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Abstract. In this paper we propose a Bayesian model for multi-task
feature selection. This model is based on a generalized spike and slab
sparse prior distribution that enforces the selection of a common subset
of features across several tasks. Since exact Bayesian inference in this
model is intractable, approximate inference is performed through ex-
pectation propagation (EP). EP approximates the posterior distribution
of the model using a parametric probability distribution. This poste-
rior approximation is particularly useful to identify relevant features for
prediction. We focus on problems for which the number of features d
is significantly larger than the number of instances for each task. We
propose an efficient parametrization of the EP algorithm that offers a
computational complexity linear in d. Experiments on several multi-task
datasets show that the proposed model outperforms baseline approaches
for single-task learning or data pooling across all tasks, as well as two
state-of-the-art multi-task learning approaches. Additional experiments
confirm the stability of the proposed feature selection with respect to
various sub-samplings of the training data.

Keywords: Multi-task learning, feature selection, expectation propaga-
tion, approximate Bayesian inference.

1 Introduction

The automatic induction of a predictor for a dependent variable y given a feature
vector x can be a difficult task when the number of training instances is very
small and the number of explanatory variables is large. Examples of learning
applications with these characteristics include, among others, the classification
of microarray data [1] or the analysis of high-dimensional images [2]. Under
these circumstances, an underlying linear model is often considered, possibly in
an expanded feature space. A potential way of improving the robustness of these
models is to assume that only a small subset of the original features are relevant
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for prediction [3]. That is, the underlying linear model is assumed to be sparse
with many coeflicients being equal to zero. The identification of the relevant
features is typically implemented by optimizing an objective function penalized
by a sparsity enforcing regularizer. Such a regularizer drives to zero some of the
coefficients during the optimization process. A common choice is the /1 norm of
the vector of model coefficients [4]. Within a Bayesian framework, sparsity can be
favored by considering sparse prior distributions for the coefficients of the linear
model. Examples of such priors include the Student’s t distribution, the Laplace
[2] and the spike and slab [5]. Among these, the spike and slab is the only prior
that can assign a non-zero probability to solutions with many coefficients being
equal to zero. Under this prior it is furthermore possible to specify intuitively
the fraction of coefficients that are a priori different from zero. The spike and
slab prior also provides a selective shrinkage of the model coefficients [6]: for high
sparsity levels, most of the coefficients are close to zero while a few of them have
significantly larger values. By contrast, other priors shrink towards zero all the
coefficients when the sparsity level is increased. Since exact Bayesian inference is
typically intractable under sparse priors, approximate algorithms have to be used
in practice. An alternative Bayesian approach for feature selection is automatic
relevance determination (ARD) [7]. However, ARD does not consider uncertainty
in the feature selection process nor does it provide a posterior probability of using
each feature for prediction

We address here prediction problems for which the number of instances is
typically small. In such cases, it may be beneficial for the induction to rely
on several distinct but related tasks. Microarray datasets offer examples of such
tasks for which the common objective is typically to discriminate between normal
and tumor samples, while tissue and RNA extraction protocols may differ across
tasks. Specifically, the multi-task approach proposed by Obozinski et al. assumes
that the distinct tasks share a reduced set of common relevant features [8]. They
propose to solve an optimization problem that minimizes a logistic loss function
combined with a term that penalizes the £; norm of the vector of /5 norms of the
feature-specific coefficient vectors across the different tasks. Such a mixed norm
regularization drives to zero the same coefficients of the task-specific vectors
during the optimization process. This favors the selection of a common set of
features to describe each task. The amount of sparsity is determined in this
model by a hyper-parameter A\ which has to be tuned by cross validation. In
particular, [8] gives an efficient path-following algorithm to find the potential
values of \.

In a different work, Evgeniou and Pontil consider that the hyperplanes of
the distinct tasks are the linear combination of a common hyperplane and a
task-specific hyperplane [9]. They specifically propose to minimize a hinge loss
function that is penalized by two terms. The first term is proportional to the
hyper-parameter A; and penalizes the squared values of the 5 norms of the task-
specific hyperplanes. The second term is proportional to the hyper-parameter Ay
and penalizes the squared value of the £5 norm of the common hyperplane. These
two parameters are tuned by cross-validation and their ratio determines the
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contribution of the common hyperplane to each task. If A; /A9 is high, the task-
specific hyperplanes are penalized more and all the hyperplanes of the different
tasks tend to be equal to the common hyperplane. By contrast, when A1/ is
low, the common hyperplane is penalized more and the models for the different
tasks tend to be equal to task-specific hyperplanes.

In the present work, we propose a Bayesian model for multi-task feature se-
lection based on a generalization of the spike and slab prior distribution. This
generalized prior, detailed in Sect. 2, enforces the selection of a common sub-
set of features to describe each different task. Exact Bayesian inference in this
model is infeasible and approximate techniques have to be used in practice. We
consider here the expectation propagation (EP) algorithm [10], which is briefly
reviewed in Sect. 3. EP approximates the posterior distribution of the model us-
ing a parametric distribution that belongs to the exponential family. We detail
in Sect. 4 a specific posterior approximation for our multi-task Bayesian model.
We also introduce an efficient parametrization that guarantees that EP has a
time complexity that can be made linear in the number of features d, under the
assumption that d is significantly larger than the number of instances for each
task. EP also approximates the posterior probability of using each feature for
prediction. These probabilities are particularly useful to identify relevant fea-
tures. Finally, experiments reported in Sect. 5 are conducted on a collection of
multi-task learning problems. They show that our Bayesian model is competi-
tive with respect to baseline approaches of single-task learning and data pooling
across all tasks, and with respect to the multi-task learning methods [8,9] men-
tioned above. Additional experiments detail the stability of the various feature
selection methods under different sub-samplings of the training data.

2 Bayesian Multi-task Feature Selection

Following Obozinski et al. [8], we assume that the different tasks share a small sub-
set of common relevant features. To identify these features we define a Bayesian
model relying on a set of linear functions that discriminate between two class la-
bels. A set of K = 1,..., K learning tasks are assumed to be available, each one
consisting of nj, d-dimensional input samples Xy, = {Xg1, . . ., Xgn,  and the corre-
sponding class labels yx = {yx1,- - -, Ykn, }, where yr; € {—1, 1}, Vi, k. We further
assume that ny < d, Vk. Given Xy, and yy, let us consider the following labeling
rule:

(1)

_ 1 if W%X}Ci + e >0
Yki —1 otherwise,

where T denotes vector transpose, wj, are the model coefficients for task k, and
a noise term e€y; is assumed to follow a standard Gaussian distribution. The
likelihood for wy, is hence defined as:

Nk Nk
Pyrlwi, Xe) = [ [ Pnilwe, xei) = [ [ Dluriwi xui) , (2)

i=1 i=1
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where &(-) denotes the cumulative probability function of a standard Gaussian
distribution. For notational convenience, we will remove the explicit conditional
dependence on Xy in the subsequent expressions. We consider a bias term by
extending each vector xj; with a constant component equal to one. Each input
sample will also be assumed to have been multiplied by its corresponding label
Yk: and the result will be simply denoted by x;.

The prior distribution for the model coefficients wy, is a generalization of the
spike and slab sparse prior distribution [5]. In particular, we assume that all
components of the vectors wy, are independent. Binary latent variables v;, with
j=1,...,d+ 1 are introduced to indicate whether the j-th feature is used for
classification in each of the different tasks (y; = 1) or not (y; = 0)!. Given the
vector 4, the prior for each wy, is

d+1
P(wily) = [N (we;10,03,) 9 N (wi]0,08,)* 7 (3)

Jj=1

where N (wkj|0,0fj) denotes a Gaussian density with zero mean and variance
equal to ij. In a single task setting the prior (3) reduces to the standard spike
and slab prior. We set the spikes to be deltas centered at the origin, i.e. ogj — 0,
Vj, to enforce sparsity among the components of each vector wy. The variances
of the slabs, U%j, are set equal to one for j = 1,...,d. The variance of the slab
corresponding to the bias term, af(dﬂ), is set to a significantly larger value (e.g
10). Since we further assume that each feature can be used a priori independently
for classification, the prior on ~ is simply defined as a multivariate Bernoulli
distribution:

d+1
P(y) = [T re; (1 =poy)' (4)
j=1

where po; specifies the prior probability for v; = 1. The prior probability corre-
sponding to the bias component pg(441) is set equal to one in this model.

According to the above definitions, and given X and yy for k = 1,..., K,
we can use the Bayes’ theorem to make inference about each wy and ~. Let
W = {wi,...,wg}and Y = {y1,...,¥x} be two matrices summarizing the
model coeflicients and the class labels of the different tasks, respectively. The
posterior for W and - is

_PYW)P(WY)P()

where P(Y|W) =[], P(yrwi), P(W|y) = [Tr_, P(wi|y) and P(Y) is just
a normalization constant, known as the model evidence, which can be used to
perform model selection under a Bayesian framework [11].

! In the Bayesian model described in the present work a given feature need not be
strictly required for each task since only the prior distribution relies on the assump-
tion of features used by either all tasks or none.
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In this model the class label y2*" € {—1,1} of a new unlabeled instance x}°%
corresponding to the task k is computed using the predictive distribution:

Py ™, Y) = / D PR, wi)P(W,y[Y) dW . (6)
Y

This probabilistic output is useful to quantify the uncertainty in the prediction.
Finally, those features with the highest contribution in all the classification
tasks can be identified using the posterior distribution for ~:

P(A|Y) = / P(W.+|Y)dW . (7)

Unfortunately, the exact computation of (5), (6) and (7) is too expensive for
typical learning problems and have to be approximated. We rely here on ex-
pectation propagation [10], a fast algorithm for approximate Bayesian inference.
This algorithm is described in the next section.

3 Expectation Propagation

In the Bayesian model for multi-task feature selection described in Sect. 2, the
joint probability of W, v and Y, i.e. the numerator in the right hand side of (5),
can be written as a product of several terms t;

P(W,7,Y) =P(Y|[W)P(W|y)P(v) = Hti(wm, (8)

where the first n = ny+...+nx terms correspond to P(Y|W), the next K(d+1)
terms correspond to P(W|v) and the last term corresponds to P (7). Expectation
propagation (EP) approximates each term ¢; in (8) by a corresponding simpler
term t;. These approximate terms are restricted to have the form of a parametric
probability distribution that belongs to the exponential family. They however
do not need to integrate to one. Once normalized with respect to W and ~, (8)
becomes the posterior distribution for the model parameters. Similarly, when
normalized with respect to W and =, the product of the approximate terms ;
becomes the posterior approximation:

AW, ) = 5 [[H(W.7) = P(W.[Y). ©)

where the normalization constant Z approximates P(Y), the model evidence.
Because of the closure property of the exponential family, @ has the same para-
metric form as the approximate terms #;. In practice, the form of Q is selected
first and the approximate terms ¢; are constrained by this form. EP iteratively
updates each approximate term #;, until the convergence of the posterior ap-
proximation Q, in such a way that #; H#i t; is as close as possible to t; H#i t;.
Closeness is defined here in terms of the Kullback-Leibler (KL) divergence. This
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procedure guarantees that each approximate term %; is similar to the corre-
sponding exact term ¢; in regions of high posterior probability, as defined by
the product of the other approximate terms [10]. The different steps of the EP
algorithm are:

1. Initialize all £; and Q to be uniform.

2. Repeat until Q converges: 4
(a) Select a ; to refine and compute Q\* tg
(b) Update #; so that KL(t;Q\"[|t;Q\) is minimized. o
(¢c) Compute an updated posterior approximation Q"% oc £; Q\.

Whenever needed for model selection, an approximate model evidence can also
be computed by integrating the product of all ¢;’s.

When @Q is assumed to be Gaussian, the first step of the EP algorithm is im-
plemented by setting the mean and the variance of all the approximate terms and
the posterior approximation Q equal to zero and +oo respectively. In step 2-(a),
O\ has the same form as Q because of the closure property of the exponential
family. The optimization problem of step 2-(b) is convex and it can be efficiently
solved by matching the sufficient statistics between t; O\ and fiQ\i [11]. The EP
algorithm is not guaranteed to converge although extensive empirical evidence
shows that most of the times it converges to a fixed point solution [10]. Os-
cillations without convergence can be prevented by using damped updates [12].
Finally, the EP algorithm has shown an excellent performance in terms of its
computational cost versus its approximation accuracy when compared to other
approximate inference methods such as the Laplace approximation, variational
inference or Markov chain Monte Carlo sampling [10].

4 The Posterior Approximation

We propose to approximate the posterior (5) by the following parametric distri-
bution belonging to the exponential family:

d+1

K
Q(W,7) = [[ N(wilmy, Vi) [T} (1 —pj)' ™, (10)
k=1 j=1

where N (-|lmy, Vi) denotes a multivariate Gaussian distribution with mean vec-
tor my and covariance matrix V. In (10), my, Vi and p = (p1,...,pa+1)’ are
free parameters that determine the posterior approximation. We denote tj; the
exact term of the true posterior associated to the likelihood of the i-th training
instance of the k-th learning task:

thi(wi) = P(W Xpi) , (11)
and #y; its associated approximate term. The definition of Q given in (10) con-
strains the form of ty; to be:

1
204

R R 2
tki(wk) = Sk; €Xp {— (nglm - mki) } ) (12)
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where 3§i;, Ur; and my; are free parameters. Both the exact term tx; and its
approximation #;; do not depend on ~. This is known as the locality property of
EP [13]. Additionally, #; can be written as a univariate Gaussian distribution
since each likelihood term only constrains the corresponding vector wy, through
the direction of x; [10]. Similarly, we denote tx; the exact term corresponding
to the prior for the j-th component of wy:

t (Wi, ¥) = N (wi [0, 07;) 7 N (wig [0, 08;) (13)
and f; its approximation. From (10), it follows that

tj (Wi, ) = Sy (1 — Prj) '~ exp {—i (wrj — ﬂkj)Q} . (1)
J

where 315, Prj, Uk and fig; are free parameters. Again, fkj only depends on one
component of wy and v because of the locality property of EP. Finally, the exact
term corresponding to the prior for 4y is given by (4). This term can be estimated
exactly, i.e. 1(y) = t(v) = P(v). Since #(v) has no free parameters, it does not
require updating.

From the definition of Q@ as the normalized product of all the approximate
terms, the parameters of the posterior approximation are:

—1 ~
Vi = (XpdpX{ + Ar) my, = Vi (Xgnk + Agfix) ,

K~
szl PkjPoj

Py = —f—— - - , forj=1,...,d+1, (15)
[Tk=1 Pripoj + Tlema (1 = Pij) (1 = poj)

where we have defined Ay = diag(f)k}l, .. .,17,;n1k), A = diag(ﬂ,;ll, cey 171:(1”1))7

M = (M1 /Ot - WMy, /Uy, )T Bk = (i1, - - - fia+1))" and diag(-) denotes

a diagonal matrix.

4.1 Efficient EP Update Scheme

The EP algorithm iteratively updates the posterior approximation Q, which
includes the computation of K covariance matrices of size (d+1) x (d+1). Thus,
a straightforward implementation would have a time complexity in O(Kd?) for
each EP iteration. Since, in our context d > ny Vk, we introduce an alternative
parametrization of the posterior approximation which provides a more efficient
updating scheme. This parametrization is similar to the one that arises in kernel
classifiers when the EP algorithm is written in terms of inner products [10].
Specifically, instead of explicitly storing the parameters my and Vj of Q, we
define and store

A, =XIV, Xy, B, =X}/Vv,A,, h, = X{my, (16)

where A, € R™ ™ B, € R™? and h € R™. These new parameters are
updated after each EP iteration.
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The first step of the EP algorithm would typically set the approximate terms
to be uniform. Some iterations of the EP algorithm may however be saved if the
approximate terms are initialized in such a way that the Gaussian part of Q has
the same mean and variance as the exact prior for W:

Ugi = +00, meg; =0, hr =0, Dj = Poj 5
ij = U%jp()j ) ﬂk] = 07 Bk = Xg ) Ak = XgDXk ; Vkaiaj? (17)

where D = diag (a%lpm, ey Uf(d+1)p0(d+1)) and Q has been initialized to the
normalized product of all approximate terms. The constants 5; and 5i; of the
approximate terms can be set to any arbitrary positive value.

Let Q\** denote the posterior approximation that results from removing from
Q the approximate likelihood term #j;. Furthermore, let m;kz and V,\ckz denote

the parameters of the resulting Gaussian approximation to the posterior of wy.
If we define

hkfz = x{imkki , )\kfi = x{iV;kixki , (18)

the step 2-(a) of the EP algorithm for these approximate terms becomes:

. AL ~ ki (Ag)?
L N G S S N N SRR C. ) SRS
ki ki + Oni — (Ap)ir (ki — i) ki ( k)m + Ori — (A ( )
Part of an updated posterior distribution Q"% may be computed:
B = xhml™ = by (20)
where
N (uri]0, 1 1 ki
Qi = ( Zk | ) > Uki = $, Zyi = P(uks) . (21)
ki AP AP
The updated approximate term #j; follows from
Ui = )\kfi <+ - 1> ; M = hig " + QiU
ki (hPSY + ag)

R A 41
Shi = Zei\/ 1+ AN /iy ki ki T4 22
Sk & + Ay /Uki exp 2 T T am (22)

Finally, Q"% results from updating the matrices Ay and By and the vector hy,
using the Woodbury formula:

Ap). i (Ar)i. Ayp). i(Bg)i.
Azew — Ak _ ( _]I) ,7/( k)% , Bzew — Bk _ ( _]f) ,1( k)%
¢, + (Ag)i ¢, + (Ag)i

B = AP+ B i (23)

)
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where ¢, = 1/005% — 1 /17,3%‘1. The computational complexity of these updates is
in O(ngd).

The approximate terms fkj corresponding to the prior for W are updated
in parallel for each task k, as in [14]. For all j = 1,...,d + 1, #;; is removed
from Q and the posterior approximation Q\F7 is computed . Given each Q\FJ,
the corresponding approximate terms are updated simultaneously. The updates
for such a parallel scheme are simpler as they only require the marginals of the
approximate posterior for wy. Once the parallel updates have been performed,
the posterior approximation for wy needs to be recomputed as the normalized
product of the approximate terms.

Given Q, the cost of computing the marginals of the posterior approximation
for wy, is in O(nid) when d > ny. Let v = (vg,... ,vk(d+1))T be a vector
summarizing the variance of each marginal and my a vector summarizing the
corresponding means:

Vi =0 — Do (XpLpoXp) 1) ooy, my=¢—opo (XpLiX{¢), (24)
where o indicates the Hadamard element-wise product, o, = (g1, . . ., Dk(dﬂ))T,
1 is a vector of ones Ly = Ay — Ay AxAx and ¢ = Uy o (Xpni + Agfig). Q\ki
is computed simultaneously for each approximate term fkj from (24). Let v;fj
and m;?j denote the variance and the mean of the posterior distribution of wy;

under each Q\F7. Let p}kj denote the parameter that determines the posterior
probability of v; =1 in Q\ki . For each Q\F7 these parameters are defined as:

\kj _ Pj/Prj S Nk ( 1 1) ! ,
D, ~ ~ 9 \Vlj ) v =1\v - V ) v] )
T pi/rg + (U= py) /(1 = Pry) ki ki Tk
—1
k k — ~—1~ .
m;Jj - U;JJ (vkjlmkj - ijlﬂkj) AV (25)

The corresponding approximate terms fkj are

~ — 7 . ~ T~ 162 .
ij=c31 v;f, Vi, skj:(g1+g0)\/1+v;f/ukjexp{Eé}, Vi,

_ g1 : . \kj N \ki :
P =gger Ve lm=my —a (ij + %’) , Vi, (26)
where
a1 ao
c1 = prjar + (1 — prj)ao, Ca = Prj la% — g | T (= pw) l“g - W]
mkj mkj
2 T = KT 1— \kj
C3 (5 Cc2, kj — pJ g + ( )go B
k k k k
Go = N<0|m;/,v,§f +a3), Gi= (0|m;/,v,§f +01)),
k k
= mkj /(v;Jj +a§j> , a; = mkj /(v;Jj +ij) ,

Pj = pj ng/ij . (27)
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The parallel updates for the corresponding posterior distribution Q™% are

mig = miy el Vi, g =g’ (1= ell’)
ki 91— G0 \k k )
Y =) + 7 pM-p), vy (28)
J

Finally, Q"% results from updating the matrices Ay and By:
Azew =M, — Mg (Mk + A;1>71 M, s (29)
B}V = X} — M, (M, + A;") ' XF, (30)

where M, = XEA;IX;C € R The computational complexity of these up-
dates is in O(n3d) since d > ny. The vector hy, is updated as in (23).

4.2 Predictive Distribution and Feature Selection

The predictive distribution (6) can be approximated using Q as an estimate of
the exact posterior:

ka

T new
Pypev|xiev,Y) ~ & k , 31
(R, Y) ~ ( Nl e 1) (31)

where my, can be obtained as in (24) and

(XZeW)TVkXZQW — (Xzew)TAglxzew _ ( new)TA XkLka A lxnew.

Since my, is already computed once the model is estimated, the cost of evaluat-
ing (31) is in O(nkd).
The EP approximation of (7) is used to identify the most relevant features:

d+1
P(|Y) ~ Hpv’l— 1= (32)

where p; estimates the posterior probability of using attribute j for prediction
in all the tasks.
Assuming a constant number of EP iterations until convergence, a reason-
able assumptlon in practice, the time complexity of the EP algorithm is in
(Ek . nid). This complexity, linear in d, is good since d > ny, Vk. Finally,
our actual EP implementation also relies on damped updates [12], as they seem
to improve the overall convergence.

5 Experiments

We detail here several multi-task experiments to assess the performance of the
Bayesian multi-task feature selection (BMFS) introduced in Sect. 2. Comparative
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results are reported with single-task learning (one classifier estimated indepen-
dently on each task) or data pooling across all tasks (one global classifier). In
both cases, those individual classifiers are estimated through the same EP pro-
cedure as in BMFS but with the original single-task spike and slab prior [5]. We
also present the performances of linear models regularized with a mixed norm [8]
(the 1 /¢3 method) and the regularized multi-task learning (RMLT) method [9].

5.1 Arabic Digits

A first batch of experiments is carried out using the dataset of Arabic hand-
written digits MADBase [15]. This dataset contains 70, 000 images of size 28 x 28
pixels of each Arabic digit written by 700 different writers. There are 10 images
of each digit (0 to 9) written by the same writer. Fig. 1 displays some examples
of the images contained in this dataset. We consider binary classification tasks to
discriminate each digit from the digit 0 for a particular writer, which is arguably
a difficult problem [15]. For each digit ¢ versus digit 0 with ¢ # 0, we extract the
800 available images corresponding to 40 different writers (writers 601 to 640).
We thus consider 40 tasks (one per writer) with 20 samples per task. The data
for each task are randomly split 100 times into training and test sets, with 17
and 3 instances respectively, and the average prediction accuracy is reported.

Ae0en-pddeAQN \nafropaNNfobva0=)frnar/ N/
PVIE\NPLI4AR) (nohvbpan]sourdloip)uisflog
pedenelaeal|\neNratanifov=shd[)/-8720NE
dedenmpufun\\nenrord\i/obasfen)/~er/8Ne
LY DY VY AR Y LY YA ANY LY BT T EY VAR VY IN ]

Pldob=gadand\\no\Ned [ bi\JouerBonl/onsrng
PG| 2R )40\ \vEnre ]\ \JoAuqOn] frue/ Aoy
w(Qahuiefd)O\\NNLB/O\PFOC2OBRIAO/ Inn)
erecfuja@rArO)\\NGLrO | DNeFIUC PO fme/tins
006 =200dNaN\NOY 2O f AL 02dOb\) /087260

Fig. 1. Arabic digits from 1 to 9 (left). The Arabic digit 0 written ten times by forty
different persons, with a strongly writer-dependent style (right).

In BMFS, single-task learning and pooling we set pg; = 5% for j = 1,....d
to model our prior belief that an accurate classification may only depend on
a few pixels (approximately 40). In the ¢1/¢5 method, A is chosen using the
algorithm described in [8] by minimizing the cross-validation error®. Similarly,

2 As for BMFS, we consider a bias term in those multi-task methods by extending
each input sample with a constant component equal to one. Additionally, in the
£1/€2 method it is straightforward to not regularize the corresponding coefficient.

3 The parameters of this algorithm are ¢ = 0.02, Amax = Ao/500 and ¢ =
min(107%,0.01)), as suggested in [8].
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Table 1. Prediction error in % (and standard deviation) of each method on each binary
problem

Problem BMFS /¢1/¢2 RMTL Single-Task Pooling
Ovs1l 0.5+0.4 1.3+0.7 4.0£2.1 3.2+1.2 2.1+1.1
0Ovs2 0.6£0.4 1.0£0.7 4.7+1.5 6.6£1.7 3.5%+2.1
Ovs3 1.6+0.7 2.3+08 4.5£1.8 5.0+14 4.5%+1.8
Ovs4 1.3+0.7 1.3+0.7 4.9£1.7 5.0+14 21409
Ovs5 1.0£0.6 1.6+0.8 7.3+2.2 9.2£19 8.0+3.4
Ovs6 0.4+0.4 1.1+0.6 3.5£1.8 3.2+1.2 3.0+6.1
Ovs7 0.5+0.4 1.2+0.7 3.5£1.4 6.1£1.6 3.5+1.6
Ovs8 1.440.7 22+1.0 4.24+2.2 6.0£1.7 4.5+1.9
Ovs9 1.24+0.7 1.4+0.7 5.0£1.5 3.8+1.3 3.5+14

Average 1.0£0.2 1.5+0.2 4.6+£0.5 5.3£04  3.8+0.9

Fig. 2. Feature importance in gray scale as computed by EP for the Bayesian multi-
task approach (left), single-task learning (middle) and pooling (right). The multi-task
approach is the most confident method about the feature importance.

in the RMTL method A\; and Ay are chosen with a grid search over ten values
from 0.01 to 100 by cross-validation. The data are also normalized to have zero
mean and unit standard deviation on the training set.

Table 1 displays the prediction error of each method for each binary problem
of the form digit ¢ vs digit 0 with ¢ # 0 averaged over the 40 different tasks.
The error of the best method for each binary problem is high-lighted in bold
face. BMFS obtains the best prediction error in all the problems investigated,
outperforming the ¢;1/¢> and the RMTL methods, except for the problem 0 vs
4, where the ¢; /¢ method obtains similar results. The Bayesian approach also
outperforms single-task learning or data pooling in all cases. A Friedman rank
test (p-value = 6.1-1078!) and a Nemenyi post-hoc test (p-value = 7.6 - 10~°)
confirm that there is statistical evidence supporting a performance difference in
favor of BMFS when the average prediction error across the nine problems is
considered [16].

Fig. 2 shows the estimate of the relative importance of each feature (pixel) as
computed by EP in (32) for BMFS, single-task learning (we display the results for
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Table 2. Characteristics of the three prostate cancer microarray datasets

Name Normal Tumor Features Platform Ref.

Singh 50 52 12,626 HGU95Av2 [18]
Stuart 50 38 12,626 HGU95Av2 [19]
Welsh 9 25 12,625 HGU95A [20]

the first writer) and pooling. The figure displays the values of p; for j =1,...,d
using a gray scale from white (p; = 0) to black (p; = 1). These results correspond
to a fixed train / test partition of the binary classification problem 0 vs 8. The
gray background color indicates a value for p; equal to 5%, i.e. the prior value
for v; = 1. The figure shows that BMF'S allows us to be the most confident about
the relative importance of each feature. With single-task learning all pixels are
very close to the prior value, which is likely related to the reduced number of
training instances for each task. Pooling improves over single-task learning but
is still much less informative than BMFS. The smaller confidence obtained with
pooling is likely related to the estimation of a single hyperplane to describe all
the learning tasks. Similar observations can be made from the different binary
problems considered and the different train/test partitions.

5.2 Microarray Data

A second batch of experiments is carried out using three microarray prostate
cancer datasets described in Table 2, where each dataset is identified by the
first author of the corresponding reference. The Welsh dataset is made of gene
expression values. The Singh and Stuart original data are made of laser intensity
images from each microarray. The RMA preprocesing method [17] is used to
produce gene expression values from these images. The microarray technology
is common for Singh and Stuart but is slightly older for Welsh. We restrict our
attention to the 12,600 features they have in common. For each dataset there
is one learning task to discriminate between normal and tumor samples. We
randomly split 100 times the data for each task into 2/3 (training) and 1/3
(test). In BMFS, we set po; = 50/d, for j = 1,...,d, to model our prior belief
that only a few genes (50) may be relevant for classification . The data and the
hyper-parameters of the other multi-task methods are respectively normalized
and set as described in Sect. 5.1.

Table 3 reports balanced classification rates (BCR) for each method, aver-
aged over data partitions. This evaluation metric is the arithmetic mean of the
accuracy within each class (tumor, normal). It is preferred over standard accu-
racy to assess prediction performance from highly unbalanced classes [21]. It is
also the arithmetic mean between specificity and sensitivity, commonly used in
the medical domain. The table shows that BMFS obtains the best performance
for Welsh, the ¢1/¢2 model is optimal for Singh and the RMTL method is op-
timal for Stuart. BMFS is overall the best method according to average results
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Table 3. BCR in % (and standard deviation) of each method on each prostate cancer
classification task

Task BMFS L1 /02 RMTL Single-Task Pooling
Singh 90.3+4.5 90.4+4.6 89.6+5.1 89.4+4.5 89.4+5.0
Stuart 78.6+6.3 76.9+5.5 80.0+£5.7 77.7£6.3 79.846.0
Welsh  97.3+6.0 94.0+£10.9 93.4+6.8  95.6+8.4 93.4+6.8
Average 88.7+2.9 87.0+3.9 87.6+3.3 87.5+£3.2 87.5+£3.3

over the three tasks. A Friedman rank test (p-value = 8.4-107°) and a Nemenyi
post-hoc test (p-value = 3.5-1072) confirm that these differences are statistically
significant.

Finally, we compare the different methods in terms of their stability for
identifying relevant features when the training data are slightly modified. The
Kuncheva stability index [22] measures to which extent T sets of m selected
features share common elements. Let S denote the set of the top m features
identified by a method from the i-th train/test partition. The Kuncheva index
over the several data partitions A,, = {S/" :i=1,...,T} is defined as

T-1 2
S NS -

D LR (33)

i=1 j=i+1 m—= =g

2
I

where T' = 100 is the number of training sets, d is the total number of features
and m?/d is the expected value of |S/* N 87| by chance. The index satisfies
-1 < Z(A;,) < 1 and the closer to one, the larger the number of common
features in the different sets. A value of the index near zero indicates commonly
selected features at a chance level.
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Fig. 3. Stability (Kuncheva index) of the feature ranking implemented by each method
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Fig. 3 displays the stability of each method as a function of m. For BMFS,
pooling and single-task learning, features are ranked according to the vector p.
For the ¢1 /¢5 method, features are ranked according to the order in which they
are included in the active set of the path-following algorithm of [8]. For the
RMTL approach features are ranked according to the sum of the corresponding
squared coefficients of each hyperplane, i.e. Zszl w,%j for feature j. This value
is used as an estimate of the relative feature importance. For the single-task
method, we display the value of the stability index averaged over the three
learning tasks. The figure shows that the ¢1/¢2 method offers the most stable
selection for small subsets of features, followed by BMFS, whose selection is more
stable than the ones of single-task learning and data pooling.

6 Conclusion

We propose a novel Bayesian model for multi-task feature selection. This model
is based on a generalized spike and slab sparse prior distribution that enforces
the selection of a common subset of features to describe each task. Since ex-
act Bayesian inference is intractable for this model, approximate inference is
performed through expectation propagation (EP). We propose an original para-
metrization of the EP procedure which offers a linear complexity in the number
of features. Practical experiments on multi-task digit recognition and microarray
data classification illustrate the benefits of the proposed approach, as compared
to simple baselines and state-of-the-art multi-task approaches, in terms of pre-
dictive performance and stability of the feature selection.
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