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Abstract.' In this paper, we compare Probabilistic Suffix Trees (PST),
recently proposed, to a specific smoothing of Markov chains and show
that they both induce the same model, namely a variable order Markov
chain. We show a weakness of PST in terms of smoothing and propose
to use an enhanced smoothing. We show that the model based on en-
hanced smoothing outperform the PST while needing less parameters on
a protein domain detection task on public databases.

1 Introduction

In many application domains like spoken or written natural language recognition
and biological sequences analysis, Markovian models are widely used to model
probability distributions on sequences of events. However, in the case of most
general models in this family (hidden Markov models), the training and decoding
procedures can be computationally heavy. Therefore, in many cases, the use of
Markov chains, a subclass of Markovian models, is considered.

Recently, a model based on variable order Markov chains, called probabilistic
suffix trees (PST) has been proposed. On a computational biology task (protein
domains detection), its performance is competitive with models based on hidden
Markov models, while being of lower algorithmic complexity both for its learning
procedure and for domain detection [3]. This model can be trained from raw
sequences, whereas HMM based models may need aligned sequences, meaning
that it is independent from an alignment procedure. This is an important point
since multiple alignment of protein sequences is a computer consuming task and
is liable to errors. Moreover, the EM algorithm used to train HMM can hit a
local minimum.

However, the model based on PST recently proposed provides a very simple
solution to a problem pointed out as very important for models based on Markov
chains : the probability smoothing. This classical problem occurs in probability
estimation when the number of possible events is very large compared to the
number of observed events. In this case, many non observed yet possible events

! Published in Proceedings of the 13th European Conference on Machine Learning,
LNAI, No. 2430, Springer Verlag, pp. 185-194, Helsinki, Finland, 2002.



P(0)=0.6
P(1) =04

2N

P(0)=0.7 P(0)=05

0 M1 =03 P)=05
/ 1

P(0)=0.4 P(0)=0.4
0=08 @ P(1)=06

P(1)=0.2 / &\05
1

oy me
P(1)= 7 P)=08

Fig. 1. A Probabilistic Suffix Tree on ¥ = {0,1}. The probability assigned to the
sequence 100110 by this tree is P(100110) = ~¢(1)¥1(0)70(0)y00(1)y001(1)y11(0) =
0.4%0.5%0.7%0.2%0.7%04 =7.8410"°

are estimated with a null probability. Smoothing probability estimation con-
sists in estimating the probability of non observed events, while correcting the
probability of observed events.

The structure of this article is as follows. We first recall the definition of
probabilistic suffix trees, present the link with Markov chains, give the infer-
ence algorithm and point out the weakness of the model regarding probability
smoothing. Then, we present a smoothing technique which has been proved to
be efficient and show that this technique induces a model which is equivalent
to PST but with a better smoothing. Finally, we test the models on a protein
detection task and show that using the improved smoothing technique yields
better results with less parameters.

2 Variable order Markov chains

2.1 Prediction suffix trees

Probabilistic suffix trees (PST), also known as prediction suffix trees, are a model
of probability distribution for discrete events occurring in sequences. They can
be used either to predict the next event in the sequence, as in language modeling,
or to assign a probability to a whole sequence for classification, or detection as
in protein domain detection. The basic assumption underlying the PST is that
the probability of an event in the sequence depends at most on the k preceding
events, for some k fixed. The difference between PST and classical Markov chains
is that for Markov chains, the dependency relies on exactly the k preceding
events, whereas in PST the dependency can be based on a number of preceding
events varying from 0 to k. In that way, PST are a generalization of Markov
chains. Formally, let X' be a set of discrete symbols (events). A PST is a rooted
tree of maximum degree | X| for which

— for each node, there is at most one outgoing edge labeled by each symbol of
b))



1 begin

2 T has only one node, labeled by € (the empty suffix)

3 S={0|0627 P(U)Z-Pmln}

4 while S # 0, select sin S

5 remove s from S

6 if J0 € X such that P(0]|s) > ymin and % <lor>r

7 then add to T the node labeled by s and all the nodes needed to go
8  to this node from the node in the tree labeled by the largest suffix of s.
9 end.if

10 if |s| < L then S=SU{os |0 € X, P(os) > Pnin} end_if

11 end_while

12 for all s labeling a node in T', smooth the probability such that

13 Vo € X, 4s(0) = (1 = | Z|ymin) P(o]s) + ymin

14 end

Fig. 2. The PST inference algorithm.

— each node is labeled by the labels sequence of the edges needed to go up
from this node to the root (suffix labeling).

— for each node ¢, every outgoing transition on a symbol s is associated to a
probability 7,(s) such that > . v,(s) =1

Let X = (Zn)nef1,..,n} be a sequence of events. The probability assigned by
the PST to the sequence is given by P(z1, -+ ,%5) = [, Vs (i) where s; is
the node of the tree corresponding to the largest suffix of x,--- ,x;_1 stored in
the tree. An example of suffix tree is presented on Figure 1.

Ron et al. [14] proposed an algorithm for PST inference and studied the
learnability properties of the model. Given a target PST with n states and with
maximum depth L, and for every given ¢ > 0 and 0 < § < 1, their algorithm
returns with confidence 1—§, in time polynomial in n, L, ||, 1, 1, a PST whose
per symbol Kullback-Leibler distance from the target is at most €.

The PST inference algorithm is presented on Figure 2. Given a sequence
§ =g, ,%;, we note suf(s) = x1,...,x; the largest suffix of s different from
s. The algorithm starts from a Oth order Markov chain (line 2) and with S, the
set of suffixes to be examined, containing all the symbols with probability larger
than a threshold set to Py, (line 3). Then, for each element s in S, if there exists
a symbol for which the probability conditioned by s is significantly different from
the probability conditioned by the suffix of s (line 4), then the node labeled by
s is added to the tree, and also all the nodes needed to go to this node from the
node in the tree labeled by the largest suffix of s. If the length of s is strictly
smaller than the maximum order of the tree, then all the sequences built from s
added with a symbol o, such that the probability of the sequence so is larger the
threshold P,,;,, are added to S (line 10). The last step of the algorithm is a very
simple smoothing procedure. The maximum likelihood probability estimator is



modified so that no symbol is predicted with probability 0 whatever its suffix is
(line 13).

However, the smoothing procedure using the modified maximum likelihood
estimator has two main drawbacks. First, the same constant value v;,;, is added
to every probability, whatever the observed frequency and the probability of
the event are. Second, the same floor probability v, is assigned to all unseen
events, whatever their suffix is. Many other smoothing procedures, which do not
suffer from these problems, have been proposed. We present one of them in the
next section.

2.2 Back-off smoothing of Markov Chains

When using Markovian models in real applications, even if a large amount of
data is available to estimate the model, the problem of predicting events which
were not observed during the estimation procedure occurs. This is particularly
true for high order Markovian models since the number of possible contexts for a
kth order Markovian model is exponential in k. The probability of a large number
of events are estimated on only a few occurrences, leading to poor probability
estimation. Many rare but possible events are not observed, and are wrongly
estimated with a null probability.

The problem of predicting unseen events, also known as the zero-frequency
problem, is due to the fact that the maximum likelihood estimator attributes
the whole probability mass to the events seen during the estimation. Several
solutions have been proposed to this problem : succession laws [12], linear in-
terpolation of the maximum likelihood estimator with another estimator, such
as an o priori distribution [8] or a more general distribution [7], discounting of
a certain amount of the probability mass of seen events using the Turing-good
formula [9] or absolute discounting [13]. When using discounting, the discounted
probability mass is redistributed to all unseen events according to another prob-
ability distribution. This is the back-off smoothing methods, proposed by Katz
[9].

For Markov chains, the back-off smoothing is based on the following idea :
discount a certain amount d¢o from the probability mass of events which have
been observed in a context of length k and redistribute this amount to all unseen
events according to their probability in a context of length k£ — 1. This probability
can in turn be recursively smoothed. Formally, recalling the notation introduced
in the previous section, if ¢ is a symbol and s a suffix (context), we have :

c(s,0)—d .

P(O'ls) = { Zfrez)c(sff) if C(S, U) >0
a(s)B(s,0) otherwise

where ¢(s, o) is the number of times ¢ was seen after the suffix s and d¢ is the
discount parameter, which may depend on ¢(s, o), a(s) is a normalization factor
and (s, o) is the back-off distribution, generally estimated on shorter suffixes.
This distribution can in turn be smoothed, inducing a recursive process which
ends, in the worst case, with the unconditional probability of the symbol P(o).



In this case, the back-off distribution is used only if the main distribution is
null (shadowing). Kneser and Ney [10] showed that using the back-off distribu-
tion even if the main distribution is not null (non-shadowing) leads to a better
model. We have then :

Po]s) = % +a'(s)B(s,0) if c(s,0) >0
a'(s)B(s,0) otherwise

where o/(s) is a normalization factor. This method is also named non-linear
interpolation, since it can be defined as

c(s,0) —do

EO’EE 0(87 U)

if we suppose that do < ¢(s,o) for all ¢(s,0) > 0. The normalization factor is
— de .
then o/(s) = X ,cx | c(s,0)>0 S (5 Kneser and Ney propose to estimate

P(o|s) = max [ ,0| + ' (s)B(s,0)

the back-off probability in the following way :

c(e,suf(s), o)
Yoex c(e;s5uf(s),0))

with ¢(e, suf(s),o) = |{0’ | c(o!, suf(s),o) > 0}| This estimation is not based
on the observed frequency of the sequence (s,o) but on the number of different
contexts in which o has been observed after suf(s).

The back-off probability can also be null, leading to a recursive smoothing
using the same formula. Therefore, we see that using a recursive smoothing on a
kth order Markovian model leads to build a variable order Markov chain. There
are three differences between a variable order Markov chain build by recursive
Kneser-Ney back-off smoothing (denoted KN-chain) and a variable order Markov
chain represented by a PST infered by Ron’s algorithm:

B(s,0) =

— there is no pruning in KN-chain : if a sequence of length lower than the
maximum order of the KN-chain is observed, its probability is estimated
and stored, whereas in PST the estimated probability is stored only if it is
above a threshold (P,,;y). For a given maximum order, PST may have less
parameters than KN-chains.

— in KN-chain, a different and enhanced estimation scheme is used for the back-
off probability estimation, whereas in PST, for all the orders, probability
estimation is based on the modified maximum likelihood estimator.

— in KN-chain, both the enhanced estimation scheme and the modified maxi-
mum likelihood estimator are used (non-shadowing), whereas in PST, only
one modified maximum likelihood estimator is used.

In the next section, we show that KN-chains significantly outperform PST on a
protein domain detection task.



3 Application to protein domains detection

Many databases have been created to gather information concerning proteins.
Researchers can find in these databases not only the amino-acid sequence of pro-
teins but also information about their functions, structure, related diseases and
bibliographical pointers. These databases are used to help the analysis of newly
sequenced proteins, for which no function or structure is known yet. They serve
as a basis for learning models which are used to detect sub-sequences (called
domains or motifs) which are known to be related to a particular biochemical
function. Such models range from complex probabilistic models based on hid-
den Markov models [11,5] to purely syntactic models, like regular expressions,
describing characteristic sub-sequences [1]. However, since the databases are con-
stantly increasing and updated, the learning procedure of these models must be
easy and of low complexity.

3.1 Protein domains detection with variable Markov chains

Automatic analysis of newly sequenced proteins, for which neither structure nor
biochemical functions are known yet, is now very important since the number
of newly sequenced proteins is increasing daily. To a certain extend, hypotheses
concerning the function of a protein can be made by searching, in its amino-acid
sequence, sub-sequences which are known to be related to a function in other
proteins. Many of such sub-sequences, called domains, have been identified and
are stored in databases like PFAM [15]. However, the sequence of a given domain
is not constant through species. Substitutions, deletions and insertions occur,
which make domain detection more complex than a simple exact sub-sequence
detection.

Domain models, like HMM[5], are trained on theses sub-sequences and used
to detect domains in complete protein sequences. Variable order Markov chains
may also be used to detect domains in protein sequences [3]. A variable order
Markov chain is associated to each domain to be detected and is estimated on a
set of examples of such domain. Then the likelihood of a new protein sequence
given a domain model is related to the presence or not of the corresponding
domain in the protein. A high likelihood is a sign of a probable presence of the
corresponding domain in the protein.

3.2 Experimental setup

We used two databases to test our models : the SWISSPROT database [2] which
contains protein sequences from several living organisms and the PFAM database
[15] which contains alignments of functional domains, grouped in families, ex-
tracted from SWISSPROT with a semi-automatic procedure. We labeled the
SWISSPROT sequences with the name of the domains they contain, according
to PFAM families. In order to compare with recently publish results [6, 3], we
used PFAM release 1.0. This release contains 22307 domains grouped in 175
families.



Kneser-Ney Smoothing PST
Maximal order 0 1 2 3 4 20

Correct detection rate| 13.9 53.0 81.3 89.5 90.0 85.8

Number of parameters|2,2 x 10'[4,0 x 10%[3,3 x 103[9,9 x 103|1,8 x 10%[5,1 x 10*

Fig. 3. Correct detection rate on the complete SWISSPROT database and number of
parameters for variable order Markov chains with Kneser-Ney smoothing and PST.

3.3 Training the models

For each domain family, we estimated the models on 80% of the domain sequences
extracted from the alignments available in PFAM. We trained probabilistic suffix
tree with software and parameters given as optimal by Bejerano [3]. The maximal
order of the PST is 20. We also trained variable order Markov chains with Kneser-
Ney smoothing, with maximum order ranging from 0 to 4.

3.4 Testing the models

All the models were tested for domain detection on the protein sequences of
the SWISSPROT database corresponding to the complete PFAM database. In
order to measure a correct detection rate, we used the iso-point detection cri-
terion [3,6]. For each family model, an iso-point is computed on the complete
SWISSPROT sequences set. The iso-point is defined as the value v for which
the number of protein sequences not containing the domain with a likelihood
above v is equal to the number of protein sequences containing the domain with
a likelihood under v. For a given model, a sequence containing the domain with
a likelihood above the iso-point is considered correctly detected. The correct de-
tection rate is defined as the ratio of the number of proteins correctly detected
on the number of proteins containing the domain. Note that in order to compute
the iso-point, the likelihood of each sequence is normalized by its length.

3.5 Results

Figure 3 shows the correct detection rate on all the SWISSPROT database se-
quences and the number of parameters for PST and variable order Markov chains
with Kneser-Ney smoothing. Smoothed variable order Markov chains outperform
PST as soon as the maximum order of the chains is greater or equal to 3. As
from the 4th order Markov chain and up to the the 9th order Markov chain,
the detection rate is stationary. Considering the domain detection problem as a
binary classification problem (“does a sequence contain a given domain or not”),
the performance difference between variable 4th order Markov chains and PST
was tested with a McNemar test [4]. The H0 hypothesis “the variable 4th order
Markov chains and PST have the same classification performance” was rejected
(p-value< 1071%). The performance difference is thus significant.

Figure 4 shows the detection rate on the part of the SWISSPROT database
corresponding to the PFAM domains which were not used for training (named
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Fig. 4. Learning curve: correct detection rate on the SWISSPROT test set versus the
size of the PFAM training set for Markov chains with Kneser-Ney smoothing with order
ranging from 0 to 4 (Oth KN-chain to 4th KN-chain) and PST with maximum order
20 (PST20)

SWISSPROT test set). Results are given when the size of the training set is
varying from 20% to 100%. Even on small training set, the 4th-order smoothed
variable order Markov chains outperform PST.

Finally, figure 5 shows the detection rate with respect to the number of
parameter needed by the model. The 3rd-order and 4th-order Markov chains
outperform PST while needing significantly less parameters.

4 Conclusion

We have shown that PST and smoothed Markov chains can be seen as equivalent
variable order Markov models but for the smoothing technique. As the quality of
the back-off technique as been shown to be important for Markov chain in other
application domains, we proposed to enhance the smoothing technique used in
PST by using a non-shadowing back-off smoothing to lower order Markov chain
estimated as proposed by Kneser and Ney [10]. With this improved smoothing,
we showed that the maximum order of the Markov chain can be drastically
reduced, with a performance increase on a protein domain detection task. By
reducing the maximum order of the Markov chain, we also reduce the number
of parameters needed.
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