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Abstract

This paper describes a novel technique, called
D-walks, to tackle semi-supervised classifi-
cation problems in large graphs. We in-
troduce here a betweenness measure based
on passage times during random walks of
bounded lengths in the input graph. The
class of unlabeled nodes is predicted by
maximizing the betweenness with labeled
nodes. This approach can deal with di-
rected or undirected graphs with a linear
time complexity with respect to the num-
ber of edges and the maximum walk length
considered. Preliminary experiments on the
CORA database show that D-walks outper-
forms NetKit (Macskassy & Provost, 2007)
as well as Zhou et al. algorithm (Zhou et al.,
2005), both in classification rate and comput-
ing time.

1. Introduction

This paper is concerned with semi-supervised classifi-
cation of nodes in a graph. Given an input graph with
some nodes being labeled, the problem is to predict the
missing node labels. This problem has numerous ap-
plications such as classification of individuals in social
networks, linked documents categorization or protein
function prediction, to name a few.

Several approaches have been proposed to tackle semi-
supervised classification problems in graphs. Kernel
methods (Zhou et al., 2005; Tsuda & Noble, 2004)
embed the nodes of the input graph into an Euclidean

feature space where a classifier, such as a SVM, can
be estimated. Despite of their good predictive perfor-
mance, these techniques cannot easily scale up to large
problems due to their high time complexity. NetKit is
an alternative relational learning approach (Macskassy
& Provost, 2007). It has a lower computational com-
plexity but is less simple conceptually and may require
to fine tune several of its components.

The approach proposed in this paper, called D-walks,
relies on random walks performed on the input graph
seen as a Markov chain. More precisely, a betweenness
measure, based on passage times during random walks
of bounded length, is derived for each class (or label
category). Unlabeled nodes are assigned to the cate-
gory for which the betweenness is the highest. The D-
walks approach has the following properties: (i) it has
a linear time complexity with respect to the number of
edges and the maximum walk length considered; such
a low complexity allows to deal with very large graphs,
(ii) it can handle directed or undirected graphs, (iii)
it can deal with multi-class problems and (iv) it has a
unique hyper-parameter that can be tuned efficiently.

2. Discriminative random walks

We are given an input graph G containing a set of
nodes N and edges E . The (possibly weighted) adja-
cency matrix is denoted A. The graph G is assumed
partially labeled. The nodes in the labeled set L ⊂ N
are assigned to a category from a discrete set Y. The
unlabeled set is defined as U = N \ L.

Random walks in a graph can be modeled by a
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discrete-time Markov chain (MC) describing the se-
quence of nodes visited during the walk. Each state
of the Markov chain corresponds to a distinct node
of the graph. The MC transition probability matrix
is simply given by P = D−1A, with D the diagonal
matrix of node degrees. We consider discriminative
random walks (D-walks, for short) in order to define
a betweenness measure used for classifying unlabeled
nodes.

Definition 1 (D-walk) Given a MC defined on the
state set N , a class y ∈ Y and a discrete length l >
1, a D-walk is a sequence of state q0, . . . , ql such that
yq0 = yql

= y and yqt 6= y for all 0 < t < l.

The notation Dy
l refers to the set of all D-walks of

length l, starting and ending in a node of class y. We
also consider Dy

≤Lreferring to all D-walks up to a given
length L. The betweenness function BL(q, y) measures
how much a node q ∈ U is located “between” nodes
of class y ∈ Y. The betweenness BL(q, y) is formally
defined as the expected number of times the node q is
reached during Dy

≤L-walks.

Definition 2 (D-walk betweenness) Given an un-
labeled node q ∈ U and a class y ∈ Y, the D-walk
betweenness function U × Y → R+ is defined as fol-
lows: BL(q, y) , E [pt(q) | Dy

≤L], where pt(q) is the
passage times function N → R+ counting the number
of times a node q has been visited.

This betweenness measure is related to the one pro-
posed by Newman in (Newman, 2005). Our measure
is however relative to a specific class y rather than to
the whole graph. It also considers random walks up to
a given length instead of unbounded walks. Bounding
the walk length has two major benefits: (i) better clas-
sification results are generally obtained with respect to
unbounded walks (ii) the betweenness measure can be
computed very efficiently (in Θ(|E|L)) using forward
and backward recurrences, similar to those used in the
Baum-Welch algorithm for HMM parameter estima-
tion. Finally, an unlabeled node q ∈ U is assigned to
the class with the highest betweenness.

3. Experiments

We report here preliminary experiments performed on
the Cora dataset (Macskassy & Provost, 2007) con-
taining 3582 nodes classified under 7 categories. As
this graph is fully labeled, node labels were randomly
removed and used as test set. More precisely, we have
considered 9 different proportions of labeled nodes in
the graph: {0.1, 0.2, . . . , 0.9} and for each labeling
rate, 10 random deletions were performed. Compara-

tive performances obtained with NetKit (Macskassy
& Provost, 2007) and with the approach of Zhou
et al. (Zhou et al., 2005) are also provided. The
hyper-parameters of each approach have been tuned
using ten-fold cross-validation. Figure 1 shows the
correct classification rate on test data obtained by
each approach for increasing labeling rates. The D-
walk approach clearly outperforms its competitors on
these data. The D-walks approach is also the fastest
method. It requires typically 1.5 seconds of CPU1 for
every graph classification including the auto-tuning of
its hyper-parameter L. NetKit takes about 4.5 sec-
onds per graph classification and our implementation
of Zhou et al. approach typically takes several min-
utes. Large graphs (several millions of edges) were
also successfully classified in a few minutes with D-
walks while neither NetKit nor Zhou et al. methods
could be applied on such large graphs.
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Figure 1. Classification rate of D-walk and two competing
methods on the Cora dataset. Error bars report standard
deviations over 10 independent runs.
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1Intel Core 2 Duo 2.2Ghz with 2Gb of virtual memory.


