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Abstract We propose in this paper a novel approach to the classifica-
tion of discrete sequences. This approach builds a model fitting some
dynamical features deduced from the learning sample. These features
are discrete phase-type (PH) distributions. They model the first pas-
sage times (FPT) between occurrences of pairs of substrings. The PHit
algorithm, an adapted version of the Expectation-Maximization algo-
rithm, is proposed to estimate PH distributions. The most informative
pairs of substrings are selected according to the Jensen-Shannon diver-
gence between their class conditional empirical FPT distributions. The
selected features are then used in two classification schemes: a maximum
a posteriori (MAP) classifier and support vector machines (SVM) with
marginalized kernels. Experiments on DNA splicing region detection and
on protein sublocalization illustrate that the proposed techniques offer
competitive results with smoothed Markov chains or SVM with a spec-
trum string kernel.

Keywords: Supervised sequence classification, Markov chains, First pas-
sage times, Expectation-Maximization, Jensen-Shannon divergence.

1 Introduction

This paper is concerned with a supervised classification problem in which the
instances are sequences defined over a discrete alphabet. Practical applications
of this task range from the recognition of boundaries between introns and exons
in DNA sequences to musical pieces classification.

The approach proposed in this paper relies on building a model to fit some
dynamical features in the sample. In this context, a former technique was based
on the mean first passage times between individual symbols [3]. In this paper,
we focus not only on the mean but on the complete distribution of the times
between occurrences of substrings in the sample. More precisely, given a pair of
substrings (v, w) called here a feature of the sequence to be classified, we are
looking at the number of steps taken to observe the next occurrence of w after
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having observed v. The distribution of these measures forms the First Passage
Time (FPT) dynamics of a sequential process with respect to the feature (v, w).
The purpose of this paper is to exploit the different FPT dynamics between the
classes to perform sequence classification. Since the number of features can be
potentially large, only a restricted number of the observed features are consid-
ered. The selection of the features (v, w) is performed using the Jensen-Shannon
(JS) divergence [8]. Given an observed feature (v, w), the empirical FPT distri-
bution is estimated for each class. The JS divergence is then applied to rank
the considered features. The features offering the largest JS divergence between
their class conditional distributions are kept for the classification process. Once
the features have been selected, the associated FPT dynamics are modeled with
discrete phase-type distributions.

Discrete phase-type distributions (PH) form a broad class of distributions
that generalize the family of negative binomial distributions and have applica-
tions in various stochastic models such as queuing systems [7]. A PH distribu-
tion can be defined as the distribution of the time to absorption in an absorbing
Markov chain (MC). Our first contribution is an EM algorithm for fitting discrete
PH distributions. Our algorithm can be considered as an adaptation to discrete
distributions of the work of Asmussen and Olsson [1], which handles continuous
PH distributions. Modeling the FPT dynamics with PH distributions allows one
to control the generalization, that is, the probability mass given to unseen events,
by tuning the number of phases (see section 2). In this sense, the PH modeling
can be thought of as a smoothing technique of the empirical FPT distributions
observed in the sequences. The estimated PH distributions are used to solve
the sequence classification problem. Two classification schemes are considered:
a maximum a posteriori (MAP) classifier and support vector machines (SVM).

The rest of this paper is organized as follows. Section 2 reviews standard
Markov chains and PH distributions. Section 3 introduces the PHit algorithm
for fitting discrete PH distributions. Section 4 describes the feature selection
procedure and presents a MAP classifier as well as a kernel based on PH distri-
butions. Finally, section 5 shows experimental results obtained with the proposed
techniques applied to DNA splicing junction detection and protein sublocaliza-
tion.

2 Discrete PH distributions

The methods proposed to solve the sequence classification problem in section 4
rely on the first passage times (FPT) between events in sequences (see definition
2). These times can be conveniently modeled by PH distributions introduced
hereafter. For a detailed introduction to the MC theory and to PH distributions,
the reader is respectively referred to the classical text books [6] and [7]. A MC
can be represented by a 3-tuple M = (Q, A, ¢) where @ is a finite set of states
of size m, A is an m X m stochastic transition matrix and ¢ is a 1 X m vector
representing the initial probability distribution. In a MC, a state g is said to
be absorbing if there is a probability 1 to go from ¢ to itself. In other words,



once an absorbing state has been reached, the process will stay on this state
forever. A MC for which there is a probability 1 to end up in an absorbing state
is called an absorbing MC. In such a model, the state set can be divided into the
absorbing state set Q4 and its complementary set, the transient state set Qr.
An absorbing MC with a single absorbing state will be called a reduced absorbing
MC (or a reduced MC for short). A fundamental characteristic of absorbing MC
is the time to absorption, i.e. the number of steps the process takes to reach an
absorbing state. The distribution of the time to absorption is of phase-type.

Definition 1 (Discrete Phase-type Distribution). A probability distribu-
tion ¢(.) on NO is @ distribution of phase-type if and only if it is the distribution
of the time to absorption in an absorbing MC.

It should be pointed out that it is always possible to transform an absorbing MC
with several absorbing states into a reduced one with the same distribution of
the time to absorption. Hence, without loss of generality, we will only consider
reduced MC in normal form, the last state being absorbing :

L= (u 0), A:<0Tf>

where u is a 1 x (m—1) initial vector for transient states, T is an (m—1)x (m—1)
matrix called the phase generator, e is an (m—1) x 1 vector called the absorption
vector and 0 is an 1 x (m — 1) vector of zeros. It will be assumed that the
process always starts in a non-absorbing state: ¢,, = 0. A PH distribution ¢ is
completely determined® by a pair (u,T) which is called the representation of
the distribution. The probability distribution of ¢(.) is given by (k) = uT* e
for all £ > 1 which means that the probability of being absorbed in k steps is
the probability of starting in any transient state, then to move over transient
states during k — 1 steps, and finally to get absorbed. Each transient state of the
representing MC is called a phase. This technique is powerful since it allows one
to decompose complex distributions as a combination of phases. For instance,
the class of PH distributions contains the negative binomial, the hyper-geometric
and the discrete Coxian distributions, to name a few. These distributions can be
instantiated using particular absorbing MC structures. This point is illustrated
in figure 1. A distribution with an initial vector and a transition matrix with no
particular structure is called here a general PH distribution.

The next section presents a tool for estimating a PH distribution from a data
sample. In this context, tuning the number of phases allows one to deal with the
bias-variance trade-off. Indeed, fitting a distribution using a few phases gives
an important probability mass to unseen events, which are unseen first passage
times between two substrings in our context, while the overfitting is likely to
happen when using a large number of phases.

3 Since the matrix A is stochastic, the vector e can be obtained from the matrix 7.
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Figure 1. Different kinds of PH distributions and associate absorbing MC structures.
The process has a strictly positive probability to start in states filled with gray and a
null probability to start in the other states.

3 Fitting discrete PH distributions: PHit

In this section, we introduce the PHit algorithm for fitting discrete PH distri-
butions. This algorithm is used to compute the features in the classification
methods presented in section 4. Here, the samples do not directly correspond to
the learning sequences of the classification task but to discrete times between
two particular substrings in these sequences.

The EMpht algorithm, developed by Asmussen and Olsson [1], fits contin-
uous PH distributions. In contrast, we focus here on discrete PH distributions.
In particular PHit deals with negative binomial state duration distribution in
an absorbing MC while these durations are modeled in EMpht by a negative
exponential density, typical of continuous Markov processes. The re-estimation
formula in both algorithms are thus distinct. Bobbio et al. [2] also proposed a
technique for fitting discrete PH distributions, however it is restricted to a par-
ticular class of PH distributions (acyclic PH distributions) while PHit can deal
with general PH distributions.

Given a set of | observations (times between two events) Z = {z1,..., 2}
with z; € N° and a number m of states, PHit estimates the parameters (u,T)
of a PH distribution ¢ with m — 1 phases that maximize the likelihood with
respect to Z. To do so, the iterative Expectation-Maximization (EM) algorithm
is used [4]. The basic idea is to consider each z; as an incomplete observation
of the underlying process {X;} (an absorbing MC). More precisely, we observe
the time to absorption of a process realization but not the sequence of states
reached by the process during this realization. Let H = {hy,...,h} be the set
of hidden sequences relative to Z, where h; is a sequence of z; (transient) states.
The likelihood of ¢ with respect to one complete observation (z,h) is given

by P[(z,h) | ¢] = un, (H:ll Thi,hHl) en.. We introduce below three kinds of
auxiliary variables which are useful in the estimation process:

— S(i): the number of observations in H starting in state i.
— F(i): the number of observations in H ending in state i.



— N(4,7): the number of times state j immediately follows state ¢ in H.

The likelihood of ¢ with respect to the set of all observations is defined as:
P((Z,H) | ) =TI Ve O T 77

The EM algorithm finds the maximum likelihood estimates of the parameters
A of a joint distribution P(Z, H | \) when the variable H is unobserved (H is
a latent or hidden variable). This is achieved by computing iteratively the pa-
rameters A that maximize E[In(P(Z, H | A\)) | Z]. Each EM iteration involves
two steps: (i) the computation of the conditional expectation of the latent vari-
ables given the last parameter values A'~! and the partial observations Z, (ii)
the maximization of the parameters \! given the conditional expectation of the
latent variables. The computations of these two steps in the PHit algorithm are
detailed hereafter.
Expectation step

In PHit, the latent variables are the auxiliary variables S(¢), F'() and N (i, j).
Their conditional expectations are conveniently computed using forward vari-
ables defined as «;;(t) = P[Xy = j | Xo =i forall 1 <i<m,1 <j <m and
t > 0. That is, a;;(t) is the probability of being in state j after ¢ steps while
starting from state i. The forward variables can be computed using the following
recurrence:

m—1

aij((]) = {1 if i = J and Ozij(t) = Z Ozik(t — 1).Ak7j

0 otherwise pot

In the sequel, the shorthand «;(t) stands for Zzzl u;5(t), which is the prob-
ability of being in state j after ¢ steps when starting according to the initial dis-
tribution, o, (t) = ¢(t) being a special case. The forward variables «;(t) can be
thought of as a simplification of the forward variables used in the Baum-Welch al-
gorithm which estimates the parameters of Hidden Markov Models (HMMs) [9].
Indeed, in the Baum-Welch algorithm, a forward variable computes the proba-
bility of being in a state after having accepted a given string. In PHit, a forward
variable computes the probability of being in a given state after t steps no matter
how this state is reached.

Conditional expectation of S(i): The variables S(i) can be decomposed as
a sum of indicator variables?, S(i) = ka:l I{hy1 = i} where the notation hy ;
stands for the j-th state in the k-th observation. The conditional expectation
E[S() ]| #1,...,2] is given by

1 1
E[SG) | z1,...,21] = E[Z Khea=i}|z1,...,21] = ZE[]I{hk,l =i} 2i]

1 k=1

=" Plhea =i | 2]
k=1

The conditional probability Plhy1 =14 |zx] = W with Plhg1 =1,2] =

Ui im (2x) and P[zi] = aun(2). Finally, the conditional expectation is defined

4 The value of an indicator variable I{ X = z} is 1 when the random variable X equals
z and 0 otherwise. The expectation of an indicator variable is simply E[I{X = z}] =
P[X = z].



as
l

E[S(i)|21,...,zl]zzw

k=1 am(zk)

Conditional expectation of N(i,j): The variables N (i, j) can be decomposed
as Zﬁczl ZZ’;T Khy,qg =1 A hgar1 = j}, that is, counting the presence of the
transition 7 — j in each position of each hidden sequence. By the same reasoning
as above, one obtains
.. l zp—1 . .
EIN(G i) 212 =2 ey 2oagiq Plhi,a =t A hiae1 = J | 2i)

The joint probability Plhy ¢ = i Ahi.at1 = J, 2k) = i(d—1)Tijom (26 — d), that
is the probability of starting in any transient state, to reach state ¢ after d — 1
steps, then to perform the transition i — j, and finally to get absorbed zp — d
steps later. It follows that

1 zp—1

E[N(i,j) | z1,...,21] = Z Z oi(d = V)T m (2 = )

k=1 d=1 am (21)

Conditional expectation of F'(i): The variables F(i) can be decomposed
as F(i) = Z;=1 I hg, ., = i}. By the same reasoning as above, the conditional
expectation is E[F (i) | z1,...,2z1] = 22:1 Plhy, 2, = 1| 2k]. The joint probability
Plhi 2. =1, 2zk] = ai(z, — 1)e;, that is the probability of starting in any transient
state, to reach state i after zx — 1 steps then to get absorbed. The conditional
expectation is given by

!
E[F(i)|21,,..,zl]zzw

k=1 am(zk)

Maximization step
Once the expected values of the latent variables have been computed, the
maximum likelihood estimators of the PH distribution parameters are

5(i F(i N (i,j . .
u; = ZL":_l(l )g(kyei = ZZ;S )F(k) and T;; = 722;_}%)(%) Vi, 5,1 <i,5<m
where the bar notation stands for the conditional expectation of the variables.

The parameters (u,T) are initialized at random at the beginning of the al-
gorithm. PHit iterates until the relative likelihood improvement falls below a
user-defined threshold. In our experiments, PHit is rather insensitive to the ini-
tialization. In other words, the value of the likelihood obtained after convergence
is rarely affected by different initializations. However, the parameters found by
PHit can be different using different initializations since the representation of
a PH distribution is not unique. As in the Baum-Welch algorithm, the forward
variables can efficiently be computed by use of a lattice data structure. More
precisely, for each transient state i a lattice is built to compute the forward
variables o;(t) with 1 < j < m. The time complexity of building such a lattice
is O(L.m?) where L is the longest absorption time in Z. The time complexity
is O(L.m3 + L.l.m?) for the expectation step and O(m?) for the maximization
step. PHit has been implemented in the ANSI C language and it can estimate
PH distributions with 100 phases over 2,000 events in about one minute on a
standard PC.




4 Classification using PH Distributions

In section 2, we argue that the time dynamics between events in a sequential
process are conveniently modeled by PH distributions. In practice, these dis-
tributions can be estimated from a data sample by use of the PHit algorithm
presented in section 3. In the present section we describe how PH distributions
are used to solve a supervised classification problem in which the instances are
sequences defined over a discrete alphabet X' and the labels belong to a set ).
Given a set of n examples {(s1,41),-.-,(Sn,yn)} Where s; € X* is a sequence
and y; € ) its label (or its class), one wants to estimate a function f: X* — )
for predicting the label of new sequences. Our methods run into 3 steps: (i)
features selection, (ii) choosing the number of phases and modeling the selected
features with PH distributions, (iii) classifier training. The features extracted
from the learning sequences are the first passage times between pairs of events
(occurrences of substrings).

Definition 2 (First Passage Times between a pair of events in a se-
quence). Given a sequence s defined on an alphabet X and two substrings
v,w € XT. For each occurrence of v in s, the first passage time to w is de-
fined as the finite number of steps taken before observing the next occurrence of
w. The first passage times from v to w in s is a multiset defined as the first
passage times to w for all occurrences of v in s.

For instance, let us consider the alphabet X = {a,b}, the sequence s =
aababba and the events v = ab and w = ba. The value of the feature (ab, ba) is
P(ab,pa)(8) = {3,1}. Let us note that the step count starts after the last character
of v and it does not take the length of w into account. The choice of the features
(pairs of events) is an important step in the classification process. The potential
number of features is bounded by (32N, |£]9)2 € O(|£|2N), where | 2| denotes
the alphabet size. However the number of features observed in practice is often
below this bound. It can be shown that an alternative upper bound is n.L?.K?,
where L is the length of the longest sequence in the training set containing
n examples and K is the maximal length of the considered substrings (in our
experiments, K = 3).

Since our classifications methods rely on the difference between the class
conditional FPT dynamics, the proposed features selection procedure extracts
the features for which the empirical FPT distribution differs the most among
the classes. To do so, the generalized Jensen-Shannon (JS) divergence is used [8].
A larger JS divergence between the empirical distributions of various samples
indicates that they are more likely to have been drawn from different source
distributions (i.e. from different classes). This measure is defined as follows.

JS(Pr,... . Pr) = H (3, mH(P)) — 3y mH(P)
where Py,..., P, are distributions, my,...,m,. are strictly positive weights sum-
ming up to one and H(P) = —)  _, P[r]log Plx] is the Shannon entropy.
The JS divergence has several advantages over the Kullback-Leibler (KL) diver-
gence [8], a classical measure to compare two distributions: (i) it can be applied to



more than two distributions, (ii) the relative importance of the distributions can
be parametrized with weights (in our experiments, uniform weights are used),
(iii) it can be thought as a symmetrized and smoothed (it is relative to the mean
of the distributions) variant of the KL divergence, (iv) when applied to two dis-
tributions, the square root of the JS divergence enjoys the properties of a true
distance metric. For each class, the empirical FPT distributions between every
observed event pairs are computed. The score of a feature is defined as the JS
divergence between the empirical FPT distributions of each class, weighted by
the prior probability of the feature. The prior probability of a feature (v, w) is

defined as P[(v,w)] = ZUAW/ECZ(Z;U)C('U’M’) , where C(v,w) is the number of times
rsK

a string v is followed by a string w in the training set and is the set of
non-empty strings up to length K defined on the alphabet Y. The features are
ranked with respect to their score and the highest ranked features are kept for
the classification process. In the sequel, the set of selected features will be de-
noted by F. In practice, a set of 10° features can be ranked in about 30 seconds
on a standard PC.

4.1 Maximum a posteriori (M AP) classifier

In this section, we introduce a maximum a posteriori (MAP) classifier based
on PH distributions. Once the features have been selected, the related FPT dy-
namics are modeled with PH distributions for each class. The notation gp%mw)( )
stands for the PH distribution relative to (v, w) estimated from the sequences
of the class y. Our classifier makes the assumption that the features are in-
dependent. As usual for models making this naive assumption, the indepen-
dence is not always satisfied but good results are obtained in practice. Conse-
quently, the likelihood of a class y with respect to a sequence s is computed as
Plsly] = Ty uyer Plowan () 9], where Pl () 18] = TLco, . (o ©oon ):
Predicting the label of a sequence s is made by selecting the class that maximizes
the posterior probability § = argmax, P[s|y]P[y] , where P[y] denotes the prior
probability of the class y.

4.2 SVM in the PH feature space

We introduce here the PH kernel which maps the sequences in a feature space
based on PH distributions. For each feature (v, w), a marginalization kernel [10]
E(vw)(.,.) computing the probability that two sequences have been generated
together is introduced as follows.

Fww)(8,5") = P[5, 81 =D Ploww () | YIPloww) (s)) [ 4] Ply]

yey

The PH kernel, relative to the complete feature set F, is defined as

k(s,s') = Z P(U,w)[sfsl]: Z k(vvw)(svsl)

(v,w)eF (v,w)eF



The PH kernel amounts to compute a dot product in the space where a sequence
s is mapped to (w/P[y].P[qﬁ(U_yw)(s) | y]) . The PH distributions used to

YeEY, (vw)EF
compute the probabilities P[¢(,,.,)(s)|y] are estimated from a part of the training

data (80 % in our experiments) and the rest of the data is used to train the SVM.
The rationale is that the training data are no longer independent if they are used
to build the kernel mapping. Once the SVM has been trained, new sequences are
classified by looking at which side of the hyperplane they lie in the PH feature
space.

5 Experiments

This section presents the experimental results obtained for two classification
tasks: (i) DNA splicing region detection (Splice dataset) and (ii) protein sublo-
calization (DBSubloc database). The Splice dataset® is made of windows of
60 symbols from DNA sequences containing intro-exon (IE) or exon-intron (EI)
boundaries or neither of them. We restrict here our attention to binary classifica-
tion by considering sequences labeled either EI or IE. The class priors are equal
and the training, validation and test sets contain respectively 975, 253 and 253
sequences. The DBSubloc databaseS contains protein sequences (primary struc-
tures) with their subcellular localization for various organisms. The classification
tasks considered here consists in finding if a protein from a plant organism is
located in the membrane or in the mitochondria of the cell. The average length
of the sequences is 406. The class priors are respectively 0.45 and 0.55 for the
membrane and the mitochondria classes and the training, validation and test
sets contain respectively 151, 51 and 50 sequences.

The influence of the parameters (the number of phases and the number of
features) is evaluated with both classification methods using the Splice valida-
tion data. Figure 2 presents learning curves using training data of growing sizes.
For each size (except for 100%), 10 samples have been randomly extracted from
the training set in order to produce averaged results with standard deviations.
The left side of Figure 2 shows the accuracy obtained on validation data using
the MAP classifier with increasing number of phases and 100 features. Inter-
estingly, one can observe that for very small training set sizes (2% and 5%),
using 2 phases leads to significantly better results as for 2% of the training data,
the classification accuracy is about 75% while it is round 56% when using 5 or
10 phases. The reason is that the estimation of PH distributions with a larger
number of parameters’ becomes unreliable when there are too few observations.
When the training set size becomes greater than 10%, the benefit of additional
phases is noticed. The experiments were made using up to 20 phases but it ap-
pears that using more than 5 phases does not significantly improve the accuracy
for this problem. The right side of Figure 2 shows the accuracy obtained on val-

5 Splice is available from the UCI repository.
5 DBSubloc is available at http://www.bioinfo.tsinghua.edu.cn/dbsubloc.html.
7 A PH distribution with p phases has p? + p parameters.
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Figure 2. Influence of the number of phases and of the number of features on the
MAP classifier using validation data. Left: influence of the number of phases using 100
features. Right: influence of the number of features using 5 phases.

idation data using the MAP classifier with an increasing number of features (1,
4, 30, 100 and 1000) and 5 phases. The features were selected according to their
JS ranking (see section 4). It can be observed that, in general, the classification
accuracy increases with the number of selected features. An accuracy around
73 % is already obtained using a single feature (the highest ranked feature is
the substring pair (T,GG)). Using 1000 features only improves the results when
50% of the training data are used as for smaller training set sizes, the lack of
observations (for rare features) decreases the accuracy of the fitting. The best
accuracy on validation data, 90%, is obtained using the complete training set,
1000 features and 10 phases.

Practical evaluations of SVM with the PH kernel illustrate robustness to
overfitting of PH estimations. Indeed, the number of phases has no influence
on the results and the method performs well even with small training set sizes
and 1000 features. The SVM classifier thus seems able to compensate unreliable
estimations by adapting its decision function.

Figure 3 shows comparative results on both dataset using several classifiers:
(i) smoothed N-grams [5], (ii) MAP, (iii) SVM with the PH kernel and (iv) SVM
with the blended® spectrum string kernel [10] (p. 350). While the PH kernel
relies on passage times between substrings, the blended spectrum string kernel
is based on the frequencies of all common substrings up to a fixed length. The
SVM regularization constant C was tuned according to the heuristic? of SVM"9
and the kernel parameters were selected using the validation set. The left side of
Figure 3 presents results obtained on the Splice dataset. The best parameters
obtained on validation data are a 4-gram, a blended spectrum string kernel length
of 7 with a length weight of 3.5, and a 10 phases PH modeling of the 1000 best

8 Experiments with the standard p-spectrum kernel [10] (p. 347) offer worse results
than the blended version reported here.
9C =—-——1— where n is the number of training sequences.

w3y VE(sisss)



features for our methods. When a sufficient amount of data is used (at least 50%
of the training data), the best performances are obtained with the MAP classifier.
Both kernels have comparable performance on this task. The test classification
accuracy for the 4-grams, the PH kernel, the blended spectrum string kernel, and
the MAP classifiers are respectively 84.1%, 88.5%, 88.8% and 89.7% when the
whole training set is used. The right side of Figure 3 presents results obtained

Splice: accuracy on test set DBSubloc: accuracy on test set
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Figure 3. Comparative classification results for N-grams, MAP and SVM with the PH
kernel and a spectrum string kernel on Splice (left) and DBSubloc (right) test data.

on the DBSubloc database. The best parameters obtained on validation data are
a 2-gram, a blended spectrum string kernel length of 4 with a length weight of
2.5 and a 5 phases PH modeling of the 100 best features for our methods. The
test classification accuracy for 2-grams, the blended spectrum string kernel, the
MAP classifier and the PH kernel are respectively 80.4%, 82.35%, 82.4% and
84.3% when the whole training set is used.

6 Conclusion

We propose in this paper a novel approach to the classification of discrete
sequences. This approach builds a model fitting some dynamical features de-
duced from the learning sample. More precisely, the distribution of the times
between occurrences of substrings observed in the sample are modeled with dis-
crete phase-type (PH) distributions. Phase-type distributions are defined as the
distribution of the time to absorption in finite absorbing Markov chains. This
kind of modeling is powerful as it allows one to decompose complex distribu-
tions as a combination of phases. The PHit algorithm, an adapted version of
the Expectation-Maximization algorithm, is proposed to estimate PH distribu-
tions. In this context, tuning the number of phases allows one to deal with the
bias-variance trade-off. The most informative features (pairs of substrings) are



selected according to the Jensen-Shannon divergence between their class condi-
tional empirical FPT distributions. The selected features are used in two classi-
fication schemes: a maximum a posteriori (MAP) classifier and support vector
machines (SVM) with marginalized kernels. Experiments on DNA splicing region
detection and on protein sublocalization illustrate that the proposed techniques
offer better results than smoothed Markov chains and competitive results with
SVM and a blended spectrum string kernel.

Our future work includes the evaluation of the proposed methods when noisy
training data are considered. The HMM learning technique proposed in [3] could
also be extended in order to fit first passage time distributions between every
pair of symbols, rather than simply the expectations of these times.
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