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Abstract : Dans cet article, nous introduisons une nouvelle patesation des
Séparateurs Vaste Marge (SVM) appeé Fzs SVM. Cette derrére permet d’ef-
fectuer un apprentissage Basur I'optimisation de la fonctior¥z au lieu de
I'erreur de classification habituelle. Les é&jgences montrent les avantages d’'une
telle dmarche par rappagtla formulatiorsoft-marginstandard (avec lescartsa

la marge au caé) lorsque I'on accorde une importance éiintea la pecision et
au rappel. Une pr@dure automatique b@s sur le scoré’s de geréralisation est
ensuite introduite pouréectionner les paradtres du moéle. Cette proedure
repose sur lessultats de Chapelle, Vapnik et al. (Chapelial., 2002) concer-
nant l'utilisation de nethodes ba=es sur le gradient dans le cadre dedlestion
de moetles. Les érivees de la fonction de peri€; par rapporta la constante
de egularisatiorC' eta la largeurs d’'un noyau gaussien sonéfinies formelle-
ment. A partir ded, les paramdtres du modle sont 8lectionres en effectuant
une descente de gradient de la fonction de pBstdans I'espace des paratres.
Les experiences sur des doaes eelles montrent lesdréfices de cette approche
lorsque I'on cherché optimiser le crié¢re Fis.

1 Introduction

Support Vector Machines (SVM) introduced by Vapnik (Vapnik, 1995) have been widely
used in the field of pattern recognition for the last decade. The popularity of the method
relies on its strong theoretical foundations as well as on its practical results. Perfor-
mance of classifiers is usually assessed by means of classification error rate or by In-
formation Retrieval (IR) measures such as precision, reggll,breakeven-point and
ROC curves. Unfortunately, there is no direct connection between these IR criteria and
the SVM hyperparameters: the regularization constaand the kernel parameters. In
this paper, we propose a novel method allowing the user to specify his requirement in
terms of thef; criterion. First of all, theFs measure is reviewed as a user specification
criterion in section 2. A new SVM parametrization dealing with thparameter is in-
troduced in section 3. Afterwards, a procedure for automatic model selection according
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to Fj3 is proposed in section 4. This procedure is a gradient-based technique derived
from the results of Chapelle, Vapnik et al. (Chapeftal., 2002). Finally, experiments
with artifical and real-life data are presented in section 5.

2 User specifications with theF}; criterion

Precision and recall are popular measures to assess classifiers performance in an infor-
mation retrieval context (Sebastiani, 2002). Therefore, it would be convenient to use
these evaluation criteria when formulating the user specifications. For instance, let us
consider the design of a classifier used to retrieve documents according to topic. Some
users prefer to receive a limited list of relevant documents even if this means losing
some interesting ones. Others would not want to miss any relevant document at the cost
of also receiving non-relevant ones. Those specifications correspond respectively to a
high precision and a high recall.

The two previous measures can be combined in a unigumeasure in which the
paramatey; specifies the relative importance of recall with respect to precision. Setting
[ equals to 0 would only consider precision whereas taking oo would only take
recall into account. Moreover, precision and recall are of equal importance when using
the F'; measure. The contingency matrix and estimations of precision, recali aacke
given hereatfter.

| [ Target: +1 [ Target: -1 || Precision %
+1 True Pos. #TP) False Pos.#FP) Recallp | iy
-1 False Neg.#FN) | True Neg. 4T N) Fs %—220

3 Fj Support Vector Machines

In this section, we introduce a new parametrization of SVM allowing to formulate user
specifications in terms of thEs criterion. To do so, we establish a relation between the
contingency matrix and the slack variables used in the soft-margin SVM setting. Based
on this link, we devise a new optimization problem which maximizes an approximation
of the F'3 criterion regularized by the size of the margin.

3.1 Link between the contingency matrix and the slacks

Let us consider a binary classification task with a trainingZset= {(xq,v1),...,
(xn,yn)} Wherex; is an instance in some input spageandy;, € {—1,+1} rep-
resents its category. Let™ andn~ denote respectively the number of positive and
negative examples. The soft-margin formulation of SVM allows examples to be miss-
classified or to lie inside the margin by the introduction of slack variables the
problem constraints:



OP1 Minimize W(w,b,&) = $||lw|* + C.®(¢)
N £ >0 Vi=1.n

wherew andb are the parameters of the hyperplane.

The ®(.) term introduced in the objective function is used to penalize solutions pre-
senting many training errors. For any feasible solutienb, £), missclassified training
examples have an associated slack value of at least 1. The situation is illustrated in fig-
ure 1. Hence, it seems natural to chose a function counting the number of slacks greater
or equal to 1 as penalization functidr(.). Unfortunately, the optimization of such a
function combined with the margin criterion turns out to be a mixed-integer problem
known to be NP-hard (Sétkopf & Smola, 2002). In fact, two approximations of the
counting function are commonly used(¢) = >~ | & (1-norm)andb(¢) = >0 | &2
(2-norm). These approximations present two peculiarities: 1) The sum of slacks related
to examples inside the margin might be considered as errors. 2) Examples with a slack
value greater than 1 might contribute as more than one error. However, the use of these
approximations is computationally attractive as the problem remains convex, quadratic
and consequently solvable in polynomial time. In the sequel, we will focus on the
2-norm alternative.
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Figure 1: Soft-margin SVM and associated slacks

The computation of the preceding approximations separately for different class labels
allows to bound the elements of the contingency matrix.

Proposition 1
Let (w,b,€) be a solution satisfying the constraints of OP1. The following bounds holds
for the elements of the contingency matrix computed on the training set:
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These bounds will be called the slack estimates of the contingency matrix. It should
be noted that they also could have been formulated using the 1-norm approximation.

3.2 TheF}j parametrization

Let us introduce a parametrization of SVM in which a regularizgccriterion is op-
timized. TheFjz function can be expanded using the definition of precision and recall
as:

(82 + )mp (82 + )#TP

Fp = Br+tp (B + V)#TP + BHFN + #FP

The optimal value fos (< 1) is obtained by minimizingg># F N +#F P. Replacing
#F N and#F P by their slack estimates and integrating this into the objective function
leads to the following optimization problem:

OP2 Minimize W(w,b,g):%\\w\\2+C’.[62- g+ Y g

{ilyi=+1} {ilyi=—1}
- & >0 Vi=1..n

The relative importance of thEjs criterion with respect to the margin can be tuned
using the regularization constafit Since the slack estimates fg¢#F'P and# F N are
upper bounds, OP2 is based on a pessimistic estimation afgh€®P2 can be seen
as an instance of the SVM parametrization considering two kinds of slacks with the
associated regularization consta6ts andC~ (Nello Critianini, 2002). In our case,
the regularization constants derive from thevalue, i.e. C* = C3%? andC~ = C.

It should be pointed out that wheh= 1, OP2 is equivalent to the traditional 2-norm
soft-margin SVM problem.

The optimization of thefs criterion is closely related to the problem of training a
SVM with an imbalanced dataset. When the prior of a class is by far larger than the
prior of the other class, the classifier obtained by a standard SVM training is likely to
act as the trivial acceptor/rejector (i.e. a classifier always predietingrespectively
—1). To avoid this inconvenience, some authors (Veropoetasl., 1999) have intro-
duced different penalities for the different classes ugitigandC~. This method has
been applied in order to control the sensitivigf the model. However, no automatic
procedure has been proposed to choose the regularization constants with respect to the

1The sensitivity is the rate of true positive examples and is equivalent to recall.



user specifications. Recently, this technique has been improved by artificially oversam-
pling the minority class (Akbaret al, 2004). Other authors (Amergt al, 2004) have
proposed to select a unique regularization constatitrough a bootstrap procedure.
This constant is then used as a starting point for tudifigandC~ on a validation set.

4 Model selection according tof;

In the preceding section, we proposed a parametrization of SVM enabling the user to
formulate his specifications with th&parameter. In addition, the remaining hyperpa-
rameters, i.e. the regularization constant and the kernels parameters, must be selected.
In the case of SVM, model selection can be made using the statistical properties of
the optimal hyperplane, thus avoiding the need of performing cross-validation. Indeed,
several bounds of the leave-one-out (loo) error rate can be directly derived from the pa-
rameters of the optimal hyperplane expressed in dual form (Vapnik & Chapelle, 2000;
Schblkopf et al,, 1999; Joachims, 2000). A practical evaluation of several of these
bounds has been recently proposed in (Detal., 2003). Moreover, Chapelle, Vapnik

et al. (Chapelleet al, 2002) have shown that the hyperplane dual parameters are dif-
ferentiable with respect to the hyperparameters. This allows the use of gradient-based
techniques for model selection (Chapedteal., 2002; Chunget al,, 2003). In this sec-

tion, we propose a gradient-based algorithm selecting automat(Callyd the widthr

of a gaussian kernehccording to the generalizatidry score.

4.1 The generalizationF} loss function

It has been proved by Vapnik (Vapnik, 1998) that for an exanipley;) producing

a loo error,4a; R? > 1 holds, whereR is the radius of the smallest sphere enclosing

all the training examples andg; is thei-th dual parameter of the optimal hyperplane.
This inequality was originally formulated for the hard-margin case. However, it can
be applied to the 2-norm soft-margin SVM as the latter can be seen as a hard margin
problem with a transformed kernel (Cortes & Vapnik, 1995; Nello Critianini, 2002).
Using the preceding inequality, one can build an estimator of the generaliz&giion
score of a given model. Alternately, it is possible to formulate a loss function following
the reasoning developed in section 3.2:

{ilyi=+1} {ilyi=—1}

LF@ (a, R) £ 4R2 (ﬁQ Z «a; + Z OLZ‘)

4.2 The model selection algorithm

We introduce here an algorithm performing automatic model selection according to
the Fg criterion. It selects the model by performing a gradient descent of thess

2k(zi, m5) = exp(—|le; —x;]?/20°)
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function over the set of hyperparameters. For the sake of clarity, @ aaek gathered
in a single vectof. The model selection algorithm is sketched hereafter.

Algorithm Fjzg MODELSELECTION

Input: Training setl'r = (x1,y1), .-, (Tn, Yn)
Initial values for the hyperparameted$
Precision parameter

Output: Optimal hyperparametes*

SVM optimal solutiona™ using8*
o’ «— trainFzSVM(Tr, 6°);
(R,\)° + smallestSphereRadius(Tr, 6°);

repeat

o't « updateHyperparameters(0’, af, Rt, \");

attl — trainFﬁSVM(TT, 9t+1);
(R, \)!"1— smallestSphereRadius(Tr, 6*11);
t —t+1

until [Lp, (o, R") — Ly, (a1, R 1) < ¢
return {6%, o'}

ThetrainFzSVM function solves OP3, the dual problem of OP2, which has the same
form as the dual hard-margin problem (8ttopf & Smola, 2002):

- 1 o -
OP3 Maximize W(a) = 5 Z aiayiy;k (g, x5) + Z%‘
i,j=1 =1

s.t. Ylis aiyi =0

with a transformed kernel:

/{2(213 m)+5% if y~:+1
/ . ) = & J + Cﬁ '
k (xzaxj> { k(iBi,mj) + 5”% if Yi = -1

whered;; is the Kronecker delta ankd ., .) is the original kernel function.

The radius of the smallest sphere enclosing all the examples computed dwathie
lestSphereRadius function is obtained by taking the square root of the objective
function optimal value in the following optimization problem (®tkopf & Smola,
2002):



OP4 Maximize W(X) =Y Nk'(zs,@3) — > Adjk (4, ;)

1,5=1

s.t Z:L:lAlzl
o AN >0 Vi=1.n

The optimization problems OP3 and OP4 can be solved in polynomial timgay.
using an interior point method (Vanderbei, 1994). Furthermore, the solution to OP3,
respectively OP4, at a given iteration can be used as a good starting point for the next
iteration.

At each iteration, the hyperparameters can be updated by means of a gradient step :
0" = 0" — 1.0Ly,/06 wheren > 0 is the updating rate. However, second order
methods often provide a faster convergence, which is valuable since two optimization
problems have to be solved at each iteration. For this reasonpth#eHyperpara-
meters function relies on the BFGS algorithm (Fletcher & Powell, 1963), a quasi-
Newton optimization technique. The time complexity of tipelateHyperparameters
function isO(n?) since itis dominated by the inversion of a possibly n matrix (see
section 4.3). The derivatives of ti#g; loss function with respect to the hyperparameters
are detailed in the next section. The algorithm is iterated untiFthéss function no
longer changes by more than

4.3 Derivatives of theFj loss function

The derivatives of the transformed kernel function with respect to the hyperparameters
are given by:

—1/(C?%p?) if i=jandy; = +1

/ . .
W — { —1jc? if i=jandy; = —1
0 otherwise
oK' (x;, ;) 2 — ;]
B ) P

The derivatives of the squared radius can then be obtained applying the lemma 2 of
Chapelle, Vapnik et al. (Chapeli al., 2002):

8R2 Z/\ oK' ( a:,,:cz Z A )\ a:,,:cj)

1,7=1

wheref € {C,o?}. The derivation of the hyperplane dual parameters proposed in
(Chapelleet al,, 2002) follows:

de,d) ., 0H T _(Yy"Ky y
o0 =—-H o0 (Oé,b) ) H = ,yT 0
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where K is the kernel matrix ang is the vector of examples labels. ThEmatrix is
derived by using the preceding kernel function derivatives. It should be stressed that
only examples corresponding to support vectors have to be considered in the above
formula. Finally, the derivative of. -, (., .) with respect to a hyperparameteis given

by:

8LFB(a,R) . 8R2 9
S CAND DR LD DR

{ilyi=+1} {ilyi=—1}

+ 4R (2 Y 805+ 3 aoé

{ilyi=+1} {ilyi=—1}

5 Experiments

We performed several experiments to assess the performancelof fagametrization

and the model selection algorithm. First, thg parametrization was tested with posi-

tive and negative data iR'° drawn from two largely overlapping normal distributions.

The priors for positive and negative classes were respectively 0.3 and 0.7. It is usually
more difficult to obtain a good recall when data are unbalanced in this way. Experi-
ments were carried out using training sets of 600 examples, a fixed test set of 1,000
examples and a linear kernel. A comparison betweet thearametrization and the 2-
norm soft-margin SVM withC' = 1 is displayed in figure 2. For eaghconsidered, the
training data were resampled 10 times in order to produce averaged results. In this set-
ting, our parametrization obtained betféy scores than the standard soft-margin SVM,
especially when a high recall was requested. The second part of the figure 2 presents
the evolution of precision, recall and t#i score for differents values.
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Figure 2: Thef; parametrization tested with artificially generated data. Left: compari-
son between the standard 2-norm soft-margin SVM and-thearametrization. Right:
Evolution of precision, recall and of th€; score accoring to differertt values.



Afterwards, our parametrization was tested using several class priors. The exper-
imental setup was unchanged except for the class priors while generating the training
and test data. Figure 3 shows the evolution offihescore obtained by our parametriza-
tion and by the 2-norm soft-margin SVM using several class priors. For the standard
2-norm soft-margin SVM, one notes that the effect of the priors is particularly impor-
tant when positive examples are few in numbers and that a high recall is requested. In
this setting, our parametrization outperformed the standard 2-norm soft-margin SVM

by more than 0.1.

Fbeta score using the Fbeta SVM

Fbeta score
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) beta:4.q .........
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Figure 3: TheFs parametrization tested using artificially generated data with several
class priors. Top:Fjg scores obtained on the test set using fyeparametrization.
Bottom: F'3 scores obtained on the test set using the standard 2-norm soft-margin SVM.
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The model selection algorithm was first tested with data generated as in the previ-
ous paragraph. The hyperparamet€rando were initialized to 1 and the precision
parameter was set tal0~%. Our objective was to investigate the relation between the
minimization of theF; loss function and thé’; score obtained on unknown test data.
The figure 4 shows the evolution of the; loss function during the gradient descent,
usings = 2. The associated precision, recall akiglscores on test data are displayed
in the bottom of the figure 4. Even if the optima of thg loss function and thé's
score do not match exactly, one can observe that ggpsicores were obtained when
the Fig loss function is low. After 35 iterations, the classifier obtaindg;ascore close
to 0.9 with the hyperparametefs= 4.33 ando = 1.94.
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Figure 4: TheFz model selection algorithm tested with artificially generated data and
with 3 = 2. Top: the evolution of the&s loss function during the gradient descent.
Bottom: the related values of precision, recall ddscore on independent test data.

The model selection algorithm was then compared to the Radius-Margin (RM) based
algorithm (Chapelleet al,, 2002) using th®iabetes dataset (Blake & Merz, 1998).



This dataset contains 500 positive examples and 268 negative examples. It was ran-
domly split into a training and a test set, each one containing 384 examples. In this
setting, it is usually more difficult to obtain a classifier with a high precision. The
same initial conditions as before were used. The RM based algorithm select the model
parameters of the 2-norm soft-margin SVM according to the RM estimator of the gen-
eralization error rate. It should be pointed out that wites- 1, both methods are
equivalent since the same function is optimized. The comparison is illustrated in the
first part of the figure 5. As expected, our method provided better results gvimaves

far away from value 1. The influence of tffgparameter on precision, recall and g

score can be observed in the second part of the figure 5.
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Figure 5: TheFz model selection algorithm tested with tbéabetes dataset. Left:
Comparison between thE; model selection algorithm and the radius-margin based
method. Right: Evolution of precision, recall and of thg score accoring to different

[ values.

6 Conclusion

We introduced in this papefs SVMs, a new parametrization of support vector ma-
chines. It allows to formulate user specifications in terms@fa classical IR measure.
Experiments illustrates the benefits of this approach over a standard SVM when preci-
sion and recall are of unequal importance. Besides, we extended the results of Chapelle,
Vapnik et al. (Chapellet al, 2002) based on the Radius-Margin (RM) bound in order

to automatically select the model hyperparameters according to the general&Zation
score. We proposed an algorithm which performs a gradient descent éf;thess
function over the set of hyperparameters. To do so, the partial derivatives éf;the
loss function with respect to these hyperparameters have been formally defined. Our
experiments on real-life data show the advantages of this method compared to the RM
based algorithm when thi; evaluation criterion is considered.

Our future work includes improvements to the model selection algorithm in order to
deal with larger training sets. Indeed, it is possible to use a sequential optimization
method (Keerthet al,, 2000) in thesmallestSphereRadius function and chunking
techniques (Joachims, 1998; ®ttopf & Smola, 2002) in therainFzSVM function.
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This typically allows to solve problems with more th&st variables. Moreover, we be-
lieve that the inverse matrii —! can be computed incrementally during the chuncking
iterations, using the Schur inversion formula for block matrices (Meyer, 2000).
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