
Mining a maximum weighted set of disjoint
submatrices

Vincent Branders[0000−0001−8688−7498], Guillaume Derval[0000−0002−6700−3519],
Pierre Schaus[0000−0002−3153−8941], Pierre Dupont[0000−0003−4835−6519]

UCLouvain - ICTEAM/INGI
{firstname.lastname}@uclouvain.be

Abstract. The objective of the maximum weighted set of disjoint sub-
matrices problem is to discover K disjoint submatrices that together
cover the largest sum of entries of an input matrix. It has many practical
data-mining applications, as the related biclustering problem, such as
gene module discovery in bioinformatics. It differs from the maximum-
weighted submatrix coverage problem introduced in [6] by the explicit
formulation of disjunction constraints: submatrices must not overlap. In
other words, all matrix entries must be covered by at most one submatrix.
The particular case of K = 1, called the maximal-sum submatrix prob-
lem, was successfully tackled with constraint programming in [5]. Unfor-
tunately, the case of K > 1 is more challenging to solve as the selection of
rows cannot be decided in polynomial time solely from the selection of K
sets of columns. It can be proved to be NP-hard. We introduce a hybrid
column generation approach using constraint programming to generate
columns. It is compared to a standard mixed integer linear program-
ming (MILP) through experiments on synthetic datasets. Overall, fast
and valuable solutions are found by column generation while the MILP
approach cannot handle a large number of variables and constraints.

Keywords: Constraint Programming · Maximum Weighted Submatrix
· Column Generation · Maximum Weighted Set of Disjoint Submatrices
Problem · Bi-cliques · Data-mining.

1 Introduction

1.1 Problem Definition

We are interested in the mining of a numerical matrix to discover submatrices
capturing a high total value. Precisely, we consider an input matrix M with
m rows and n columns where element Mi,j is a given real value. The matrix
is associated with a set of rows R = {r1, . . . , rm} and a set of columns C =
{c1, . . . , n}. We use (R;C) to denote the matrix M.

If I ⊆ R and J ⊆ C are subsets of the rows and of the columns, respectively,
the submatrix (I; J) denotes all the elementsMi,j ofM such that i ∈ I ∧ j ∈ J .

The max-sum submatrix problem (MSSP), introduced in [5], consists in iden-
tifying a subset of rows and of columns of an input matrix that maximizes the
sum of the covered entries, which is the submatrix weight. The problem is for-
mally stated below.

2 V. Branders et al.

The Max-Sum Submatrix Problem (MSSP) : Given a matrix M ∈ Rm×n,
R = {1, . . . ,m} and C = {1, . . . , n} the associated sets of rows and columns,
respectively. The submatrix (I∗ ⊆ R, J∗ ⊆ C) is of max-sum iff:

(I∗; J∗) = argmax
I,J

∑
i∈I,j∈J

Mi,j (1)

In this paper, we consider only the non-trivial problem matrices containing both
positive and negative entries. Such a problem is both compelling and challenging
to solve. A constraint programming (CP) implementation successfully tackled
this difficult problem for matrices of thousands of rows and hundreds of columns,
as is typical in several biological applications [5].

A natural extension of the MSSP is to identify K submatrices. The maximum
weighted submatrix coverage problem (MWSCP) proposed in [6] is an extension
to the identification of K possibly overlapping submatrices with maximal weight.
It relies on a modification of the objective function such that covered entries
contribute strictly once to the objective. However, it favors overlaps on negative
entries: penalties are distributed among overlaps. Moreover, overlaps on positive
entries will not improve the objective value.

In the present work, we consider an alternative extension to the identification
of K submatrices, relying on an objective function computed as the sum of sub-
matrix weights, and the explicit addition of disjunction constraints. By allowing
overlaps on the rows or the columns (but not both simultaneously due to the
disjunction constraint) we avoid the unexpected behavior of the MWSCP. More-
over, the solution’s interpretability by a domain expert is eased. Such a solution
is usually called nonoverlapping nonexclusive nonexhaustive in the biclustering
context [10].

Definition 1. The Maximum Weighted Set of Disjoint Submatrices
Problem (MWSDSP): Given a matrix M∈ Rm×n, R = {1, . . . ,m} and C =
{1, . . . , n} be the associated sets of rows and of columns, respectively, and K be a
target number of submatrices. The maximum weighted set of disjoint submatrices
problem is to select a set of K submatrices (Ik∗; Jk∗), with Ik∗ ⊆ R and Jk∗ ⊆ C
for all k ∈ {1, . . . ,K}, such that each matrix entry is covered by at most one
submatrix and the weight of the covered entries is maximal:

(I1∗; J1∗), · · · , (IK∗; JK∗) = argmax
(I1;J1),··· ,(IK ;JK)

K∑
k=1

wk (2)

s.t. (Ik × Jk) ∩ (Ik
′
× Jk′) = ∅ ∀k, k′ ∈ {1, . . . ,K}, k 6= k′ (3)

where wk =
∑

r∈Ik,c∈JkMr,c is the weight of submatrix k.

Disjunction constraints (3) enforce that each matrix entry is selected by at
most one submatrix. Restricting to G (> 1) overlaps would result in dK/Ge
groups of G identical submatrices. While any submatrix pair may share rows
or columns, the constraint prevents any pair from sharing rows and columns
simultaneously. Note that the specific submatrix ordering is irrelevant.

Mining a maximum weighted set of disjoint submatrices 3

1.2 Contributions

Our contributions are: (1) The introduction of the maximum weighted set of
disjoint submatrices problem (MWSDSP) as a generalization of the max-sum sub-
matrix (MSSP) problem; (2) A mathematical programming approach to solve the
MWSDSP; (3) The formulation of the MWSDSP as an integer linear program (ILP)

relying on constraint programming (CP) to produce relevant variables; (4) An
evaluation of the performances of these two alternatives and the benefit of the
ILP+CP over a greedy approach on synthetic datasets.

1.3 Motivation

The MWSDSP has many practical data-mining applications where one is inter-
ested in discovering K specific relations between two groups of variables.

As an example, in gene expression analysis,Mi,j corresponds to the expres-
sion value of gene i in sample j. One is typically interested in finding a subset
of genes that present high expression value, i.e., an active biological pathway,
in a subset of the samples. Finding multiple pathways specific to some samples
is a common task in gene expression analysis. Submatrices overlaps would cor-
respond to non-specific signal. In contrast, shared rows only would correspond
to gene simultaneously active in multiple pathways, and shared columns only to
subpopulations of samples exhibiting the same pathway activity.

1.4 Related Work

The max-sum submatrix problem (MSSP) and the maximum weighted subma-
trix coverage problem (MWSCP), presented in section 1.1, are NP-hard [6]. The
present work and the MWSCP extend the MSSP to K > 1 by adding disjunction
constraint and by adapting the objective function, respectively.

In the maximum subarray problem, introduced in [3], the aim is to find a
subset of contiguous columns with maximal weight from an array. Polynomial-
time complexity algorithms have been proposed for matrices [14]. This problem
is simpler than the MWSDSP, however, as a single submatrix is required and it
is constrained to be formed of contiguous subsets of rows and columns.

The biclustering problems are concerned with the discovery of homogeneous
submatrices rather than maximizing the weight of covered entries. Madeira at
al. provided a comprehensive review of biclustering problems [10].

The minimum sum-of-squares clustering problem involves the definition of
non-overlapping sets of rows (or columns) covering all matrix entries. Although
the problem differs, we use a similar approach as in [2]: the combination of an
ILP and delayed column generation.

In the ranked tile mining problem, introduced in [9], entries are discrete
ranks, corresponding to a permutation of column indices on each row. Moreover,
the definition of a parametrized penalty for overlapping coverage discourages
but allows identification of repetitive solutions.

4 V. Branders et al.

2 Constraint Programming Approaches

2.1 Search Space

Let us define a set variable T k (resp. Uk) to represent the rows (resp. columns) in-
cluded in submatrix k. The search space of the MSSP can be limited to searching
on a single dimension, for instance the column set variable U1. Indeed, optimal
T 1 can be found in polynomial time: ∀i ∈ R :

∑
j∈U1Mi,j > 0 =⇒ i ∈ T 1.

Let us define the MWSDSP with fixed column selections formally.

Definition 2. The MWSDSP with fixed column selections. The notations
are the same as in Definition (1), but in this case the selections of columns for
each submatrices (the Ck sets) are given.

R1∗, · · · , RK∗ = argmax
R1∗,··· ,RK∗

K∑
k=1

∑
r∈Rk,c∈Ck

Mr,c (4)

s.t. (Rk × Ck) ∩ (Rk′ × Ck′) = ∅ ∀k, k′ ∈ {1, . . . ,K}, k 6= k′ (5)

For K > 1, once all the column set variables Uk are fixed, it remains to
decide for each row i and each submatrix k whether i is to be selected (i ∈ T k)
or not. These K decisions per row cannot be optimally taken in polynomial time,
as stated in Theorem (1). As a consequence, the search will have to assign both
the row and column set variables, as opposed to the simpler K = 1 problem.

Theorem 1. The MWSDSP with fixed column selections is NP-Hard.

Proof. We reduce the Maximum Weighted Independent Set (MWIS) problem to
our problem. MWIS is NP-Hard (by immediate reduction from the Independent
Set problem [8]), and aims at finding, in a graph G =< V,E > with weights
wv on each vertex v ∈ V , the set of vertices with the maximum sum such that
they do not share edges in G. For simplicity, we represent edges and vertices
as numbers: V = {1, . . . , |V |} and E = {1, . . . , |E|}. We reduce an instance of
the MWIS to an instance of the MWSDSP with fixed column selections. We
create a 1 by (|V |+ |E|) matrix M : M1,i = wi if i ∈ {1, . . . , |V |}, and M1,i = 0

otherwise. The columns sets C1, . . . , C |V | are constructed as follows: Cv = {v}∪
{|V | + e | e ∈ E ∧ edge e has v as origin or destination}. Each vertex in the
graph G is transformed in a submatrix. If the single row of matrix M is selected
by a submatrix, then the vertex is included in the MWIS. The non-overlapping
constraint of MWSDSP forbids two adjacent vertices (i.e., submatrices) to both
be included in the solution (constructing an independent set), due to the way the
column selections C1, . . . , C |V | are constructed. Resolving the MWSDSP then
leads to the same optimal objective result as the original MWIS problem, and
the selected rows Rv, ∀v ∈ [1, . . . , |V |], indicates, for each node v, if the node
is inside the MWIS (Rv = {1}) or not (Rv = ∅). As computing the MWIS in
general graphs is NP-Hard, and as the MWSDSP with fixed column selections
can encode the MWIS problem, we conclude that the MWSDSP with fixed
column selections is NP-Hard.

Mining a maximum weighted set of disjoint submatrices 5

2.2 Greedy Approach

A simple approach to solving the MWSDSP is to solve the MSSP repeatedly.
For each new max-sum submatrix found, the corresponding values are replaced
by −∞, forbidding subsequent iterations from selecting these entries again.

Each iteration is performed until optimality or absence of solution are proved;
or at least one solution has been found.

2.3 Column Generation

We propose a column generation (CG) approach [7] to find solutions to the
MWSDSP. It relies on CP1 in an ILP setting. The CP part identifie candidates
submatrices. The ILP efficiently combines submatrices and guides the CP part.

Let us represent the given matrix M of m × n entries as the vector V of
v = m × n entries obtained by stacking the columns of the matrix M on top
of one another. The MWSDSP is formulated using a v × 2m+n binary matrix
B representing all 2m+n possible submatrices. Each column l of B corresponds
to a submatrix l such that Bi,l = 1 if and only if entry Vi is covered by the
submatrix l. The weight wl of submatrix l is the sum of its covered entries:
wl =

∑v
i=1 Vi × Bi,l. Equations (2) and (3) can be formulated as an ILP:

maximize
∑
l∈L

wl × xl (6a)

s.t.
∑
l∈L

Bi,l × xl ≤ 1 ∀i ∈ {1, . . . , v} (6b)∑
l∈L

xl ≤ K (6c)

xl ∈ {0, 1} ∀l ∈ L (6d)

where L = {1, . . . , 2m+n} denotes all possible submatrices. The decision vari-
able xl encodes the selection of submatrix l. Equation (6b) ensures submatrices
disjunction and eq. (6c) enforces the selection of at most K submatrices.

Defining the matrix B before solving the ILP is computationally not feasible,
even for small input matrices M. In subproblem solving, the master problem
(or ILP), in eq. (6a)-(6d), is restricted to a subset L′ ⊆ L of submatrices ef-
fectively defining a restricted master problem (RMP). Iteratively, an RMP is
solved, and one or multiple new submatrices (columns) are inserted in L′, defin-
ing a new RMP. Submatrices (columns) are candidates for insertion to an RMP
if its insertion can improve the objective function of the RMP.

To find such candidate submatrices, we define a Linear Programming relax-
ation of the RMP (LP-RMP) which comes along the integrality constraints (6d)
relaxation of the ILP (in an LP) and the subsetting of L. We use the dual of the
LP-RMP to find submatrices with a positive reduced cost2. Such submatrix can
improve the LP-RMP. If no such submatrix exists, the optimal solution to the
LP-RMP is an optimal solution to the LP. The dual of the LP-RMP is:

minimize θ ×K +
v∑

i=1

λi (7a)

1 See [11] for an introduction to CP.
2 Given that the problem is a maximization problem.

6 V. Branders et al.

s.t. θ +

v∑
i=1

Bi,l × λi ≥ wl ∀l ∈ L′ (7b)

λi ≥ 0 ∀i ∈ {1, . . . , v} (7c)

θ ≥ 0 (7d)

The dual values λi and θ corresponding to the primal constraints defined in
eq. (6b) and (6c), respectively, are obtained by solving an LP-RMP. Each column
xl of the RMP is associated with a constraint in the dual (eq. 7b).

Finding a submatrix with a positive reduced cost is called pricing. Such a sub-
matrix is defined as any submatrix l ∈ L for which −θ −

∑v
i=1 Bi,l × λi + wl < 0.

The LP-RMP is optimal if the pricing problem has no solution. Moreover, if the
LP-RMP (being optimal) and the RMP have the same objective value, then the
solution to the ILP is optimal.

The pricing problem can be reformulated as:
∑v

i=1 [Bi,l × (Vi − λi)] > θ.
Solving this pricing problem is not trivial: it amounts to identifying a subma-

trix in the input matrix modified by the λi values such that its weight is larger
than some θ. While the pricing routine usually tries to identify a solution with
maximum reduced cost, it can return any submatrix with positive reduced cost.

In practice, we use the greedy approach described earlier to find submatrices
of weight larger than θ from an input matrix modified according to the λi values.
This provides solutions to the pricing problem.

Implementation details may have an important role in the effectiveness of the
approach. Such details are present next.

To maximize the information given by the dual values, we avoid having redun-
dant constraints, notably the constraints (6b). For example, if two submatrices
overlap on more than one cell, we enforce only one constraint representing all
the overlapping cells. Precisely, constraint (6b) is replaced by the following:∑

l∈S

xl ≤ 1 ∀S ∈
{
{l | Bi,l = 1}

∣∣∣ i ∈ {1, . . . , v}}. (8)

That is, we enforce one non-overlap constraint per group of entries sharing
the same intersecting submatrices (an overlapping group)3. We then redistribute
the dual value of the constraint equally (we divide it by the number of entries)
over all the entries in this overlapping group. This allows the method to avoid
a pitfall of most solvers: when facing multiple equivalent constraint, only one
will be tight, i.e. having a non-zero dual value. Redistributing the duals on all
the entries in an overlapping group allows the subproblem solver to find more
interesting submatrices.

The LP-RMP does not necessarily provide a binary decision on the submatrix
selection. To effectively identify a solution to the original MWSDSP, the RMP is
solved for any solution to the LP-RMP. Observe that the objective value of the
LP-RMP is an upper bound to the objective value of the RMP. All experiments
present the results of the RMP solution.

The subset L′ defining the first RMP to solve is obtained using the greedy
approach searching for K submatrices. This serves as a greedy hot-start for
the column generation approach.

3 Equation (8) uses the set notation to implicitly remove duplicates.

Mining a maximum weighted set of disjoint submatrices 7

Given the non-trivial pricing problem, there is no guarantee that the greedy
subroutine identifies an optimal solution to the pricing problem. While it would
be possible to use a branch-and-price algorithm [13], it would be non-trivial to
solve the pricing problem to optimality. The running time needed to solve the
LP-RMP to optimality (i.e. to the point where no new submatrix with positive
reduced cost exists) is already quite high, as shown in the experiment section
below. The authors consider that the use of a branch-and-price algorithm is
outside of the paper’s scope.

Guidance on the search for better submatrices requires many submatrices in
the RMP with large weight. Moreover, the greedy subroutine may identify many
solutions (i.e. submatrices) to the pricing problem. As the number of submatrices
to find increases, the weight of these submatrices likely decreases. It is then more
useful to seek multiple submatrices later in the column generation process. As
a consequence, at iteration p of the column generation, up to p solutions, or
submatrices, to the pricing problem are identified and are inserted in the RMP.

2.4 Mixed Integer Linear Programming

We propose a Mixed Integer Linear Programming model using the binary vari-
ables T k

i and Uk
j to represent the selection of row i and column j for submatrix

k. These decision variables are used to compute the contribution of the row i
for the submatrix k (rk+i). The sum of the row contributions is the objective
function to be maximized. The model presented below is based on a Big-M for-
mulation of the MWSDSP where, ∀i ∈ R, constants M−i =

∑
j∈C min(0,Mi,j)

and M+
i =

∑
j∈C max(0,Mi,j) are respectively the lower bound and upper

bound on the sum of row i’s entries. The MILP model is formulated as follows:

maximize
∑

i∈R,k∈K

rk+i (9a)

s.t. rk+i ≤
∑
j∈C

(
Mi,j × Uk

j

)
+ (T k

i − 1)×M−i ∀i, k (9b)

rk+i ≤ M+
i × T

k
i ∀i, k (9c)

2× vki,j ≤ T k
i + Uk

j ∀i, j, k (9d)

T k
i + Uk

j ≤ 1 + vki,j ∀i, j, k (9e)∑
k∈K

vki,j ≤ 1 ∀i, j (9f)

Constraints (9b) and (9c) ensure that the row contribution rk+i is computed
correctly. If T k

i = 0, constraint (9c) ensures the row contribution is zero, with
the right hand side of constraint (9b) being always positive. Otherwise (T k

i = 1),

constraints (9b) and (9c) ensure rk+i =
∑

j∈C
(
Mi,j × Uk

j

)
, thus computing the

effective value of the contribution.
Equations (9d) and (9e) linearize vki,j = T k

i × Uk
j . The binary variable vki,j

indicates if cell (i, j) is selected by submatrix k and ensures submatrices disjunc-
tion through constraint (9f).

This model is plagued by the number of variables and constraints which are
both in O(mnK), mainly due to the non-overlap constraints.

8 V. Branders et al.

3 Experiments

This section describes experiments conducted to assess the performances of the
proposed algorithms and to provide guidance on the selection of the appropri-
ate solution. Given enough time and memory, both the column generation (CG)
approach and the MILP approach converge to the optimal solution. Therefore
comparing performances solely on the objective value of an approach is irrele-
vant. As a consequence, CG and MILP approaches are evaluated and compared
given a budget of time, the time-out TO, on synthetic datasets with implanted
submatrices using any-time profiles:

Definition 3. Any-Time Profile. Let f(a, i, t) be the objective value of the best
solution found so far by an algorithm a for an instance i at time t. Let tmax be the
provided budget of time before breaking a run. The any-time profile of a is the solution
quality Qa(t) of a on all instances as a function of time:

Qa(t) =
1

|i|
∑
i

f(a, i, t)

f(a∗i , i, t
max)

with a∗i = argmax
a

f(a, i, tmax) . (10)

All experiments are performed using Java 1.8.0 on an AMD Bulldozer clocked
at 2.1 GHz; one core and 6 GB of RAM per instance and a time-out TO of 2
hours. MILP and CG approaches rely on Gurobi 8.1.0 [1]. The greedy hot-start
of the CG process is given 5 minutes evenly split between each of its K iterations
of solving an MSSP. Solutions to the MSSP are carried out on OscaR [12] us-
ing a constraint programming approach relying on a global constraint (CPGC)
provided in [5]. It is a depth-first search approach composed of major CP in-
gredients: 1) filtering rules, 2) bounding procedure, 3) dominance rules and 4)
variable-value heuristic.

3.1 Datasets and Performances

Datasets are generated by implanting K submatrices (called + entries) on a
background noise (called - entries). In a first dataset, we consider alternative
dispositions of + and - entries drawn from different distributions. Each combina-
tion defines a scenario presented in Fig. (1a)-(1b). For each scenario, 14 different
matrices are generated according to different input matrix size and number of
implanted submatrices, as presented in Fig. (1c). These 70 instances are gener-
ated such that the hot-start is bound to find suboptimal solutions, giving very
little information to the CG method. The benefit of CG is evaluated relative to
the suboptimal hot-start solution through the objective value improvement.

Figure (2a) presents the any-time profile of each method for the first dataset.
It clearly illustrates that CG can escape the suboptimal regions of the search
space trapping the hot-start. Given roughly 25 times larger time-out than the
suboptimal hot-start, MILP is outperformed by the greedy and the CG.

Local optimums (trapping the hot-start) are provided as starting solutions
for CG. Such local optimum can be found before the given time-out. The shift
between hot-start and CG curves in the first 300 seconds is explained by the fact
that CG can refine solutions as soon as the hot-start subroutine is completed.

In the second dataset, 720 instances are generated according to the layout
of scenarios 3 and 4 from Fig. (1a). It differs, however, by the size of the in-
put matrix, the number, and size of implanted submatrices. More importantly,

Mining a maximum weighted set of disjoint submatrices 9

(a)

Scenario + entries - entries
1 and 3 K + 1 −1
2 and 4 ∼ N (K + 1, 1) ∼ N (−1, 0.8)

5 ∼ N (2, 2) ∼ N (−2, 1)

(b)

m× n K = 2 K = 5 K = 8 K = 10 K = 20
50× 50 s = s1 s = s1

100× 100 s = s1 s = s1 s = s1
200× 200 s = s1 s = s1 s = s1 s = s1 s = s1
500× 500 s = s1 s = s1 s = s1 s = s1

(c)

m× n K = 2 K = 5 K = 10
400× 100 s = s2 s = s2 s = s2
320× 125 s = s2 s = s2 s = s2
200× 200 s = s2 s = s2 s = s2

(d)

Fig. 1: Dataset construction. (a) Layout and (b) generative distribution of im-
planted + and - entries. (c) Parameters considered in the first dataset with
s1 = {1.0}. (d) Parameters considered in the second dataset with s2 =
{0.05, 0.01, 0.2, 0.5}. Implanted submatrices are of size

(
m×s
K ; n×s

K

)
.

values are drawn from different distributions: - entries ∼ N (−1, 1) and + en-
tries ∼ N (1, 0.5). Such matrices, generated following a similar protocol as in [6],
are considered better representatives of gene expression matrices. Our script is
available on Zenodo [4].

Figure (2b) presents the any-time profile of CG and MILP on the second
dataset. Whereas the average solution quality of CG and MILP should rise to 1,
given enough time, it is clear that CG is significantly faster than MILP. The poor
performances of MILP are explained by the number of variables and constraints
required to model the problem: MILP obtains satisfactory results for the smaller
problems, with K = 2, only (results not shown). In this experiment, the hot-start
rarely ends before the allocated 5 minutes, explaining the near-perfect overlap
between hot-start and CG curves.

(a) Averaged results on the first dataset. (b) Averageg results on the second dataset.

Fig. 2: Comparison of the different methods proposed to solve the MWSDSP.
The graph presents the any-time profile described in eq. (3). For each instance,
the time-out is fixed at 2 hours. The hot-start time-out equals 5 minutes.
Col.Generation starts as soon as the hot-starts is completed.

10 V. Branders et al.

4 Conclusions

We present a new optimization problem, called the Maximum Weighted Set of
Disjoint Submatrix Problem (MWSDSP) along with two methods to solve it. One
is based on mathematical programming, the other on constraint programming.

Our main contribution, the column generation (CG) method for the MWS-
DSP, finds new candidate submatrices using dual variables of a linear relaxation
of the submatrix selection problem. Experiments on synthetic datasets indicate
that CG finds better solutions than the MILP approach.

The performances of the CG can be further improved by complementing the
exploration with a branch-and-price algorithm [13]. Such improvement is non-
trivial, however: the time taken to solve the underlying LP problem is already
quite long but is nonetheless an attractive direction for future work.

References

1. Gurobi Optimization, LLC (2018), http://www.gurobi.com
2. Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for

minimum sum-of-squares clustering. Mathematical Programming 131(1), 195–220
(Feb 2012)

3. Bentley, J.: Programming pearls: algorithm design techniques. Communications of
the ACM 27(9), 865–873 (1984)

4. Branders, V., Derval, G., Schaus, P., Dupont, P.: Dataset generator for
”Mining a maximum weighted set of disjoint submatrices” (Aug 2019).
https://doi.org/10.5281/zenodo.3372282

5. Branders, V., Schaus, P., Dupont, P.: Combinatorial optimization algorithms to
mine a sub-matrix of maximal sum. In: International Workshop on New Frontiers
in Mining Complex Patterns. pp. 65–79. Springer (2017)

6. Derval, G., Branders, V., Dupont, P., Schaus, P.: The maximum weighted sub-
matrix coverage problem: A CP approach. In: van Hoeve, W.J. (ed.) Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research.
Springer International Publishing (2019)

7. Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column generation, vol. 5. Springer
Science & Business Media (2006)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

9. Le Van, T., Van Leeuwen, M., Nijssen, S., Fierro, A.C., Marchal, K., De Raedt, L.:
Ranked tiling. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 98–113. Springer (2014)

10. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB) 1(1), 24–45 (2004)

11. Michel, L., Schaus, P., Van Hentenryck, P.: MiniCP: A lightweight solver for con-
straint programming (2018), available from https://minicp.bitbucket.io

12. OscaR Team: OscaR: Scala in OR (2012), available from
https://bitbucket.org/oscarlib/oscar

13. Savelsbergh, M.: A branch-and-price algorithm for the generalized assignment
problem. Operations Research 45(6), 831–841 (1997)

14. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance
matrix multiplication. Electronic Notes in Theoretical Computer Science 61, 191–
200 (2002)

