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Université catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium
Pierre.Dupont@uclouvain.be

Abstract This paper describes a novel technique, called D-walks, to
tackle semi-supervised classification problems in large graphs. We intro-
duce here a betweenness measure based on passage times during random
walks of bounded lengths. Such walks are further constrained to start and
end in nodes within the same class, defining a distinct betweenness for
each class. Unlabeled nodes are classified according to the class showing
the highest betweenness. Forward and backward recurrences are derived
to efficiently compute the passage times. D-walks can deal with directed
or undirected graphs with a linear time complexity with respect to the
number of edges, the maximum walk length considered and the number
of classes. Experiments on various real-life databases show that D-walks
outperforms NetKit [5], the approach of Zhou and Schölkopf [15] and
the regularized laplacian kernel [2]. The benefit of D-walks is particu-
larly noticeable when few labeled nodes are available. The computation
time of D-walks is also substantially lower in all cases.

1 Introduction

Mining and learning problems involving structured data such as graphs, trees or
sequences have received much attention recently. The present work is concerned
with semi-supervised classification of nodes in a graph. Given an input graph
with some nodes being labeled, the problem is to predict the missing node labels.
This problem has numerous applications such as classification of individuals in
social networks, linked documents (e.g. patents or scientific papers) categoriza-
tion or protein function prediction, to name a few. Even when the data is not
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initially structured as a graph, it can be convenient to build a neighborhood
graph of similar examples from an affinity matrix.

Several approaches have been proposed to tackle semi-supervised classifica-
tion problems in graphs. Kernel methods [12,15,14] embed the nodes of the input
graph into an Euclidean feature space where a decision boundary can be esti-
mated. For instance, the methods proposed in [15] rely on a kernel obtained by
computing the inverse of a regularized graph Laplacian matrix. Such a kernel
can be interpreted in terms of commute times during random walks performed
on the graph. The method proposed in the present paper is related to the for-
mer approach, however it relies on passage times during random walks rather
than on commute times. Despite their good predictive performance, kernel meth-
ods on graphs cannot easily scale up to large problems due to their high time
complexity. NetKit [5] is an alternative relational learning approach. This gen-
eral framework builds a model based on three components: a local classifier to
generate class-priors, a relational classifier, which relies on the relations in the
network to guess the class membership, and a so-called collective inferencing
component which further refines the class predictions. The main advantage of
this framework is that each of the three components can be instantiated with
various existing methods making it easily adaptable to many situations. This
flexibility comes however with a time-consuming tuning process to optimize per-
formance. Compared to the above mentioned kernel methods, it provides good
performance while having a lower time complexity.

The approach proposed in this paper, called D-walks (discriminative random
walks), relies on random walks performed on the input graph seen as a Markov
chain. More precisely, a betweenness measure, based on passage times during
random walks of bounded length, is derived for each class (or label category).
Unlabeled nodes are assigned to the category for which the betweenness is the
highest. The D-walks approach has the following properties: (i) it has a linear
time complexity with respect to the number of edges, the maximum walk length
considered and the number of classes; such a low complexity allows to deal with
very large graphs, (ii) it can handle directed or undirected graphs, (iii) it can deal
with multi-class problems and (iv) it has a unique hyper-parameter, the walk
length, that can be tuned efficiently. Moreover, an extension of the technique is
proposed to handle descriptive features on nodes (e.g. in social networks, such
features could be the age or the number of children of individuals) via a similarity
function.

This paper is organized as follows. Section 2 reviews basic notions about dis-
crete time Markov chain and passage times during random walks.
Section 3 introduces the D-walks approach for semi-supervised classification
in graphs. Section 4 introduces an extension to incorporate node features into
the D-walks classification technique. Links and differences between the D-walks
method and alternative approaches based on random walks are further described
in section 5. Finally, section 6 reports comparative experimental results on
real-life data.
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2 Background

The semi-supervised node classification technique proposed in section 3 is based
on passage times during random walks on the input graph seen as a Markov
chain (MC). These classical notions are briefly reviewed in the present section.
For a more detailed introduction to the MC theory, the reader is referred to the
classical text books [4,7].

Definition 1 (Discrete time Markov Chain (MC)). A discrete time
Markov Chain (MC) is a stochastic process {Xt | t ∈ N} where the random
variable X takes its value at any discrete time t in a countable set N and such
that:

P [Xt = q | Xt−1, Xt−2, . . . , X0] = P [Xt = q | Xt−1]. (1)

This condition states that the probability of the next outcome only depends on
the last value of the process (order 1 Markov property).

A finite MC can be represented by a 3-tuple T = 〈N , P, ι〉 where N is a finite
set of states with n = |N |, P is a n × n row-stochastic matrix encoding the
(homogeneous) transition probabilities pqq′ = P [Xt = q′ | Xt−1 = q] for all
q, q′ ∈ N and ι is an n-dimensional vector representing the initial probability
distribution, i.e. ιq = P [X0 = q] for all q ∈ N .

A random walk on a MC can be defined as follows: a random walker starts
in a state q according to the initial distribution ι. Next, he moves to some state
q′ ∈ N according to the transition probability matrix P . Repeating this last
operation l ∈ N times results in a l-step random walk. In a MC, a state q is said
to be absorbing if there is a probability 1 to go from q to itself. In other words,
once an absorbing state has been reached in a random walk, the walker will stay
on this state forever. A MC for which there is a probability 1 to end up in an
absorbing state is called an absorbing MC. In such a model, the state set can be
divided into the absorbing state set NA and its complementary set, the transient
state set NT = N \ NA. The passage time function counts the number of times
a given node has been visited during a random walk.

Definition 2 (Passage Time). Given a MC, T = 〈N , P, ι〉, the passage time
is a function pt : N × N → N such that pt(q) is the number of times the process
reaches the state q:

pt(q) = |{t ∈ N | Xt = q}| (2)

The mean passage time (MPT) denotes the expectation of this quantity: E[pt(q)].
The MPT is clearly infinite for absorbing states. For transient states, the MPT
can be obtained by computing the so-called fundamental matrix : N = (I−PT )−1

where I is the |NT | × |NT | identity matrix and PT is the transition probability
matrix restricted to transient states (subscript T ). The entry nq′q contains the
MPT in state q ∈ NT during random walks starting in state q′. Hence, E[pt(q)] =
[ι′T N ]q where ι′T is the (transpose of the) initial probability vector reduced to
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transient states1. It should be stressed that this expectation is taken over ran-
dom walks of any (positive) length. In contrast, the betweenness proposed in
section 3.3 relies on passage times computed for walks of bounded length.

3 Discriminative Random Walks

This section presents the D-walks approach to perform semi-supervised classi-
fication of nodes in a graph. This technique is based on a betweenness mea-
sure computed from passage times during random walks performed in the input
graph. The problem statement is detailed in section 3.1. A betweenness measure
using random walks of unbounded length is introduced in section 3.2. Section
3.3 refines this measure by considering bounded walks up to a prescribed length.
Section 3.4 shows how to classify unlabeled nodes based on the proposed be-
tweenness measure.

3.1 Problem Statement

Let G = (N , E) denote an input graph where N is the set of nodes and E is the
set of edges. In the sequel, n = |N | denotes the number of nodes and m = |E| the
number of edges in the graph. Let also A denote the n×n adjacency matrix of G.
Since the graph G may be directed and weighted, the matrix A is not necessarily
symmetric nor binary. Furthermore, it is assumed that A is an affinity matrix:
the edge weights are positive and the higher the value, the easier the connection
between the corresponding nodes. The graph G is assumed partially labeled. The
nodes in the labeled set L ⊂ N are assigned to a category from a discrete set Y.
The unlabeled set is defined as U = N \ L. The label of a node q ∈ L is written
yq and Ly denotes the set of nodes in class y, with ny = |Ly|. A local consistency
of the node labeling is assumed, i.e. nodes within a neighborhood are likely to
share the same label. The task is to classify unlabeled nodes in the graph.

3.2 D-Walks Betweenness

Random walks on a graph can be modeled by a discrete-time Markov chain
{Xt ∈ N}t∈N (MC) describing the sequence of nodes visited during the walk.
The random variable Xt represents the state of the MC reached at the discrete
time index t. Since each state of the Markov chain corresponds to a distinct node
of the graph, the state set of the MC is simply the set of nodes N . The terms
nodes and states are thus used interchangeably in this paper. The transition
probability to state q′ at time t, given that the last state is q at time t − 1, is
defined as:

P [Xt = q′ | Xt−1 = q] = pqq′ � aqq′
∑

q′∈N aqq′
. (3)

1 It is assumed here that random walks cannot start in an absorbing state.
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Thus, from any state q, the probability to jump to state q′ is proportional to
the weight aqq′ of the edge from q to q′ (and then normalized). These transition
probabilities are stored in an n × n transition matrix P = {pqq′}q,q′∈N .

We introduce discriminative random walks (D-walks, for short) to define a
betweenness measure used for node classification (see section 3.4). A D-walk is
a random walk starting in a labeled node and ending when any node having the
same label (possibly the starting node itself) is reached for the first time.

Definition 3 (D-walks). Given a MC defined on the state set N and a class
y ∈ Y, a D-walk is a sequence of state q0, . . . , ql such that yq0 = yql

= y and
yqt �= y for all 0 < t < l.

The notation Dy refers to the set of all D-walks starting and ending in a node
of class y.

The betweenness function B(q, y) measures how much a node q ∈ U is located
“between” nodes of class y ∈ Y. The betweenness B(q, y) is formally defined as
the expected number of times node q is reached during Dy-walks.

Definition 4 (D-walks betweenness). Given an unlabeled node q ∈ U and
a class y ∈ Y, the D-walks betweenness function U × Y → R

+ is defined as
follows:

B(q, y) � E [pt(q) | Dy] (4)

This betweenness measure is closely related to the one proposed by Newman in
[6]. Our measure is however relative to a specific class y rather than to the whole
graph, which is more informative in the context of classification. B(q, y) can
be computed using standard absorbing MC techniques (see section 2). Nodes
belonging to Ly are first duplicated such that the original nodes are used as
absorbing states and the duplicated ones as starting states. The transition matrix
P is augmented as follows: (i) one duplicates the rows of P corresponding to
nodes in Ly at the bottom of the matrix, (ii) one adds ny columns full of zeroes2

at the right of P and (iii) one defines pqq′ = 1 ⇐⇒ q′ = q and 0 otherwise, for all
q ∈ Ly. The augmented matrix is denoted here by yP . The initial distribution
vector is adapted accordingly, resulting in the vector yι. The betweenness is
finally computed as follows:

B(q, y) = [yι′T (I − yPT )−1]q (5)

where yPT and yιT respectively denote the transition matrix and the initial
distribution vector restricted to transient states (i.e. all states but those in Ly).
The betweenness computation has a computational complexity O(n3) due to
the matrix inversion. The space complexity is O(n2) since the inverse matrix is
generally dense even for sparse input graphs. Such high complexities makes the
technique only tractable for graphs containing a few thousands nodes. Optimized
matrix inversion, possibly relying on a spectral decomposition, can be used to
2 The ny added states are only used to start walks and cannot be reached from any

node in the graph.
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tackle this problem. We propose an alternative approach, detailed in the next
section, by adapting the betweenness definition. It offers a much lower time and
space complexity algorithm, which also proved to be more accurate for semi-
supervised classification.

3.3 Bounded D-Walks Betweenness

This section describes a betweenness measure based on D-walks of bounded
length. The notation Dy

l refers to the set of all D-walks of length exactly equal
to l, starting and ending in a node of class y. We also consider Dy

≤L referring to
the set of all bounded D-walks up to a given length L. The bounded D-walks
betweenness measure BL(q, y) is formally defined hereafter.

Definition 5 (Bounded D-walks betweenness). Given an unlabeled node
q ∈ U and a class y ∈ Y, the D-walks betweenness function U × Y → R

+ is
defined as follows:

BL(q, y) � E [pt(q) | Dy
≤L]

Bounding the walk length has two major benefits: (i) better classification re-
sults are systematically obtained with respect to unbounded walks3 in our ex-
periments, (ii) the betweenness measure can be computed very efficiently. The
unbounded betweenness can also be approximated with the bounded one by
considering large but finite L values. More precisely, it can be shown that the
bounded betweenness converges almost geometrically fast with L towards the
unbounded betweenness value [1].

An efficient betweenness computation can be achieved using forward and back-
ward variables, similar to those used in the Baum-Welch algorithm for Hidden
Markov Models (HMM) parameter estimation [9]. Given a state q ∈ N and a
time t ∈ N

0, the forward variable αy(q, t) computes the probability to reach
state q after t steps without passing through4 nodes in class y, while starting
initially from any state in class y. The forward variables are computed using the
following recurrence:

(case t = 1) αy(q, 1) =
∑

q′∈Ly

1
ny

pq′q

(case t ≥ 2) αy(q, t) =
∑

q′∈N\Ly
αy(q′, t − 1) pq′q

(6)

It is assumed that walks can start in any state of class y with a uniform
probability 1/ny. Notice that the case t = 1 allows transitions outgoing from a
state in class y (i.e. a starting state) whereas such transitions are forbidden in
the induction case (t ≥ 2), as walks are stopped as soon as a node in class y is
reached.
3 The maximum walk length has to be chosen for instance by cross-validation (see

section 6).
4 In contrast with leaving from a node q, passing through q means to jump from some

node q′ to q and then to leave from q.
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Given a state q ∈ N and a time t ∈ N
0, the backward variable βy(q, t) com-

putes the probability that state q is attained by the process t steps before reach-
ing any node labeled y for the first time. The backward variables are computed
using the following recurrence:

(case t = 1) βy(q, 1) =
∑

q′∈Ly
pqq′

(case t ≥ 2) βy(q, t) =
∑

q′∈N\Ly
βy(q′, t − 1) pqq′

(7)

Transitions incoming to a state in class y are only allowed at the end of walks
(case t = 1) since we are interested in walks ending when any node in Ly is
reached for the first time. The time complexity of the forward and backward
recurrences is Θ(mL), where m is the number of edges and L is the maximal
walk length considered.

In order to compute BL(q, y), let us first calculate the MPT in a node q ∈ U
during Dy

l -walks (i.e. walks of length exactly equal to l): E [pt(q) | Dy
l ]. The

(length-conditionned) passage time function pt(q) can be decomposed as a sum
of indicator variables: pt(q) =

∑l−1
t=1 I1{Xt = q}. Consequently, the desired ex-

pectation is given by

E [pt(q) | Dy
l ] = E

[
l−1∑

t=1

I1{Xt = q} Dy
l

]

=
l−1∑

t=1

E [ I1{Xt = q} | Dy
l ] (8)

=
l−1∑

t=1

P [Xt = q | Dy
l ] =

l−1∑

t=1

P [Xt = q ∧ Dy
l ]

P [Dy
l ]

(9)

The joint probability in the numerator of equation (9) can be computed as
P [Xt = q ∧ Dy

l ] = αy(q, t)βy(q, l − t), that is the probability to start in any
node of Ly, to reach node q at time t and to complete the walk l − t steps later.
The probability to perform a Dy

l -walk is obtained as P [Dy
l ] =

∑
q′∈Ly

αy(q′, l).
Therefore, the desired expectation is given by

E [pt(q) | Dy
l ] =

∑l−1
t=1 αy(q, t)βy(q, l − t)

∑
q′∈Ly

αy(q′, l)
(10)

Finally, the betweenness measure based on walks up to length L is obtained as
an expectation of the betweennesses for all length 1 ≤ l ≤ L:

BL(q, y) =
L∑

l=1

P [Dy
l ]

Z
E [pt(q) | Dy

l ] (11)

=
∑L

l=1
∑l−1

t=1 αy(q, t)βy(q, l − t)
∑L

l=1
∑

q′∈Ly
αy(q′, l)

(12)

=

(∑L
t=1 αy(q, t)

) (∑L−t
l=1 βy(q, l)

)

∑L
l=1

∑
q′∈Ly

αy(q′, l)
(13)
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The distribution P [Dy
l ] is defined on all discrete times t ∈ [1, ∞), however only

walks up to length L are considered here. Therefore, we introduce a normalization
constant Z ensuring that

∑L
l=1 P [Dy

l ]/Z sums to one, making the expectation
well-defined. Once the values of the forward and backward variables are stored
in lattices, BL(q, y) can be obtained with a time complexity in Θ(L.ny) by
precomputing all the terms of the inner sum contained in the numerator of
equation (13). The complexity for computing the betweenness for all unlabeled
nodes with respect to a specific class y is thus Θ(m.L) as it is dominated by the
cost of the recurrence computations. The space complexity is Θ(m + L.n), i.e.
the space required to store the graph and the forward and backward lattices.

3.4 Classification Using the Betweenness

Unlabeled nodes are classified using a maximum a posteriori (MAP) decision rule
from the betweenness computed for each class. The class-conditionned likelihood
of a node q with respect to a specific class y is defined from its class betweenness
as follows:

P [q | y] � BL(q, y)
∑

y′∈Y BL(q, y′)
(14)

The label of a node q ∈ U is predicted by:

ŷq = argmax
y∈Y

P [q | y] P [y] (15)

where P [y] is estimated as the proportion of nodes belonging to class y. Taking
the argmax on the class posteriors corresponds to a crisp node classification.
A fuzzy node classification can be obtained by directly outputting the class
posteriors. Finally, the time complexity to classify all unlabeled nodes using the
bounded D-walks betweenness is Θ(|Y|.m.L) where m is the number of edges
in the graph and L is the maximal walk length allowed. The space complexity
is the same as for computing the betweenness relative to a specific class, i.e.
Θ(m + L.n).

4 Incorporating Node Features

This section presents an extension of the D-walks approach to take node features
or attributes into account during classification. For instance, such features could
be the age, the nationality or the marital status of individuals in a social network.
Incorporating such features can clearly improve the classification performance as
the system can discriminate using both structural and descriptive information
on nodes. The feature vector corresponding to a node q is denoted by φ(q).
We assume that a similarity function k(φ(q), φ(q′)) between feature vectors is
available. The resulting n × n similarity matrix for all pairs of nodes is written
K. Note that the similarity function needs not be a genuine Mercer kernel (i.e.
matrix K is not required to be positive-definite). However, it is assumed that
k(φ(q), φ(q′)) takes positive values.
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Our approach for incorporating nodes features is based on a reweighting of the
adjacency matrix. Each entry aqq′ of the adjacency matrix is simply multiplied by
the similarity between the concerned nodes kq,q′ . One of our modeling hypothesis
(see section 3.1) states that the higher the edge weight the easier the connection.
The edge reweighting proposed here is consistent with this assumption as the
connection between two nodes will be reinforced proportionally to their feature-
based similarity. In matrix form, the reweighted adjacency matrix φA is obtained
as follows:

φA = A ◦ K (16)

where ◦ denotes the element-wise (Hadamard) product between matrices. This
multiplicative reweighting preserves the sparseness of the graph and the simi-
larity function needs only to be evaluated for pairs (q, q′) such that aqq′ > 0.
Consequently, the complexity of the D-walks approach using node features is
Θ(|Y|.m.L+m.Sim) where Sim is the time complexity of one similarity function
evaluation. The space complexity remains unchanged with respect to the original
D-walks approach.

5 Some Links between D-Walks and Related Approaches

It is worth stressing the links and differences between the D-walks method de-
scribed in section 3.3 and competing approaches. To simplify a bit the analysis
we restrict first our attention to undirected graphs. For such graphs, the weighted
adjacency matrix A is symmetric.

The method of Zhou and Schölkopf [15], compared experimentally with D-
walks in section 6, can also be interpreted in terms of random walks. This method
computes the matrix S = D−1/2AD−1/2 where D denotes the diagonal matrix
of node degrees: dq =

∑
q∈N aqq′ . A specific element of S is simply given by:

sqq′ =
aqq′

√
dq

√
dq′

(17)

In contrast with the transition probability matrix P = D−1A, the S matrix
is not necessarily row-stochastic. Obviously, P = S whenever every node has
the same degree. Semi-supervised classification in [15] relies on the inverse of a
regularized and normalized5 laplacian L̃:

L̃−1 = (I − αS)−1 with 0 < α < 1 (18)

In particular, the classification rule for the unlabeled node q can be written:

ŷq = argmax
y∈Y

∑

{q′ | yq′=y}
[L̃−1]qq′ , where yq′ is the label of node q′ (19)

5 The approach of Zhou et al [15] can be considered as a variant of [2,3] which uses
the regularized laplacian matrix D − αA instead of the standard one. Performance
of the later approach is also reported in our experiments.



Semi-supervised Classification from Discriminative Random Walks 171

Equation (18) can be reformulated using a Neumann series:

(I − αS)−1 =
∞∑

l=0

(αS)l = I + αS + α2S2 + . . . (20)

The first equality is valid only if the series converges6. Under this assumption,
the sum of matrix powers in (20) is highly similar to those computed (however
through recurrence relations) in the bounded D-walks approach.

To push the analogy a bit further, let us consider a scaled transition proba-
bility matrix P̃ = αP . Such matrix defines a lazy random walk in the original
graph since a transition from state q to a distinct state q′ has a probability

p̃qq′ =
α aqq′

dq′
, q �= q′ (21)

and, consequently, the random walk remains on state q with probability 1 − α.
Finally, equation (20) relies on the successive powers of αS and one specific
element of this matrix is written:

αsqq′ = α
aqq′

√
dq

√
dq′

=
√

p̃qq′ p̃q′q (22)

One observes that the quantity of interest in this approach is the geometric
mean of the transition probability in one direction and the opposite direction
during such lazy random walks. This symmetric quantity is consistent with the
commute times interpretation detailed in [15].

The unique hyper-parameter is here α which controls the degree of laziness
of the random walks. In contrast, the unique hyper-parameter for the D-walks
method is the maximal walk length L, which corresponds to the maximal matrix
power considered. This difference can be interpreted as a distinct regularization
choice [10]. Note that bounding the maximal walk length may not be the most
appropriate choice when defining a graph kernel. We argue that this choice is
however better for the semi-supervised classification problem considered here, as
confirmed experimentally in section 6.

Another important aspect of the D-walks approach is to consider only walks
that start and end in a labeled node of a given class but do not go through labeled
nodes of the same class at intermediate steps. Intuitively, the random walks
explain the connections with labeled nodes of a given class without diffusing
unconditionally through the graph.

The method described in [15] was extended to directed graphs [14]. These
approaches require that the random walk model has a unique stationary distrib-
ution. For directed graphs, this property can be satisfied by considering teleport-
ing random walks as in [8]. The price to pay is the introduction of an additional
hyper-parameter which defines the trade-off between the teleporting uniform
probability and the natural transition probability derived from the adjacency
matrix. The D-walks approach does not require such an additional parameter
6 This condition is satisfied if the spectral radius of αS is < 1.
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to deal with directed graphs. This is an immediate consequence of bounding the
walk length rather than relying on the asymptotic behavior of the walks.

An alternative semi-supervised classification method using random walks was
proposed in [11]. This method considers walks starting from an unlabeled node
and reaching a labeled node in exactly L steps. Again, nothing prevents the walks
to go through labeled nodes of the same class during the intermediate steps.
Szummer and Jaakkola also proposed the use of a different length parameter
from each unlabeled node but this method did not pay off experimentally. The
recurrences detailed in section 3.3 are also specific to the D-walks approach.
They are essential to guarantee a low computational complexity to be able to
deal with large graphs.

6 Experiments

The experiments presented in this section have two goals. First, the classification
performance of our approach is compared against competing methods. Secondly,
the computing times on large-scale problems data are analyzed, demonstrating
the efficiency and the scalability of the approach.

6.1 Data

The three case studies used for this paper are real-world representation of net-
worked data. They all come from different domains that have been the subject
of prior study in machine learning [5].

IMDb: The collaborative Internet Movie Database (IMDb) has several appli-
cations such as making movie recommendation or movie category classifica-
tion. The classification problem focuses on the prediction of the movie notoriety
(whether the movie is a box-office or not). It contains a graph of movies linked
together whenever they share the same production company. The weight of an
edge in the resulting graph is the number of production companies two movies
have in common. The graph contains 1196 movies which have the following class
distribution (see Table 1):

Table 1. Class distribution for the IMDb data set

Category Size
High-revenue 572
Low-revenue 597

Total 1169
Majority class accuracy 51.07%

Number of Edges 40564
Mean degree 36.02
Min degree 1
Max degree 181
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Table 2. Class distribution for the CORA data set

Category Size
Case-Based 402

Genetic Algorithms 551
Neural Networks 1064

Probabilistic Methods 529
Reinforcement Learning 335

Rule Learning 230
Theory 472
Total 3583

Majority class accuracy 29.7%
Number of Edges 22516

Mean degree 6.28
Min degree 1
Max degree 311

CORA: The CORA dataset contains computer science research papers. It in-
cludes the full citation graph as well as the topic of each paper as labels. Two
papers are linked if one cites the other. The weight of an edge is generally one
unless two papers cite each other, in which case it is two. The graph contains
3582 nodes with the following class distribution (see Table 2):

WebKB: WebKB consists of sets of web pages gathered from four computer
science departments (one for each university), with each page manually labeled
into 6 categories: course, department, faculty, project, staff, and student. Two
pages are linked by co-citation (if x links to z and y links to z, then x and y are
co-citing z). The composition of the data set is shown in Table 3.

Table 3. Class distribution for the WebKB data set

Size
Category Cornell Texas Washington Wisconsin

course 54 51 170 83
department 25 36 20 37

faculty 62 50 44 37
project 54 28 39 25
staff 6 6 10 11

student 145 163 151 155
Total 346 334 434 348

Majority class accuracy 41.9% 48.8% 39.2% 44.5%
Number of Edges 26832 32988 30462 33250

Mean degree 77.55 98.77 70.19 95.55
Min degree 1 1 1 1
Max degree 191 215 286 229



174 J. Callut et al.

0.2 0.4 0.6 0.8

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Classification rate on the imdb_all_ dataset

Labeling rate

C
la

ss
ifi

ca
tio

n 
R

at
e

Dwalk
RegLaplacian
Zhou et al.
NetKit

0.2 0.4 0.6 0.8

0.
70

0.
75

0.
80

0.
85

0.
90

Classification rate on the cora_cite_ dataset

Labeling rate

C
la

ss
ifi

ca
tio

n 
R

at
e

Dwalk
RegLaplacian
Zhou et al.
NetKit

0.2 0.4 0.6 0.8

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Classification rate on the WebKB−cornell_ dataset

Labeling rate

C
la

ss
ifi

ca
tio

n 
R

at
e

Dwalk
RegLaplacian
Zhou et al.
NetKit

0.2 0.4 0.6 0.8

0.
5

0.
6

0.
7

0.
8

0.
9

Classification rate on the WebKB−texas_ dataset

Labeling rate

C
la

ss
ifi

ca
tio

n 
R

at
e

Dwalk
RegLaplacian
Zhou et al.
NetKit

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Classification rate on the WebKB−washington_ dataset

Labeling rate

C
la

ss
ifi

ca
tio

n 
R

at
e

Dwalk
RegLaplacian
Zhou et al.
NetKit

0.2 0.4 0.6 0.8

0.
5

0.
6

0.
7

0.
8

Classification rate on the WebKB−wisconsin_ dataset

Labeling rate

C
la

ss
ifi

ca
tio

n 
R

at
e

Dwalk
RegLaplacian
Zhou et al.
NetKit

Figure 1. Classification rate of D-walks and the three competing methods on each
dataset. Error bars report standard deviations over 10 independent runs.

6.2 Methodology

Performances of the D-walks approach and competing methods are reported in
Figure 1 for the four datasets presented above. A network topology, along with
some node labels, generally contains a considerable amount of useful information
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for unlabeled nodes classification. Only a small proportion of labeled nodes might
be sufficient to predict the unlabeled set. For this reason, we have considered
several labeling rates, i.e. proportion of nodes for which the label is known. The
labels of remaining nodes are removed and used as test. For each considered
labeling rate, 10 random deletions were performed on which performances are
averaged.

Our approach has been compared to the following existing methods: NetKit
([5]; “NetKit”), Zhou and Schölkopf method ([15]; “Zhou et al.”) and the reg-
ularized laplacian kernel ([2] [3]; “RegLaplacian”). Hyper-parameters of each
approach were optimized using an internal 10-folds cross-validation. For the D-
walks approach, the unique parameter to tune is L. The best value for L is
computed in the range {1, . . . , 100}. Optimal L values typically fall between 6
and 30, showing the interest of bounding the walk length (see the right hand
side of Figure 2). Zhou et al. and the regularized laplacian kernel also require the
regularization parameter α to be tuned between 0 and 1. Concerning NetKit,
testing all the module configurations would have been very time-consuming. We
chose here the parameters that generally provide good results [5]. More precisely,
the local classifier inducer uses the class prior, the relational classifier inducer
uses the weighted vote Relational Neighbor classifier and a relaxation labeling
is used for the collective inferencing.

6.3 Results

This section details the classification accuracy of each method over the various
datasets. Figure 1 reports classification rates on test data obtained by each
approach as a function of the labeling rate.

As could be expected, the classification rate generally improves with higher
labeling rate. We can clearly observe that the D-walks approach outperforms
competing approaches most noticeably when fewer labeled nodes are considered.
Moreover, the variance of this method is generally significantly lower. D-walks
is also the fastest method. On data sets like CORA with 3583 nodes, it requires
less than a second of CPU on a standard PC including the tuning of its hyper-
parameter L with cross-validation. NetKit takes about 4.5 seconds and Zhou et
al. approach requires about one minute when explicitly computing the matrix
inverse.

The scalability of the D-walks approach was assessed on much larger data
sets which were artificially generated, up to 10 million edges. These random
graphs were generated using the algorithm presented in [13]. This technique
allows one to generate an undirected and unweighted graph with a prescribed
degree sequence drawn from a power law. The parameters of the power law were
tuned such that the mean degree equals 10. The computing times on a standard
PC7 for increasing graph sizes and L values are shown in Figure 2. Memory and
time requirements are strongly limiting factors to apply the other approaches on
such large graphs.

7 Intel Core 2 Duo 2.4Ghz.
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Figure 2. On the left, the CPU time of the D-walks approach on artificially generated
graphs of growing sizes, and for increasing maximum walk lengths L. The right side
represents the classification rate on the Cora dataset, with a 0.9 labeling rate, when
increasing the maximum walk length L. In this setting, the interest of bounding the
walk length is clearly observed.

7 Conclusion

We propose in this paper a novel approach to the semi-supervised classification
of nodes in a graph. The input graph is interpreted as a Markov chain (MC) in
which random walks are performed. Particular random walks, called D-walks, are
introduced to define a node betweenness measure. A D-walk starts in any node of
a specific class y and ends as soon as some node of the same class is reached for the
first time. The betweenness of a node q with respect to a class y is defined as the
average number of times q is visited during D-walks. Our betweenness measure is
then refined by considering walks up to a prescribed length. Bounding the walk
length provides systematically a better classification rate with the additional
benefit that the betweenness can be computed very efficiently using forward and
backward recurrences. The classification of all the unlabeled nodes in the graph
can be performed with a time complexity Θ(|Y|.m.L) where |Y| is the number of
classes, m is the number of edges in the input graph and L is the maximum walk
length considered. Moreover, the memory requirement is Θ(m + L.n), allowing
one to take benefit of the possible graph sparseness. Such low complexities enable
to deal with very large graphs containing several millions of nodes and edges. An
extension of this approach is proposed to incorporate descriptive node features
(i.e. attributes attached to each node) during classification.

Experiments on real-life databases show that the D-walks approach outper-
forms three state-of-the-art approaches. The benefit of using bounded walks is
empirically observed as better classification rates are obtained with walk length
typically bounded between 2 and 10. We also show experimentally that the pro-
posed approach easily scales up to large-scale problems thanks to its linear time
complexity.

Our future work includes several extensions of the proposed approach. The in-
terest of incorporating node features, as described in section 4, should be assessed
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experimentally. A typical case study would be the labeling of protein-protein
interaction network. The node features could include gene expression measure-
ments coding for the corresponding proteins. The D-walks method could be
further extended to perform regression on a graph, that is to predict a continu-
ous value on nodes rather than a class label. Finally, we would like to investigate
the use of bounded random walks in item recommendation systems through
collaborative filtering.
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