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Abstract. This paper introduces two feature selection methods to deal
with heterogeneous data that include continuous and categorical variables.
We propose to plug a dedicated kernel that handles both kind of variables
into a Recursive Feature Elimination procedure using either a non-linear
SVM or Multiple Kernel Learning. These methods are shown to offer
significantly better predictive results than state-of-the-art alternatives on
a variety of high-dimensional classification tasks.

1 Introduction

Feature selection allows domain experts to interpret a decision model by reducing
the number of variables to analyze. In medical studies for example, very high
dimensional feature sets (e.g. gene expression data) are typically considered
along with a few clinical features. These features can be continuous (e.g. blood
pressure) or categorical (e.g. sex, smoker vs non-smoker).

To highlight important variables, a naive approach would transform hetero-
geneous data into either fully continuous or categorical variables before applying
any standard feature selection algorithm. To get a continuous dataset, categor-
ical variables can be encoded as numerical values. The specific choice of such
numerical values is however arbitrary, introduces an artificial order between the
feature values and can lead to largely different distance measures between in-
stances [1]. Alternatively, continuous features can be discretized at the price of
making the selection highly sensitive to the specific discretization [1].

To alleviate those limitations and to keep the heterogeneous (or mixed) na-
ture of the data, we propose to use a dedicated kernel [2], designed to handle both
kind of features. We will then perform feature selection according to the Recur-
sive Feature Elimination (RFE) [3] mechanism either with non-linear SVMs or
Multiple Kernel Learning (MKL) [4].

2 Related work

To the best of our knowledge, few selection techniques are specifically designed
to deal with both continuous and categorical variables. An apparently natural
approach would consider tree ensemble methods such as Random Forests (RF),
since trees can be grown from both types of variables and these methods perform
an embedded selection. RF were however shown to bias the selection towards
variables with many values [5]. The cForest method has been introduced to
correct this bias [5] but its computational complexity prevents its use when
dealing with thousands of features.
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An alternative method performs a greedy forward selection aggregating sep-
arate rankings for each type of variables into a global ranking [1]. The authors
report improved results over those of the method proposed in [6], which is based
on neighborhood relationships between heterogeneous samples.

Out of a total of p variables, categorical and continuous features are first
ranked independently. Mutual information (MI) was originally proposed for
those rankings but a reliable estimate of MI is difficult to obtain whenever fewer
samples than dimensions are available. Instead we use the p-values of a t-test to
rank continuous features and of a Fisher exact test for categorical ones. The two
feature rankings are then combined into a global ranking by iteratively adding
the first categorical or continuous variable that maximizes the predictive perfor-
mance of a Naive Bayes or a 5-NN classifier (consistently with the choices made
in [1]). The NN classifier uses the Heterogeneous Euclidian-Overlap Metric [7]
between pairs of instances as follows:

d(xi,xj) =

√∑p

f=1
df (xif , xjf )2 (1)

df (a, b) =

{
I(a 6= b) if f is categorical
|a−b|

maxf−minf
if f is continuous

(2)

where I is the indicator function. Unlike a simple 0/1 encoding of categorical fea-
tures, this distance does not introduce an arbitrary order between feature values
and preserves the original number of dimensions. We refer to these approaches
as HFSNB and HFS5NN in the sequel.

The so-called clinical kernel proposed in [2] was shown to outperform a linear
kernel for classifying heterogeneous data. It averages univariate subkernels de-
fined for each feature and is closely related to the metric defined in equation (2):

k(xi,xj) =
1

p

∑p

f=1
kf (xif , xjf ) (3)

kf (a, b) = 1− df (a, b) (4)

This kernel assumes the same importance to each original variable and corre-
sponds to concatenating those variables in the kernel induced feature space. We
show here the benefit of adapting this kernel for heterogeneous feature selection.

3 Methods

Section 3.1 briefly recalls the Recursive Feature Elimination (RFE) procedure.
Section 3.2 details how to obtain a feature ranking from a non-linear SVM.
Finally, section 3.3 sketches Multiple Kernel Learning, which offers an alternative
way to rank variables with the clinical kernel.

3.1 Recursive feature elimination

RFE [3] is an embedded backward elimination strategy that iteratively builds
a feature ranking by removing the least important features in a classification



model at each step. Following [8], one typically drops a fixed proportion (e.g.
20 %) of features at each iteration. RFE is most commonly used in combination
with a linear SVM from which feature weights are extracted. However, it can
be used with any classification model from which individual feature importance
can be deduced.

Algorithm 1: Recursive Feature Elimination

R← empty ranking
F ← set of all features
while F is not empty do

train a classifier m using F
extract variable importances from m
remove the least important features from F
put those features on top of R

return R

3.2 Feature importance from non-linear Support Vector Machines

In order to extract variable importance from a non-linear SVM, one can look
at the influence on the margin of removing a particular feature. The margin is
inversely proportional [9] to

W 2(α) =
∑n

i=1

∑n

j=1
αiαjyiyjk(xi,xj) = ||w||2 (5)

where αi and αj are the dual variables of a SVM, yi and yj the labels of xi and
xj , out of n training examples, and k a kernel. Therefore, the importance of
a particular feature f can be approximated [9] without re-estimating α by the
following formula:

JSVM (f) = |W 2(α)−W 2
(−f)(α)| (6)

W 2
(−f)(α) =

∑n

i=1

∑n

j=1
αiαjyiyjk(x−fi ,x−fj ) (7)

where x−fi is the ith training example without considering the feature f .
In this work, we propose to combine this feature importance with the RFE

mechanism in order to provide a full ranking of the features. This method will
be referred to as RFESVM .

3.3 Feature importance from Multiple Kernel Learning

MKL [4] learns an appropriate linear combination of K base kernels

k(xi,xj) =
∑K

m=1
µmkm(xi,xj) s.t. µi ≥ 0 (8)

In this work, we adapt the clinical kernel (see equation (4)) with MKL to learn
a non-uniform combination of the base kernels, each one associated to a single



feature. Because each base kernel has the same scale whether it is built on a
continuous or categorical variable, µf can be seen as the importance JMKL(f) of
feature f . The combination of RFE with this feature importance extracted from
MKL will be referred to as RFEMKL. It specifically uses the kernel weights µm

(see equation (8)) to guide the search towards relevant features.

4 Experimental setting and datasets

In order to assess feature selection, we report predictive performances of clas-
sifiers built on selected variables as well as the stability of those feature sets.
We make use of a resampling strategy consisting of 200 random splits of the
data into training (90%) and test (10%). For each data partition, the training
set is used to rank features and build predictive models using different numbers
of features. The ranking is recorded and predictive performances are measured
while classifying the test set. Average predictive performances are reported over
all test folds and the stability of various signature sizes is computed from the
200 feature rankings.

Predictive performances are reported here in terms of balanced classification
rate (BCR), which is the average between sensitivity and specificity. These
metrics are particularly popular in the medical domain and BCR, unlike AUC,
easily generalizes to multi-class with unbalanced priors. Selection stability is
assessed here through the Kuncheva’s index (KI) [10].

We report results on 5 binary classification datasets briefly described in the
following table:

Name Task Continuous
features

Categorical
features

Class
priors

Arrhythmia [11] presence of car-
diac arrhythmia

198 64 245/185

Heart [11] presence of
heart disease

6 7 164/139

Hepatitis [11] survival to hep-
atitis

6 13 32/123

Rheumagene [12] early diagnosis
of arthritis

100 3 28/21

van’t Veer [13] breast cancer
prognosis

4348 7 44/33

5 Experimental results

We report predictive performances obtained with a non-linear SVM using the
clinical kernel reduced to the selected features from the various selection tech-
niques considered. Similar results are obtained using RF, Naive Bayes or 5-NN
as final classifier.

Results presented in Figure 1 show that the proposed selection methods
RFESVM and RFEMKL generally outperform the greedy forward selection
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Fig. 1: Predictive performances with respect to the number of selected features.
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Fig. 2: Nemenyi critical difference diagrams : comparison of the predictive per-
formances and stability of the four algorithms.

approach described in Section 2. The BCR improvement over the two HFS
approaches tends to be larger for high dimensional datasets. The BCR differ-
ences are highly significant according to a Friedman test [14] across all datasets
and all feature set sizes (p-val < 10−30). A Nemenyi post-hoc test shows that
RFEMKL performs best, followed by RFESVM , and that both approaches sig-
nificantly outperform the HFS methods.

Nemenyi critical difference (CD) diagrams [14] are reported in Figure 2. The
highly significant gains in predictive performance (BCR) obtained with the pro-
posed methods come at the price of significantly lower stability results (KI). This
is most likely due to the multivariate nature of the selection used as opposed
to the HFS methods aggregating univariate rankings known to be stable but
potentially less predictive.



6 Conclusion and future work

We introduce two heterogeneous feature selection techniques that combine Re-
cursive Feature Elimination with variable importances extracted from a non-
linear SVM or through MKL. These methods use a dedicated kernel combining
continuous and categorical variables. Experiments show that they improve pre-
dictive performances of state of the art methods, especially for high dimensional
datasets. Improving the selection stability of those methods is part of our future
work, possibly by resorting to an ensemble procedure [8].
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