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Abstract : Dans cet article, nous introduisons une nouvelle paramétrisation des
Séparateurs̀a Vaste Marge (SVM) appeléeFβ SVM. Cette dernìere permet d’ef-
fectuer un apprentissage basé sur l’optimisation de la fonctionFβ au lieu de
l’erreur de classification habituelle. Les expériences montrent les avantages d’une
telle d́emarche par rapportà la formulationsoft-marginstandard (avec leśecarts̀a
la marge au carré) lorsque l’on accorde une importance différentèa la pŕecision et
au rappel. Une procédure automatique basée sur le scoreFβ de ǵeńeralisation est
ensuite introduite pour sélectionner les param̀etres du mod̀ele. Cette proćedure
repose sur les résultats de Chapelle, Vapnik et al. (Chapelleet al., 2002) concer-
nant l’utilisation de ḿethodes baśees sur le gradient dans le cadre de la sélection
de mod̀eles. Les d́erivées de la fonction de perteFβ par rapport̀a la constante
de ŕegularisationC et à la largeurσ d’un noyau gaussien sont définies formelle-
ment. A partir de l̀a, les param̀etres du mod̀ele sont śelectionńes en effectuant
une descente de gradient de la fonction de perteFβ dans l’espace des paramètres.
Les exṕeriences sur des données ŕeelles montrent les béńefices de cette approche
lorsque l’on cherchèa optimiser le crit̀ereFβ .

1 Introduction

Support Vector Machines (SVM) introduced by Vapnik (Vapnik, 1995) have been widely
used in the field of pattern recognition for the last decade. The popularity of the method
relies on its strong theoretical foundations as well as on its practical results. Perfor-
mance of classifiers is usually assessed by means of classification error rate or by In-
formation Retrieval (IR) measures such as precision, recall,Fβ , breakeven-point and
ROC curves. Unfortunately, there is no direct connection between these IR criteria and
the SVM hyperparameters: the regularization constantC and the kernel parameters. In
this paper, we propose a novel method allowing the user to specify his requirement in
terms of theFβ criterion. First of all, theFβ measure is reviewed as a user specification
criterion in section 2. A new SVM parametrization dealing with theβ parameter is in-
troduced in section 3. Afterwards, a procedure for automatic model selection according
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to Fβ is proposed in section 4. This procedure is a gradient-based technique derived
from the results of Chapelle, Vapnik et al. (Chapelleet al., 2002). Finally, experiments
with artifical and real-life data are presented in section 5.

2 User specifications with theFβ criterion

Precision and recall are popular measures to assess classifiers performance in an infor-
mation retrieval context (Sebastiani, 2002). Therefore, it would be convenient to use
these evaluation criteria when formulating the user specifications. For instance, let us
consider the design of a classifier used to retrieve documents according to topic. Some
users prefer to receive a limited list of relevant documents even if this means losing
some interesting ones. Others would not want to miss any relevant document at the cost
of also receiving non-relevant ones. Those specifications correspond respectively to a
high precision and a high recall.

The two previous measures can be combined in a uniqueFβ measure in which the
paramaterβ specifies the relative importance of recall with respect to precision. Setting
β equals to 0 would only consider precision whereas takingβ = ∞ would only take
recall into account. Moreover, precision and recall are of equal importance when using
theF1 measure. The contingency matrix and estimations of precision, recall andFβ are
given hereafter.

Target: +1 Target: -1
+1 True Pos. (#TP ) False Pos. (#FP )
-1 False Neg. (#FN ) True Neg. (#TN )

Precisionπ #TP
#TP+#FP

Recallρ #TP
#TP+#FN

Fβ
(β2+1)πρ

β2π+ρ

3 Fβ Support Vector Machines

In this section, we introduce a new parametrization of SVM allowing to formulate user
specifications in terms of theFβ criterion. To do so, we establish a relation between the
contingency matrix and the slack variables used in the soft-margin SVM setting. Based
on this link, we devise a new optimization problem which maximizes an approximation
of theFβ criterion regularized by the size of the margin.

3.1 Link between the contingency matrix and the slacks

Let us consider a binary classification task with a training setTr = {(x1, y1), . . . ,
(xn, yn)} wherexi is an instance in some input spaceX andyi ∈ {−1,+1} rep-
resents its category. Letn+ andn− denote respectively the number of positive and
negative examples. The soft-margin formulation of SVM allows examples to be miss-
classified or to lie inside the margin by the introduction of slack variablesξ in the
problem constraints:



OP1 Minimize W (w, b, ξ) = 1
2‖w‖

2 + C.Φ(ξ)

s.t.

{
yi(〈w,xi〉+ b) ≥ 1− ξi ∀ i = 1..n
ξi ≥ 0 ∀ i = 1..n

wherew andb are the parameters of the hyperplane.

TheΦ(.) term introduced in the objective function is used to penalize solutions pre-
senting many training errors. For any feasible solution(w, b, ξ), missclassified training
examples have an associated slack value of at least 1. The situation is illustrated in fig-
ure 1. Hence, it seems natural to chose a function counting the number of slacks greater
or equal to 1 as penalization functionΦ(.). Unfortunately, the optimization of such a
function combined with the margin criterion turns out to be a mixed-integer problem
known to be NP-hard (Schölkopf & Smola, 2002). In fact, two approximations of the
counting function are commonly used:Φ(ξ) =

∑n
i=1 ξi (1-norm) andΦ(ξ) =

∑n
i=1 ξ2

i

(2-norm). These approximations present two peculiarities: 1) The sum of slacks related
to examples inside the margin might be considered as errors. 2) Examples with a slack
value greater than 1 might contribute as more than one error. However, the use of these
approximations is computationally attractive as the problem remains convex, quadratic
and consequently solvable in polynomial time. In the sequel, we will focus on the
2-norm alternative.

ξ > 1

ξ < 1

ξ =1

Figure 1: Soft-margin SVM and associated slacks

The computation of the preceding approximations separately for different class labels
allows to bound the elements of the contingency matrix.

Proposition 1
Let (w,b,ξ) be a solution satisfying the constraints of OP1. The following bounds holds
for the elements of the contingency matrix computed on the training set:
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• #TP ≥ n+ −
∑

{i|yi=+1}

ξ2
i • #FP ≤

∑
{i|yi=−1}

ξ2
i

• #FN ≤
∑

{i|yi=+1}

ξ2
i • #TN ≥ n− −

∑
{i|yi=−1}

ξ2
i

These bounds will be called the slack estimates of the contingency matrix. It should
be noted that they also could have been formulated using the 1-norm approximation.

3.2 TheFβ parametrization

Let us introduce a parametrization of SVM in which a regularizedFβ criterion is op-
timized. TheFβ function can be expanded using the definition of precision and recall
as:

Fβ =
(β2 + 1)πρ

β2π + ρ
=

(β2 + 1)#TP

(β2 + 1)#TP + β2#FN + #FP

The optimal value forFβ (≤ 1) is obtained by minimizingβ2#FN +#FP . Replacing
#FN and#FP by their slack estimates and integrating this into the objective function
leads to the following optimization problem:

OP2 Minimize W (w, b, ξ) =
1
2
‖w‖2 + C.[β2.

∑
{i|yi=+1}

ξ2
i +

∑
{i|yi=−1}

ξ2
i ]

s.t.

{
yi(〈w,xi〉+ b) ≥ 1− ξi ∀ i = 1..n
ξi ≥ 0 ∀ i = 1..n

The relative importance of theFβ criterion with respect to the margin can be tuned
using the regularization constantC. Since the slack estimates for#FP and#FN are
upper bounds, OP2 is based on a pessimistic estimation of theFβ . OP2 can be seen
as an instance of the SVM parametrization considering two kinds of slacks with the
associated regularization constantsC+ andC− (Nello Critianini, 2002). In our case,
the regularization constants derive from theβ value, i.e. C+ = Cβ2 andC− = C.
It should be pointed out that whenβ = 1, OP2 is equivalent to the traditional 2-norm
soft-margin SVM problem.

The optimization of theFβ criterion is closely related to the problem of training a
SVM with an imbalanced dataset. When the prior of a class is by far larger than the
prior of the other class, the classifier obtained by a standard SVM training is likely to
act as the trivial acceptor/rejector (i.e. a classifier always predicting+1, respectively
−1). To avoid this inconvenience, some authors (Veropouloset al., 1999) have intro-
duced different penalities for the different classes usingC+ andC−. This method has
been applied in order to control the sensitivity1 of the model. However, no automatic
procedure has been proposed to choose the regularization constants with respect to the

1The sensitivity is the rate of true positive examples and is equivalent to recall.



user specifications. Recently, this technique has been improved by artificially oversam-
pling the minority class (Akbaniet al., 2004). Other authors (Amerioet al., 2004) have
proposed to select a unique regularization constantC through a bootstrap procedure.
This constant is then used as a starting point for tuningC+ andC− on a validation set.

4 Model selection according toFβ

In the preceding section, we proposed a parametrization of SVM enabling the user to
formulate his specifications with theβ parameter. In addition, the remaining hyperpa-
rameters, i.e. the regularization constant and the kernels parameters, must be selected.
In the case of SVM, model selection can be made using the statistical properties of
the optimal hyperplane, thus avoiding the need of performing cross-validation. Indeed,
several bounds of the leave-one-out (loo) error rate can be directly derived from the pa-
rameters of the optimal hyperplane expressed in dual form (Vapnik & Chapelle, 2000;
Scḧolkopf et al., 1999; Joachims, 2000). A practical evaluation of several of these
bounds has been recently proposed in (Duanet al., 2003). Moreover, Chapelle, Vapnik
et al. (Chapelleet al., 2002) have shown that the hyperplane dual parameters are dif-
ferentiable with respect to the hyperparameters. This allows the use of gradient-based
techniques for model selection (Chapelleet al., 2002; Chunget al., 2003). In this sec-
tion, we propose a gradient-based algorithm selecting automaticallyC and the widthσ
of a gaussian kernel2 according to the generalizationFβ score.

4.1 The generalizationFβ loss function

It has been proved by Vapnik (Vapnik, 1998) that for an example(xi, yi) producing
a loo error,4αiR

2 ≥ 1 holds, whereR is the radius of the smallest sphere enclosing
all the training examples andαi is thei-th dual parameter of the optimal hyperplane.
This inequality was originally formulated for the hard-margin case. However, it can
be applied to the 2-norm soft-margin SVM as the latter can be seen as a hard margin
problem with a transformed kernel (Cortes & Vapnik, 1995; Nello Critianini, 2002).
Using the preceding inequality, one can build an estimator of the generalizationFβ

score of a given model. Alternately, it is possible to formulate a loss function following
the reasoning developed in section 3.2:

LFβ
(α, R) , 4R2

β2
∑

{i|yi=+1}

αi +
∑

{i|yi=−1}

αi


4.2 The model selection algorithm

We introduce here an algorithm performing automatic model selection according to
theFβ criterion. It selects the model by performing a gradient descent of theFβ loss

2k(xi, xj) = exp(−‖xi − xj‖2/2σ2)
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function over the set of hyperparameters. For the sake of clarity, C andσ, are gathered
in a single vectorθ. The model selection algorithm is sketched hereafter.

Algorithm Fβ MODELSELECTION

Input : Training setTr = (x1, y1), . . . , (xn, yn)
Initial values for the hyperparametersθ0

Precision parameterε
Output : Optimal hyperparametersθ∗

SVM optimal solutionα∗ usingθ∗

α0 ← trainFβSVM(Tr,θ0);
(R,λ)0 ← smallestSphereRadius(Tr,θ0);

repeat

θt+1 ← updateHyperparameters(θt,αt, Rt,λt);
αt+1 ← trainFβSVM(Tr,θt+1);
(R,λ)t+1← smallestSphereRadius(Tr,θt+1);
t ← t + 1;

until |LFβ
(αt, Rt)− LFβ

(αt−1, Rt−1)| < ε;
return {θt,αt}

ThetrainFβSVM function solves OP3, the dual problem of OP2, which has the same
form as the dual hard-margin problem (Schölkopf & Smola, 2002):

OP3 Maximize W (α) = −1
2

n∑
i,j=1

αiαjyiyjk
′(xi,xj) +

n∑
i=1

αi

s.t.

{ ∑n
i=1 αiyi = 0

αi ≥ 0 ∀ i = 1..n

with a transformed kernel:

k′(xi,xj) =
{

k(xi,xj) + δij .
1

Cβ2 if yi = +1
k(xi,xj) + δij .

1
C if yi = −1

whereδij is the Kronecker delta andk(., .) is the original kernel function.

The radius of the smallest sphere enclosing all the examples computed by thesmal-
lestSphereRadius function is obtained by taking the square root of the objective
function optimal value in the following optimization problem (Schölkopf & Smola,
2002):



OP4 Maximize W (λ) =
n∑

i=1

λik
′(xi,xi)−

n∑
i,j=1

λiλjk
′(xi,xj)

s.t.

{ ∑n
i=1 λi = 1

λi ≥ 0 ∀ i = 1..n

The optimization problems OP3 and OP4 can be solved in polynomial time inn, e.g.
using an interior point method (Vanderbei, 1994). Furthermore, the solution to OP3,
respectively OP4, at a given iteration can be used as a good starting point for the next
iteration.

At each iteration, the hyperparameters can be updated by means of a gradient step :
θt+1 = θt − η.∂LFβ

/∂θ whereη > 0 is the updating rate. However, second order
methods often provide a faster convergence, which is valuable since two optimization
problems have to be solved at each iteration. For this reason, theupdateHyperpara-
meters function relies on the BFGS algorithm (Fletcher & Powell, 1963), a quasi-
Newton optimization technique. The time complexity of theupdateHyperparameters
function isO(n3) since it is dominated by the inversion of a possiblyn×n matrix (see
section 4.3). The derivatives of theFβ loss function with respect to the hyperparameters
are detailed in the next section. The algorithm is iterated until theFβ loss function no
longer changes by more thanε.

4.3 Derivatives of theFβ loss function

The derivatives of the transformed kernel function with respect to the hyperparameters
are given by:

∂k′(xi,xj)
∂C

=

 −1/(C2β2) if i = j andyi = +1
−1/C2 if i = j andyi = −1
0 otherwise

∂k′(xi,xj)
∂σ2

= k(xi,xj)
‖xi − xj‖2

2σ4

The derivatives of the squared radius can then be obtained applying the lemma 2 of
Chapelle, Vapnik et al. (Chapelleet al., 2002):

∂R2

∂θ
=

n∑
i=1

λi
∂k′(xi,xi)

∂θ
−

n∑
i,j=1

λiλj
∂k′(xi,xj)

∂θ

whereθ ∈ {C, σ2}. The derivation of the hyperplane dual parameters proposed in
(Chapelleet al., 2002) follows:

∂(α, b)
∂θ

= −H−1 ∂H

∂θ
(α, b)T , H =

(
yT Ky y

yT 0

)
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whereK is the kernel matrix andy is the vector of examples labels. TheH matrix is
derived by using the preceding kernel function derivatives. It should be stressed that
only examples corresponding to support vectors have to be considered in the above
formula. Finally, the derivative ofLFβ

(., .) with respect to a hyperparameterθ is given
by:

∂LFβ
(α, R)
∂θ

= 4
∂R2

∂θ

β2
∑

{i|yi=+1}

αi +
∑

{i|yi=−1}

αi



+ 4R2

β2
∑

{i|yi=+1}

∂αi

∂θ
+

∑
{i|yi=−1}

∂αi

∂θ


5 Experiments

We performed several experiments to assess the performance of theFβ parametrization
and the model selection algorithm. First, theFβ parametrization was tested with posi-
tive and negative data inR10 drawn from two largely overlapping normal distributions.
The priors for positive and negative classes were respectively 0.3 and 0.7. It is usually
more difficult to obtain a good recall when data are unbalanced in this way. Experi-
ments were carried out using training sets of 600 examples, a fixed test set of 1,000
examples and a linear kernel. A comparison between theFβ parametrization and the 2-
norm soft-margin SVM withC = 1 is displayed in figure 2. For eachβ considered, the
training data were resampled 10 times in order to produce averaged results. In this set-
ting, our parametrization obtained betterFβ scores than the standard soft-margin SVM,
especially when a high recall was requested. The second part of the figure 2 presents
the evolution of precision, recall and theFβ score for differentβ values.
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Figure 2: TheFβ parametrization tested with artificially generated data. Left: compari-
son between the standard 2-norm soft-margin SVM and theFβ parametrization. Right:
Evolution of precision, recall and of theFβ score accoring to differentβ values.



Afterwards, our parametrization was tested using several class priors. The exper-
imental setup was unchanged except for the class priors while generating the training
and test data. Figure 3 shows the evolution of theFβ score obtained by our parametriza-
tion and by the 2-norm soft-margin SVM using several class priors. For the standard
2-norm soft-margin SVM, one notes that the effect of the priors is particularly impor-
tant when positive examples are few in numbers and that a high recall is requested. In
this setting, our parametrization outperformed the standard 2-norm soft-margin SVM
by more than 0.1.
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Figure 3: TheFβ parametrization tested using artificially generated data with several
class priors. Top:Fβ scores obtained on the test set using theFβ parametrization.
Bottom:Fβ scores obtained on the test set using the standard 2-norm soft-margin SVM.
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The model selection algorithm was first tested with data generated as in the previ-
ous paragraph. The hyperparametersC andσ were initialized to 1 and the precision
parameterε was set to10−6. Our objective was to investigate the relation between the
minimization of theFβ loss function and theFβ score obtained on unknown test data.
The figure 4 shows the evolution of theFβ loss function during the gradient descent,
usingβ = 2. The associated precision, recall andFβ scores on test data are displayed
in the bottom of the figure 4. Even if the optima of theFβ loss function and theFβ

score do not match exactly, one can observe that goodFβ scores were obtained when
theFβ loss function is low. After 35 iterations, the classifier obtained aFβ score close
to 0.9 with the hyperparametersC = 4.33 andσ = 1.94.
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Figure 4: TheFβ model selection algorithm tested with artificially generated data and
with β = 2. Top: the evolution of theFβ loss function during the gradient descent.
Bottom: the related values of precision, recall andFβ score on independent test data.

The model selection algorithm was then compared to the Radius-Margin (RM) based
algorithm (Chapelleet al., 2002) using theDiabetes dataset (Blake & Merz, 1998).



This dataset contains 500 positive examples and 268 negative examples. It was ran-
domly split into a training and a test set, each one containing 384 examples. In this
setting, it is usually more difficult to obtain a classifier with a high precision. The
same initial conditions as before were used. The RM based algorithm select the model
parameters of the 2-norm soft-margin SVM according to the RM estimator of the gen-
eralization error rate. It should be pointed out that whenβ = 1, both methods are
equivalent since the same function is optimized. The comparison is illustrated in the
first part of the figure 5. As expected, our method provided better results whenβ moves
far away from value 1. The influence of theβ parameter on precision, recall and theFβ

score can be observed in the second part of the figure 5.
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Figure 5: TheFβ model selection algorithm tested with theDiabetes dataset. Left:
Comparison between theFβ model selection algorithm and the radius-margin based
method. Right: Evolution of precision, recall and of theFβ score accoring to different
β values.

6 Conclusion

We introduced in this paperFβ SVMs, a new parametrization of support vector ma-
chines. It allows to formulate user specifications in terms ofFβ , a classical IR measure.
Experiments illustrates the benefits of this approach over a standard SVM when preci-
sion and recall are of unequal importance. Besides, we extended the results of Chapelle,
Vapnik et al. (Chapelleet al., 2002) based on the Radius-Margin (RM) bound in order
to automatically select the model hyperparameters according to the generalizationFβ

score. We proposed an algorithm which performs a gradient descent of theFβ loss
function over the set of hyperparameters. To do so, the partial derivatives of theFβ

loss function with respect to these hyperparameters have been formally defined. Our
experiments on real-life data show the advantages of this method compared to the RM
based algorithm when theFβ evaluation criterion is considered.

Our future work includes improvements to the model selection algorithm in order to
deal with larger training sets. Indeed, it is possible to use a sequential optimization
method (Keerthiet al., 2000) in thesmallestSphereRadius function and chunking
techniques (Joachims, 1998; Schölkopf & Smola, 2002) in thetrainFβSVM function.
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This typically allows to solve problems with more than104 variables. Moreover, we be-
lieve that the inverse matrixH−1 can be computed incrementally during the chuncking
iterations, using the Schur inversion formula for block matrices (Meyer, 2000).
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