints between pairs of nodes (such
as distance constraints), as well as the derivation of redundant constraints pro-
viding more pruning. Approximation is specified through optional nodes and
forbidden edges, as well as additional constraints. The CSP model is expressed
through two parametric constraints, allowing a simple and versatile modeling
of various classes of matching problems. Propagators of the constraints have
been described, supported by an Oz/Mozart implementation. Experimentations
showed that our CSP approach for exact matching is competitive with a spe-
cialized C++ Ullman matching algorithms, and illustrated its versatility for
approximate subgraph matching.

The proposed framework for declarative approximate subgraph matching
open various research directions. Better heuristics could be developed when
searching for an approximate matching. Our algorithm for exact matching could
also be compared with other algorithms dedicated to the largest common sub-
graph problem. We also intend to apply our approximate matching algorithm
for the analysis of biochemical networks. New approximations could be defined
on the pattern graph, along with new constraints and propagators. Finally, as

Fig. 3. Influence of distance over running time and approximate matching running
times.
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the (approximate) matching is expressed as a combination of (parameterized)
constraints, subgraph matching could be integrated in a constraint language
handling graph variables, such as CP(Graph) [17].
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