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Abstract. This paper introduces DEVIATION, a soft global constraint to
obtain balanced solutions. A violation measure of the perfect balance
can be defined as the Lp norm of the vector variables minus their mean.
SPREAD constraints the sum of square deviations to the mean [5, 7] i.e. the
L2 norm. The L1 norm is considered here. Neither criterion subsumes the
other but the design of a propagator for L1 is simpler. We also show that
a propagator for DEVIATION runs in O(n) (with respect to the number of
variables) against O(n2) for SPREAD.

1 Introduction

We consider the Balanced Academic Curriculum Problem (BACP) [1] as a mo-
tivating example. The goal is to assign a period to each course in a way that the
prerequisite relationships are satisfied and the academic load of each period is
balanced. This last constraint makes BACP a Constraint Optimization Problem
where the objective is to maximize the balancing property.

In BACP the mean m of a solution is a constant of the problem since the
load of each course and the number of periods are given. A hard balancing
constraint would impose all periods to take a same load m. This often results
in an over-constrained problem without solution. For a set of variables X =
{X1, X2, ..., Xn} and a given fixed mean m, a violation measure of the perfect
balance property can be defined as the Lp-norm of the vector [X − m] with
X = [X1, X2, ..., Xn], m = [m,m, ..., m] such that

∑n
i=1 Xi = n.m. The Lp-

norm of [X−m] is defined as (
∑n

i=1 |Xi −m|p)
1
p with p ≥ 0.

Following the scheme proposed by Régin et al. [6] to soften global constraints,
we define a violation of the perfect balance constraint as a cost variable Lp in
the global balance constraint: soft-balance(X ,m, Lp) constraint holds if and
only if Lp-norm([X−m]) = Lp and

∑n
i=1 Xi = n.m.

The interpretation of the violation to the mean for some specific norms is
given below.

• L0: |{X ∈ X |X 6= m}| is the number of values different from the mean.
• L1:

∑
X∈X |X −m| is the sum of deviations from the mean.

• L2:
∑

X∈X (X −m)2 is the sum of square deviations from the mean.
• L∞: maxX∈X |X −m| is the maximum deviation from the mean.



Note that none of these balance criteria subsumes the others. For instance,
the minimization of L1 does not imply in general a minimization of criterion
L2. This is illustrated on the following example. Assume a constraint problem
with four solutions given in Table 1. The most balanced solution depends on
the chosen norm. Each solution exhibits a mean of 100 but each one optimizes
a different norm.

sol. num. solution L0 L1 L2 L∞
1 100 100 100 100 30 170 2 140 9800 70

2 60 80 100 100 120 140 4 120 4000 40

3 70 70 90 110 130 130 6 140 3800 30

4 71 71 71 129 129 129 6 174 5046 29

Table 1. Illustration showing that no balance criterion defined by the norm L0, L1,
L2 or L∞ subsumes the others. The smallest norm is indicated in bold character. For
example, solution 2 is the most balanced according to L1.

The norm L∞ has already been used in two previous works [2, 4] to solve
BACP. SPREAD is a constraint for L2 [5, 7]. A constraint for L0 can easily be
implemented using an ATLEAST(i, [X1, ..., Xn],m) constraint for |{X ∈ X |X 6=
m}| ≤ i and a SUM([X1, ..., Xn], n.m) constraint to ensure a mean of m. In this
paper, a global constraint and its propagators for the L1 norm with fixed mean
is presented. This constraint is formulated in the following definition:

Definition 1. A set of finite domain integer variables X = {X1, X2, ..., Xn},
one mean value m and one interval variable D are given.

The constraint DEVIATION(X ,m, D) states that the collection of values taken
by the variables of X exhibits an arithmetic mean m and a sum of deviations to
m of D. More formally, DEVIATION(X ,m, D) holds if and only if

n.m =
n∑

i=1

Xi and D =
n∑

i=1

|Xi −m|.

For the constraint to be consistent, n ×m must be an integer. As a conse-
quence n×D is also an integer.

Outline of the paper:

Section 2 mainly reviews preliminaries notions relative to constraint program-
ming such as filtering, domain-consistency and bound-consistency. We also define
some useful notations. Section 3 motivates the need of a global filtering algo-
rithm for DEVIATION in terms of filtering. Section 4 explains the propagators
narrowing the domain of D. This filtering makes use of the minimization and
maximization of the sum of deviations. The minimization is solved in linear
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time. The maximization is proved to be NP-complete; however, an approxi-
mated upper bound can be calculated in linear time as well. Section 5 describes
the filtering algorithm from m and D to the variables X . The idea is similar to a
bound consistency filtering algorithm for a SUM constraint but including the sum
of deviations constraint. Section 6 shows that our propagators do not achieve
bound-consistency. Section 7 gives a relaxation of SPREAD with DEVIATION. Fi-
nally, Section 8 evaluates the efficiency of the presented propagators in terms of
filtering on randomly generated instances.

2 Background and notations

Basic constraint programming concepts largely inspired from Section 2 of [8] are
introduced.

Let X be a finite-domain (discrete) variable. The domain of X is a set of
ordered values that can be assigned to X and is denoted by Dom(X). The mini-
mum (resp. maximum) value of the domain is denoted by Xmin = min(Dom(X))
(resp. Xmax = max(Dom(X)). Let X = {X1, X2, ..., Xk} be a sequence of vari-
ables. A constraint C on X is defined as a subset of the Cartesian product of
the domains of the variables in X : C ⊆ Dom(X1)×Dom(X2)× ...×Dom(Xk).
A tuple (v1, ..., vk) ∈ C is called a solution to C. A value v ∈ Dom(Xi) for some
i = 1, ..., k is inconsistent with respect to C if it does not belong to a tuple of
C, otherwise it is consistent. C is inconsistent if it does not contain a solution.
Otherwise, C is called consistent.

A constraint satisfaction problem, or a CSP , is defined by a finite sequence
of variables X = {X1, X2, ..., Xn}, together with a finite set of constraint C each
on a subset of X . The goal is to find an assignment Xi := v with v ∈ Dom(Xi)
for i = 1, ..., n, such that all constraints are satisfied. This assignment is called
a solution to the CSP .

The solution process of constraint programming interleaves constraint prop-
agation, or propagation in short, and search. The search process essentially con-
sists of enumeration all possible variable-value combinations, until a solution is
found or it is proved that none exists. We say that this process constructs a
search tree. To reduce the exponential number of combinations, constraint prop-
agation is applied to each node of the search tree: Given the current domains
and a constraint C, the propagator for C removes domain values that do not
belong to a solution to C. This is repeated for all constraints until no more do-
main value can be removed. The removal of inconsistent domain values is called
filtering.

In order to be effective, filtering algorithms should be efficient, because they
are applied many times during the search process. They should furthermore
remove as many inconsistent values as possible. If a filtering algorithm for a
constraint C removes all inconsistent values from the domains with respect to
C, we say that it makes C domain-consistent. It is possible to achieve domain-
consistency in polynomial time for some constraints such as AllDiff but for
other constraints such as SUM this would be too costly. In such cases a weaker
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notion of consistency called bounds-consistency (also called interval-consistency)
appears to be highly cost-effective. A constraint C is bound consistent if the
bounds of the domain of each variable implied in C belongs to at least one
solution of C. The idea it to bound the domain of each variable by an interval
and make sure that the end-points of the intervals obey the domain-consistency
requirement. If not, the upper and lower bounds of the intervals can be tightened
until bounds-consistency is achieved.

Proposition 1 states that achieving domain-consistency for DEVIATION is not
more difficult than for arithmetic constraints in general.

Proposition 1. Achieving domain-consistency for DEVIATION is NP-Complete.

Proof. In the particular case where Dom(D) = [0,+∞], achieving domain-
consistency for SUM constraint reduces to achieving domain-consistency for DE-
VIATION. This is NP-Complete since the subset sum problem (see [3]) can be
reduced to achieving domain-consistency for the SUM constraint. �

Domains of variables are considered as full and can be described by the interval
Dom(X) = [Xmin..Xmax].

Definition 2 introduces some useful notations and can be easily understood
with the graphical illustration on Figure 1. A numerical example is also given in
Example 1.

rd rd=rd=0ld=rd=0

X min

X min

X min

X max

X max

X max

rd

ld
ld

rd

ld
ld=ld=0

m

Fig. 1. Illustration of the definitions introduced in Definition 2 for three variables.

Definition 2. For a variable X and a given value m, the upper bounds on the
right and left deviation are respectively

• rd(X, m) = max(0, Xmax −m) and
• ld(X, m) = max(0,m−Xmin).

The sum of these values over X are respectively
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• RD(X ,m) =
∑

X∈X rd(X, m) and
• LD(X ,m) =

∑
X∈X ld(X, m).

The same idea holds for the lower bounds on the deviations:

• rd(X, m) = max(0, Xmin −m).
• ld(X, m) = max(0,m−Xmax).
• RD(X ,m) =

∑
X∈X rd(X, m).

• LD(X ,m) =
∑

X∈X ld(X, m).

For a variable Xi ∈ X we define:

• LDi(X ,m) = LD(X ,m)− ld(Xi,m) and
• RDi(X ,m) = RD(X ,m)− rd(Xi,m).

To alleviate notations, (X ,m) are sometimes omitted. For example LD(X ,m)
is simply written LD.

Example 1. Let X = {X1, X2, X3, X4} be four variables with domains Dom(X1) =
[8, 10], Dom(X2) = [4, 7], Dom(X3) = [1, 5] and Dom(X4) = [3, 4]. The follow-
ing table exhibits the quantities introduced in Definition 2.

i rd(Xi, 5) ld(Xi, 5) rd(Xi, 5) ld(Xi, 5)
1 5 0 3 0
2 2 1 0 0
3 0 4 0 0
4 0 2 0 1∑

i 7 7 3 1
RDi(X , 5) LDi(X , 5) RDi(X , 5) LDi(X , 5)

1 2 7 0 1
2 5 6 3 1
3 7 3 3 1
4 7 5 3 0

The filtering for DEVIATION is based on the next theorem stating that the
sum of deviations above and under the mean are equal.

Theorem 1. Let X = {X1, ..., Xn}. The equality n.m =
∑

X∈X X holds if and
only if

∑
X>m(X −m) =

∑
X<m(m−X).

Proof. n.m =
∑

X∈X X can be rewritten 0 =
∑

X∈X X − n.m =
∑

X>m(X −
m) +

∑
X<m(X −m) +

∑
X=m(X −m) =

∑
X>m(X −m)−

∑
X<m(m−X). �

Property 1 Let X = {X1, ..., Xn}. An assignment on X satisfies:

•
∑

X>m(X −m) ∈ [RD(X ,m), RD(X ,m)] and
•

∑
X<m(X −m) ∈ [LD(X ,m), LD(X ,m)].

Theorem 2. DEVIATION(X ,m, D) is consistent only if the following conditions
are satisfied:
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1. RD(X ,m) ≤ Dmax

2

2. LD(X ,m) ≤ Dmax

2

3. RD(X ,m) ≥ Dmin

2

4. LD(X ,m) ≥ Dmin

2

5.
[
LD(X ,m), LD(X ,m)

]
∩

[
RD(X ,m), RD(X ,m)

]
6= φ

Proof. 1. If RD(X ,m) > Dmax

2 then
∑

X>m(X −m) > Dmax

2 (Property 1).
Hence

∑n
i=1 |Xi −m| > Dmax (by Theorem 1).

2., 3. and 4. similar to 1.
5. Direct consequence of Theorem 1 and Property 1. �

3 Naive implementation

This section explains why a naive implementation of DEVIATION by decomposi-
tion into more elementary constraints is not optimal in terms of filtering.

As stated in Definition 1, DEVIATION(X ,m, D) holds if and only if n.m =∑n
i=1 Xi and D =

∑n
i=1 |Xi−m|. This suggests a natural implementation of the

constraint by decomposing it into two SUM constraints. Figure 2 illustrates that
the filtering obtained with the decomposition is not optimal.

m , m

Dom X2

Dom X1

X1X2=2m

∣X1−m∣∣X 2−m∣Dmax

Dmax

Fig. 2. Filtering of X1 with decomposition and with DEVIATION.

Assume two variables X1, X2 with unbounded finite domains and the con-
straint

DEVIATION({X1, X2},m, D ∈ [0, Dmax]).

The diagonally shaded square (see Figure 2) delimits the set of points such that
|X1 −m| + |X2 −m| ≤ Dmax. The diagonal line is the set of points such that
X1 + X2 = 2.m. The unbounded domains for X1 and X2 are bound-consistent
for the mean constraint. The vertically shaded rectangle defines the domain of
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X1 after a bound-consistent filtering for |X1 − m| + |X2 − m| ≤ Dmax. The
set of solutions for DEVIATION is the bold diagonal segment obtained by inter-
secting the square surface and the diagonal line. It can be seen on the figure
that more filtering is possible. Bound consistent filtering on the bold diago-
nal segment leads to a domain of X1 defined by the diagonally shaded rectan-
gle. In conclusion a bound consistent filtering for the decomposition leads to
Dom(X1) = Dom(X2) = [m − Dmax,m + Dmax] while a bound consistent fil-
tering for DEVIATION({X1, X2},m, D ∈ [0, Dmax]) leads to domains two times
smaller Dom(X1) = Dom(X2) = [m− Dmax

2 ,m + Dmax

2 ].

4 Filtering of D

The filtering of D to achieve bound consistency requires to solve two optimization
problems: the minimization and maximization of the sum of deviations from a
given mean m.

Definition 3. D and D denote the optimal values to problems:

D = min
n∑

i=1

|Xi −m| and D = max
n∑

i=1

|Xi −m|

such that :
n∑

i=1

Xi = n.m

Xmin
i ≤ Xi ≤ Xmax

i , 1 ≤ i ≤ n

Xi ∈ Q, 1 ≤ i ≤ n.

Values D and D can be used to filter the domain of D:

Dom(D)←− Dom(D) ∩ [D,D].

The remaining of this section mainly explains how D can be computed in
linear time with respect to the number of variables n = |X |. Unfortunately
finding D is an NP-complete problem and the best we can do is to design a
good upper bound for it as explained at the end of this section.

Definition 4 characterizes an optimal solution to the problem of finding D.

Definition 4 (up and down centered assignment). Let X = {X1, ..., Xn}.
Let A : X → Dom(X) be an assignment of X ∈ X . The quantity s(A) denotes
the sum of assigned values: s(A) =

∑
X∈X A(X).

An assignment A is said to be up-centered when:

A(X)
{

= Xmin if Xmin ≥ s(A)/n
≤ s(A)/n otherwise

In other words, each variable with minimum domain value larger than the mean
of the assigned values takes its minimum domain value and the other variables
take values smaller than the mean of the assigned values.
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An assignment A is said to be down-centered when:

A(X)
{

= Xmax if Xmax ≤ s(A)/n
≥ s(A)/n otherwise

In other words, each variable with maximum domain value smaller than the mean
of the assigned values takes its maximum domain value and the other variables
take values larger than the mean of the assigned values.

Example 2. Considering the variables and domains of Example 1, the following
assignment is up-centered with mean 17/4:

A(X1) = 8, A(X2) = 4, A(X3) = 2, A(X4) = 3.

Theorem 3. An assignment is an optimal solution to the problem of finding D
if and only if it is a down-centered assignment or an up-centered assignment of
mean m.

Proof. (if) Given an assignment A of mean m i.e. s(A) = n.m. The only way
to decrease the sum of deviations while conserving the mean m is to find a pair
of variables Xi, Xj such that A(Xi) > m,A(Xi) > Xmin

i , A(Xj) < m,A(Xj) <
Xmax

j and to decrease A(Xi) and increase A(Xj) by the same quantity to make
them closer to m. By definition of a left and down centered assignment, it is
impossible to find such a pair Xi, Xj . Hence, up-centered and a down-centered
assignments are optimal solutions.

(only if) Assume an assignment A neither down-centered nor up-centered
such that s(A) = n.m. It is possible to find at least two variables Xi, Xj ∈ X .
One with A(Xi) > m and A(Xi) > Xmin

i (violation of up-centered) and one with
A(Xj) < m and A(Xj) < Xmax

j (violation of down-centered). Let define δ =
min

(
A(Xi)−max(Xmin

i ,m),min(Xmax
j ,m)−A(Xj)

)
. The assignment A(X) is

not optimal since the sum of deviations can be decreased by 2δ by modifying
the assignment on Xi and Xj : A′(Xi) = A(Xi)− δ and A′(Xj) = A(Xj) + δ. �

Theorem 4. If DEVIATION is consistent then

D = 2.max(LD (X ,m), RD(X ,m)) .

Proof. Assume LD ≥ RD, then it is possible to build a down-centered assign-
ment A of mean m and which is optimal by Theorem 3. For this assignment∑

A(X)<m(m − A(X)) = LD (by Definition 2 of LD). Since
∑

X>m(X −m) =∑
X<m(m −X) (by Theorem 1), the sum of deviations for this down-centered

assignment is
∑

X∈X |A(X)−m| = 2.LD.
The case LD ≤ RD is similar. The assignment is up-centered instead of

down-centered. �

Example 3. The variables and domains considered here are the same as those in
Example 1. A mean m = 5 is considered. Using the computed values LD(X , 5) =
1 and RD(X , 5) = 3 from Example 1, it can be deduced that D = 2.max(1, 3) =
6.

Consequently, filtering on D for DEVIATION(X = {X1, X2, X3, X4},m =
5, D ∈ [0, 7]) leads to Dom(D) = [6, 7].
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Theorem 5. Computing D is NP-complete.

Proof. It is possible to reduce the subset sum problem [3] to the problem of
computing D (see Definition 3). This problem is not more difficult than the
particular case where m = 0:

D = max
n∑

i=1

|Xi|

such that :
n∑

i=1

Xi = 0

Xmin
i ≤ Xi ≤ Xmax

i , 1 ≤ i ≤ n.

Given a set of n positive values {b1, ..., bn−1, T}, the subset sum problem con-
sists in finding if there exists a set of binary values {y1, ..., yn−1}, yi ∈ {0, 1}, 1 ≤
i < n such that

∑n−1
i=1 yi.bi = T . The reduction is the following:

• Xmin
i = − bi

2 and Xmax
i = bi

2 for 1 ≤ i < n.

• Xn =
Pn−1

i=1 bi

2 − T .

• There is a solution to the subset sum problem if D ≥
Pn−1

i=1 bi

2 +
∣∣∣Pn−1

i=1 bi

2 − T
∣∣∣.

This constraint on the optimal value ensures that the optimal solution is such
that Xi ∈ {− bi

2 , bi

2 }. The solution to the subset sum problem is then given
by yi = 1 if Xi = bi

2 and yi = 0 if Xi = −bi

2 . �

Unless P = NP, the problem of computing D is exponential (Theorem 5).
As explained in Section 2, in order to be effective, filtering algorithms should be
as efficient as possible because they are applied many times during the search
process. This is why we prefer to find efficiently a good upper bound D

↑
for D

than to find its exact value. An upper bound which can be computed in O(n) is

D
↑

=
n∑

i=1

max
(
|Xmax

i −m|, |Xmin
i −m|

)
.

The filtering on Dom(D) becomes:

Dom(D)←− Dom(D) ∩ [D,D
↑
]

5 Filtering on X

Two propagators could be considered to filter the domain of X :

1. from Dmin and m to X and
2. from Dmax and m to X .
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Achieving bound-consistency for the first propagator is NP-complete. In-
deed, checking the consistency of one value requires to maximize the sum of
deviations which is an NP-complete problem (Theorem 5). The decomposition
of DEVIATION presented in Section 3 can however be used to realize bound-
consistency on constraint

∑
X∈X |X − m| ≥ Dmin. In any case, this filtering

is useless if one seeks a balanced solution on X . Hence, the remaining of this
section focuses on a linear time filtering algorithm for the second propagator.

The filtering is based on the computation of the values Xi and Xi introduced
in Definition 5.

Definition 5. Xi and Xi are the optimal values to the following problems:

Xi = max(Xi) and Xi = min(Xi)

such that :
n∑

j=1

Xj = n.m (1)

n∑
j=1

|Xj −m| ≤ Dmax (2)

Xmin
j ≤ Xj ≤ Xmax

j , 1 ≤ j ≤ n, j 6= i

Xj ∈ Q, 1 ≤ j ≤ n.

The filtering rule on the domain of Xi can be simply written:

Dom(Xi)←− Dom(Xi) ∩ [Xi, Xi] (3)

Theorem 6. For a variable Xi, assuming the constraint is consistent, the fol-
lowing equalities hold:

Xi = min
(

Dmax

2
, LDi(X ,m)

)
−RDi(X ,m) + m.

Xi = −min
(

Dmax

2
, RDi(X ,m)

)
+ LDi(X ,m) + m.

Proof. Only Xi is considered because the proof for Xi is symmetrical with re-
spect to m. Two cases can be considered:

• LDi ≤ Dmax

2 : By Theorem 1 the deviation above the mean and under the
mean must be equal. Hence the optimal solution is such that Xi−m+RDi =
LDi. Constraint (2) is not tight in this case.

• LDi > Dmax

2 : By Theorem 1 the constraint (1) means that the deviation
above the mean and under the mean must be equal. The conjunction of
constraint (1) with constraint (2) means that the deviation above and under
the mean are equal and at most Dmax/2. Hence the optimal solution is such
that Xi −m + RDi = Dmax

2 . Constraint (2) is tight in this case.
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If both cases are considered together, equality Xi−m+RDi = min(Dmax

2 , LDi)
holds at the optimal solution. �

The filtering procedure on X applies rule (3) once on each Xi ∈ X . This can
be achieved in linear time with respect to the number of variables.

Example 4. Variables and domains considered are the same as in Example 1. The
constraint considered is DEVIATION(X = {X1, X2, X3, X4},m = 5, D ∈ [0, 7]).
Values Xi and Xi are: X1 = min(3.5, 7)−0+5 = 8.5, X2 = min(3.5, 6)−3+5 =
5.5, X3 = min(3.5, 3) − 3 + 5 = 5, X4 = min(3.5, 5) − 3 + 5 = 5.5, X1 =
−min(3.5, 2)+1+5 = 4, X2 = −min(3.5, 5)+1+5 = 2.5, X3 = −min(3.5, 7)+
1 + 5 = 2.5 and X4 = −min(3.5, 7) + 0 + 5 = 1.5. Hence filtering rule (3) leads
to filtered domains: Dom(X1) = [8, 8], Dom(X2) = [4, 5], Dom(X3) = [3, 5] and
Dom(X4) = [3, 4].

6 Bound consistency for DEVIATION

The total filtering is achieved in O(n) as follows.

1. Filtering from Dmax and m to X : ∀X ∈ X , Dom(X)←− Dom(X)∩ [X,X].
2. Filtering from X and m to D: Dom(D)←− Dom(D) ∩ [D,D

↑
].

Even if it was possible to compute D efficiently, bound consistency is not
necessarily obtained. The reason is that values X, X (Definition 5) and D (Defi-
nition 3) are computed making the assumption that interval domains are defined
on rational numbers Q rather than on integers Z. As the next example shows,
this can lead to miss some possible filtering.

Example 5. Assume a set of 10 variables X with domain [0, 1] and a mean of
m = 0.5. Theorem 4 gives a value D = 0 because every domain overlaps m.
In fact the only way to obtain an assignment respecting the mean constraint
is to have five variables assigned to 0 and five to 1. For such an assignment,
the minimal sum of deviations from the mean is 5 and not 0. Consequently,
the constraint DEVIATION(X ,m = 0.5, D ∈ [0, 3]) is inconsistent but such an
inconsistency will not be detected by our propagator.

Example 5 shows that all inconsistencies are not detected by the propagator.
This occurs when the mean is not an integer but a rational number and when
the domains of some variables include the mean. When the mean is an integer,
such a problem does not occur and the propagator is bound-consistent.

7 Relation between SPREAD and DEVIATION

This section shows that DEVIATION can be used as a relaxation of SPREAD. This
relaxation might be useful since the propagator of the former runs in O(n)
against O(n2) for the latter. Furthermore, DEVIATION is easier to implement.

11



The relaxation is illustrated graphically and the parameters given to DEVIATION
to obtain the strongest relaxation as possible are expressed as a function of
SPREAD parameters.

SPREAD(X ,m, ∆2) holds if the m value is the average over X and the sum
of square deviation to m is ∆2. More formally SPREAD holds if

∑
x∈X X = n.m

and
∑

x∈X (X −m)2 = ∆2.
From a geometrical point of view,

∑
x∈X (X − m)2 ≤ (∆max)2 defines an

hyper-sphere centered on [m, ...,m] of radius ∆max. The set of points satisfying∑
x∈X |X −m| ≤ Dmax lies on a regular polytope centered in [m, ...,m] with 2n

faces in an n-dimensional space 1.

m , m

Dom X2

Dom X1

X1X2=2m

Dmax

max

Fig. 3. Relation between SPREAD and DEVIATION for two variables.

The idea is to relax SPREAD with deviation by finding the smallest Dmax as
possible such that the hyper-sphere is included in the polytope. For two variables
X1 and X2, Figure 3 shows that the circle can be subsumed by the tangent outer-
square. For Dmax =

√
2∆ the outer-square is tangent with the circle (Pythagore

relation). For n variables the result is described in the following theorem.

Theorem 7. SPREAD(X ,m, [0, (∆max)2]) ⊆ DEVIATION(X ,m, [0,
√

n.∆max]) and
@ (Dmax <

√
n.∆) such that SPREAD(X ,m, [0, (∆max)2]) ⊆ DEVIATION(X ,m, [0, Dmax]).

Proof. For simplicity we assume m = 0. Recall that, the set of points such that∑
x∈X |X| ≤ Dmax define a regular polytope centered in the origin with 2n faces

in an n-dimensional space. To find Dmax such that the polyhedron is tangent
with the hyper-sphere of radius ∆, it is easier to work in the positive orthant
since others are symmetrical. In this orthant the problem is reduced to finding
Dmax such that the hyper-plan X1 + X2 + ... + Xn = Dmax is tangent with the
hyper-sphere X2

1 +X2
2 + ...+X2

n = (∆max)2. At the tangent point we have X1 =

1 For n = 2 it is a square and for n = 3 it is an octahedron.
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X2 = ... = Xn. Consequently at the tangent point X1 = X2 = ... = Xn = ∆max
√

n

and hence Dmax = n√
n
∆max. �

Note that the equality SPREAD(X ,m, [0, (∆max)2]) = DEVIATION(X ,m, [0,
√

n.∆])
is valid only when n = 2 (two variables). For three variables or more the strict in-
clusion holds. For instance, the tuple t = 〈X1 =

√
3

2 ∆max, X2 = −
√

3
2 ∆max, X3 =

0〉 ∈ DEVIATION(X ,m = 0, [0,
√

3.∆max]) but t /∈ SPREAD(X ,m = 0, [0, (∆max)2]).

Indeed,
(√

3
2 ∆max

)2

+
(√

3
2 ∆max

)2

+ 02 = 3
2 (∆max)2 > (∆max)2.

8 Experimental Results
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Fig. 4. Experimental Results: DEVIATION v.s. decomposition of Section 3.

The goal of this experiment is to compare the filtering of the DEVIATION prop-
agators described in Section 4 and 5, with an implementation by decomposition
as suggested in Section 3.

20, 000 sets X = {X1, ..., X50} of random instances were generated. The do-
main of one variable X are all the integer values between the minimum and
maximum of a generated pair of two uniform random integer values between -50
and 50. The mean constraint on each instance is m = 0.5. The maximum sum
of deviations Dmax varies between 200 and 1000. This interval was found exper-
imentally such that for Dmax = 200 (resp. 1000) all instances are inconsistent
(resp. consistent).

The number of inconsistent instances detected by both approaches are given
on the left of Figure 4. Note that if an example is detected as inconsistent by
decomposition, DEVIATION also detects it. The average percentage of filtering
(i.e. the number of filtered values divided by the number of initial values in the
domains) on consistent instances are plotted on the right of Figure 4.
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The number of inconsistent instances detected is significantly larger with
the presented propagator than with an implementation by decomposition. For
instance, with Dmax = 500, DEVIATION detects 9, 619 inconsistencies against
3, 628 with the decomposition. On the 10, 381 consistent instances, the pruning
percentage obtained with DEVIATION is 11.8% against 0.9% with decomposition.

As shown in Section 6, all inconsistencies are not detected by our propaga-
tor if the mean is not integer. Since m = 0.5, some inconsistent instances can
be undetected. Figure 5 shows a plot of the percentage of inconsistencies de-
tected by decomposition and DEVIATION approaches. Almost all inconsistencies
are detected by DEVIATION. The lowest percentage is 99.66% for Dmax = 400.
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Fig. 5. Percentage of detected inconsistencies.

Section 7 introduces an approximation of SPREAD with DEVIATION. The left
of Figure 6 shows the number of inconsistencies detected by SPREAD (as im-
plemented in [7]) compared with the number of inconsistencies found by the
approximation. Many inconsistencies remain undetected but, as shown on the
left of Figure 6, the propagation using DEVIATION is two orders of magnitude
faster than with SPREAD on these 20.000 random instances.

9 Conclusion

This work presents DEVIATION, a new global constraint to balance a set of vari-
ables. This constraint is closely related to the SPREAD constraint [5, 7]. While
SPREAD constrains the L2 norm to the mean, DEVIATION constrains the L1 norm.

The filtering algorithms we introduce run in linear time with respect to the
number of variables. Experiments evaluate the efficiency in terms of filtering
of our propagators. A relaxation of SPREAD with DEVIATION is also introduced.
Such a relaxation offers less filtering but significantly reduces the computation
time.
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Fig. 6. Experimental Results: SPREAD v.s. approximation with DEVIATION.
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