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Abstract— We introduce in this paper F3 SVMs, a new
parametrization of support vector machines. It allows to optimize
a SVM in terms of Fj, a classical information retrieval criterion,
instead of the usual classification rate. Experiments illustrate the
advantages of this approach with respect to the traditionnal 2-
norm soft-margin SVM when precision and recall are of unequal
importance. An automatic model selection procedure based on
the generalization F3 score is introduced. It relies on the results
of Chapelle, Vapnik et al. [4] about the use of gradient-based
techniques in SVM model selection. The derivatives of a F3 loss
function with respect to the hyperparameters C' and the width
o of a gaussian Kkernel are formally defined. The model is then
selected by performing a gradient descent of the F}3 loss function
over the set of hyperparameters. Experiments on artificial and
real-life data show the benefits of this method when the Fz score
is considered.

I. INTRODUCTION

Support Vector Machines (SVM) introduced by Vapnik [18]
have been widely used in the field of pattern recognition
for the last decade. The popularity of the method relies on
its strong theoretical foundations as well as on its practical
results. Performance of classifiers is usually assessed by means
of classification error rate or by Information Retrieval (IR)
measures such as precision, recall, Fjg, breakeven-point and
ROC curves. Unfortunately, there is no direct connection
between these IR criteria and the SVM hyperparameters: the
regularization constant C' and the kernel parameters. In this
paper, we propose a novel method allowing the user to specify
his requirement in terms of the Fj criterion. First of all, the
F3 measure is reviewed as a user specification criterion in
section II. A new SVM parametrization dealing with the
parameter is introduced in section III. Afterwards, a procedure
for automatic model selection according to Fj is proposed
in section IV. This procedure is a gradient-based technique
derived from the results of Chapelle, Vapnik et al. [4]. Finally,
experiments with artifical and real-life data are presented in
section V.

II. USER SPECIFICATIONS WITH THE Fjg CRITERION

Precision and recall are popular measures to assess
classifiers performance in an information retrieval context
[16]. Therefore, it would be convenient to use these evaluation
criteria when formulating the user specifications. For instance,
let us consider the design of a classifier used to retrieve
documents according to topic. Some users prefer to receive a
limited list of relevant documents even if this means losing

some interesting ones. Others would not want to miss any
relevant document at the cost of also receiving non-relevant
ones. Those specifications correspond respectively to a high
precision and a high recall.

The two previous measures can be combined in a unique
Fs measure in which the paramater (3 specifies the relative
importance of recall with respect to precision. Setting 5 equals
to 0 would only consider precision whereas taking 8 = oo
would only take recall into account. Moreover, precision and
recall are of equal importance when using the F} measure.
The contingency matrix and estimations of precision, recall
and Fjp are given hereafter.
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III. F3 SUPPORT VECTOR MACHINES

In this section, we introduce a new parametrization of
SVM allowing to formulate user specifications in terms of
the Fp criterion. To do so, we establish a relation between
the contingency matrix and the slack variables used in the
soft-margin SVM setting. Based on this link, we devise a new
optimization problem which maximizes an approximation of
the Fj criterion regularized by the size of the margin.

A. Link between the contingency matrix and the slacks

Let us consider a binary classification task with a training
set Tr = {(x1,y1),..., (®n,yn)} where x; is an instance
in some input space X and y; € {—1,+1} represents its
category. Let nT and n~ denote respectively the number of
positive and negative examples. The soft-margin formulation
of SVM allows examples to be missclassified or to lie inside
the margin by the introduction of slack variables ¢ in the
problem constraints:

OP1 Minimize W(w,b,&) = 1||w|*+ C.®(&)
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where w and b are the parameters of the hyperplane.

The ®(.) term introduced in the objective function is used
to penalize solutions presenting many training errors. For any
feasible solution (w,b, &), missclassified training examples
have an associated slack value of at least 1. The situation
is illustrated in figure 1. Hence, it seems natural to chose a
function counting the number of slacks greater or equal to 1 as
penalization function ®(.). Unfortunately, the optimization of
such a function combined with the margin criterion turns out to
be a mixed-integer problem known to be NP-hard [15]. In fact,
two approximations of the counting function are commonly
used: ®(€) = >0, & (1-norm) and ®(€) = Y1 &2 (2-
norm). These approximations present two peculiarities: 1) The
sum of slacks related to examples inside the margin might be
considered as errors. 2) Examples with a slack value greater
than 1 might contribute as more than one error. However, the
use of these approximations is computationally attractive as the
problem remains convex, quadratic and consequently solvable
in polynomial time. In the sequel, we will focus on the 2-norm
alternative.
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Fig. 1. Soft-margin SVM and associated slacks

The computation of the preceding approximations
separately for different class labels allows to bound the
elements of the contingency matrix.

Proposition 1: Let (w,b,£) be a solution satisfying the con-
straints of OP1. The following bounds holds for the elements
of the contingency matrix computed on the training set:

o H#TP>nT— > & e#rP< > &
{ilyi=+1} {ilyi=—1}
oHFN< > & e #TN>n"— > &
{ilyi=+1} {ilyi=—1}

These bounds will be called the slack estimates of the
contingency matrix. It should be noted that they also could
have been formulated using the 1-norm approximation.

B. The Fg parametrization

Let us introduce a parametrization of SVM in which a
regularized Fjg criterion is optimized. The Fj3 function can

be expanded using the definition of precision and recall as:

(B +Drp (8% + 1)#TP

B0 ="grtp ~ (F+0ETP+ #FN + #FP

The optimal value for Fjg (< 1) is obtained by minimizing
B?#FN + #FP. Replacing #FN and #F P by their slack
estimates and integrating this into the objective function leads
to the following optimization problem:

OP2 Minimize

Wewb&) = Slwl’ +Cl. Y &+ Y @

{ilyi=+1} {ilyi=—1}
o Jvillwz) +0)21-& Vi=1.n
T &=0 Vi=1.n

The relative importance of the Fj criterion with respect
to the margin can be tuned using the regularization constant
C. Since the slack estimates for #FP and #FN are
upper bounds, OP2 is based on a pessimistic estimation
of the Fjg. OP2 can be seen as an instance of the SVM
parametrization considering two kinds of slacks with the
associated regularization constants C* and C~ [21], [13].
In our case, the regularization constants derive from the [
value, i.e. Ct = CB32 and C~ = C. It should be pointed out
that when 3 = 1, OP2 is equivalent to the traditional 2-norm
soft-margin SVM problem.

The optimization of the Fjp criterion is closely related to
the problem of training a SVM with an imbalanced dataset.
When the prior of a class is by far larger than the prior of the
other class, the classifier obtained by a standard SVM training
is likely to act as the trivial acceptor/rejector (i.e. a classifier
always predicting +1, respectively —1). To avoid this inconve-
nience, some authors [21] have introduced different penalities
for the different classes using C* and C~. This method
has been applied in order to control the sensitivity! of the
model. However, no automatic procedure has been proposed
to choose the regularization constants with respect to the user
specifications. Recently, this technique has been improved by
artificially oversampling the minority class [1]. Other authors
[2] have proposed to select a unique regularization constant C'
through a bootstrap procedure. This constant is then used as
a starting point for tuning C* and C'~ on a validation set.

IV. MODEL SELECTION ACCORDING TO F[g

In the preceding section, we proposed a parametrization of
SVM enabling the user to formulate his specifications with the
[ parameter. In addition, the remaining hyperparameters, i.e.
the regularization constant and the kernels parameters, must
be selected. In the case of SVM, model selection can be
made using the statistical properties of the optimal hyperplane,
thus avoiding the need of performing cross-validation. Indeed,

IThe sensitivity is the rate of true positive examples and is equivalent to
recall.
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several bounds of the leave-one-out (loo) error rate can be
directly derived from the parameters of the optimal hyperplane
expressed in dual form [20], [14], [10]. A practical evaluation
of several of these bounds has been recently proposed in [7].
Moreover, Chapelle, Vapnik et al. [4] have shown that the
hyperplane dual parameters are differentiable with respect to
the hyperparameters. This allows the use of gradient-based
techniques for model selection [4], [S]. In this section, we
propose a gradient-based algorithm selecting automatically
C and the width o of a gaussian kernel?> according to the
generalization Fg score.

A. The generalization Fg loss function

It has been proved by Vapnik [19] that for an example
(xi,v:;) producing a loo error, 4c;R? > 1 holds, where
R is the radius of the smallest sphere enclosing all the
training examples and «; is the i-th dual parameter of the
optimal hyperplane. This inequality was originally formulated
for the hard-margin case. However, it can be applied to the
2-norm soft-margin SVM as the latter can be seen as a hard
margin problem with a transformed kernel [6], [13]. Using
the preceding inequality, one can build an estimator of the
generalization Fg score of a given model. Alternately, it is
possible to formulate a loss function following the reasoning
developed in section III-B:

Lr,(a,R) £ 4R? |

Z a; + Z o7}

{ilyi=+1} {ilyi=—1}

In the algorithm proposed in section I'V-B, the model param-
eters are selected by minimizing the Lp,(.,.) loss function.

B. The model selection algorithm

We introduce here an algorithm performing automatic model
selection according to the Fj criterion. It selects the model by
performing a gradient descent of the F3 loss function over the
set of hyperparameters. For the sake of clarity, C and o, are
gathered in a single vector 8. The model selection algorithm
is sketched hereafter.

k(s a5) = exp(—||lz; — x5(|°/20°)

Algorithm 3 MODELSELECTION
Input: Training set 77 = (€1,y1), - - -, (Tn, Yn)
Initial values for the hyperparameters 8°
Precision parameter e
Output: Optimal hyperparameters 68*
SVM optimal solution a* using 6*
a’ — trainFzSVM(Tr, 6°);
(R,\)? + smallestSphereRadius(T'r,0°);

repeat
t4+1 t ot pt oyt
0 «— updateHyperparameters(6’, af, RY, \");
a'tl «— trainFgSVM(Tr, 6t+1);

(R, )"l smallestSphereRadius(Tr, *11);
t — t+1;

until [Lp,(af, R") — Lp, (a1 R7Y)| < g
return {6t at}

The trainFgSVM function solves OP3, the dual problem
of OP2, which has the same form as the dual hard-margin
problem [15]:

OP3 Maximize
1 n n
W(a) = -3 Z a0y k (x4, x5) + Zai
i=1

i,j=1

St { Z?:l oy, =0

a; >0 Vi=1.n
with a transformed kernel:

1 : —
K (mi,x5) = { F(@i, @) + 0ij ogr 1y = +1

k(x;, ZCJ') + (5¢j.%
where d;; is the Kronecker delta and k(.,.) is the original
kernel function.

The radius of the smallest sphere enclosing all the
examples computed by the smallestSphereRadius
function is obtained by taking the square root of the objective
function optimal value in the following optimization problem
[15]:

OP4 Maximize

W(’\) = Z/\ik/(wi;wi) - Z /\ix\jk’(azi,wj)
i=1

ij=1
st {

The optimization problems OP3 and OP4 can be solved in
polynomial time in n, e.g. using an interior point method [17].
Furthermore, the solution to OP3, respectively OP4, at a
given iteration can be used as a good starting point for the
next iteration.

Z;L:l)\izl
AN>0 Vi=1.n
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At each iteration, the hyperparameters can be updated by
means of a gradient step : "7 = @' — n.0LF, /06 where
n > 0 is the updating rate. However, second order methods
often provide a faster convergence, which is valuable since
two optimization problems have to be solved at each iteration.
For this reason, the updateHyperparameters function relies
on the BFGS algorithm [8], a quasi-Newton optimization tech-
nique. The time complexity of the updateHyperparameters
function is O(n?) since it is dominated by the inversion of a
possibly n x n matrix (see section IV-C). The derivatives of
the Fg loss function with respect to the hyperparameters are
detailed in the next section. The algorithm is iterated until the
F3 loss function no longer changes by more than e.

C. Derivatives of the Fg loss function

The derivatives of the transformed kernel function with
respect to the hyperparameters are given by:

o —1/(C?3?) if i =jand y; = +1
O (@i ;) (gg %) _ ) et it i—jandy = -1
0 otherwise
Ok (w3, @) s — @52

The derivatives of the squared radius can then be obtained
applying the lemma 2 of Chapelle, Vapnik et al. [4]:

OR? N OK (x4, ;) = Ok (x4, z5)
- = )\, — Ao\ — I
90 Z 0 Z Y06
i=1 i,j=1
where 6§ € {C,0?}. The derivation of the hyperplane dual
parameters proposed in [4] follows:

9(a,b) L O0H y'Ky y

50 =—-H W(a,b)7 H—( o7 0)
where K is the kernel matrix and y is the vector of examples
labels. The H matrix is derived by using the preceding kernel
function derivatives. It should be stressed that only examples
corresponding to support vectors have to be considered in the
above formula. Finally, the derivative of L, (.,.) with respect
to a hyperparameter 6 is given by:

OLp, (e, R) oRrR? [ ,
—ag - g | L e D
{ilyi=+1} {ilyi=—1)
oo oo
2 2 2 7
+ 4R%*|p AZ - ‘Z =
{ilyi=+1} {ilyi=—1}

V. EXPERIMENTS

We performed several experiments to assess the perfor-
mance of the Fj parametrization and the model selection
algorithm. First, the Fj3 parametrization was tested with
positive and negative data in R'C drawn from two largely
overlapping normal distributions. The priors for positive and

negative classes were respectively 0.3 and 0.7. It is usually
more difficult to obtain a good recall when data are unbalanced
in this way. Experiments were carried out using training sets
of 600 examples, a fixed test set of 1,000 examples and a
linear kernel. A comparison between the Fj3 parametrization
and the 2-norm soft-margin SVM with C' = 1 is displayed
in figure 2. For each 3 considered, the training data were
resampled 10 times in order to produce averaged results. In
this setting, our parametrization obtained better F)3 scores than
the standard soft-margin SVM, especially when a high recall
was requested. The second part of the figure 2 presents the
evolution of precision, recall and the Fj3 score for different 3
values.
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Fig. 2. The Fjg parametrization tested with artificially generated data.
Top: comparison between the standard 2-norm soft-margin SVM and the Fg
parametrization. Bottom: Evolution of precision, recall and of the Fjg score
accoring to different 3 values.

Afterwards, our parametrization was tested using several
class priors. The experimental setup was unchanged except
for the class priors while generating the training and test data.
Figure 3 shows the evolution of the Fj3 score obtained by our
parametrization and by the 2-norm soft-margin SVM using
several class priors. For the standard 2-norm soft-margin
SVM, one notes that the effect of the priors is particularly
important when positive examples are few in numbers and that
a high recall is requested. In this setting, our parametrization
outperformed the standard 2-norm soft-margin SVM by more
than 0.1.

The model selection algorithm was first tested with data
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Fig. 3. The Fj parametrization tested using artificially generated data with
several class priors. Top: Fjg scores obtained on the test set using the Fg
parametrization. Bottom: F3 scores obtained on the test set using the standard
2-norm soft-margin SVM.

generated as in the previous paragraph. The hyperparameters
C and o were initialized to 1 and the precision parameter €
was set to 1075, Our objective was to investigate the relation
between the minimization of the Fjs loss function and the Fj
score obtained on unknown test data. The figure 4 shows the
evolution of the F loss function during the gradient descent,
using § = 2. The associated precision, recall and Fjg scores
on test data are displayed in the bottom of the figure 4.
Even if the optima of the Fj loss function and the Fjg score
do not match exactly, one can observe that good Fj3 scores
were obtained when the Fj loss function is low. After 35
iterations, the classifier obtained a I3 score close to 0.9 with
the hyperparameters C = 4.33 and ¢ = 1.94. The model
selection algorithm was then compared to the Radius-Margin
(RM) based algorithm [4] using the Diabetes dataset [3].
This dataset contains 500 positive examples and 268 negative
examples. It was randomly split into a training and a test
set, each one containing 384 examples. In this setting, it
is usually more difficult to obtain a classifier with a high
precision. The same initial conditions as before were used.
The RM based algorithm select the model parameters of the
2-norm soft-margin SVM according to the RM estimator of
the generalization error rate. It should be pointed out that when
B = 1, both methods are equivalent since the same function
is optimized. The comparison is illustrated in the first part of
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Fig. 4. The Fjzg model selection algorithm tested with artificially generated
data and with 3 = 2. Top: the evolution of the Fg loss function during the
gradient descent. Bottom: the related values of precision, recall and Fig score
on independent test data.

the figure 5. As expected, our method provided better results
when 3 moves far away from value 1. The influence of the
(B parameter on precision, recall and the Fj3 score can be
observed in the second part of the figure 5.

VI. CONCLUSION

We introduced in this paper Fj3 SVMs, a new parametriza-
tion of support vector machines. It allows to formulate user
specifications in terms of Fj, a classical IR measure. Experi-
ments illustrates the benefits of this approach over a standard
SVM when precision and recall are of unequal importance.
Besides, we extended the results of Chapelle, Vapnik et al.
[4] based on the Radius-Margin (RM) bound in order to
automatically select the model hyperparameters according to
the generalization Fj3 score. We proposed an algorithm which
performs a gradient descent of the Fjg loss function over the
set of hyperparameters. To do so, the partial derivatives of
the Fjg loss function with respect to these hyperparameters
have been formally defined. Our experiments on real-life data
show the advantages of this method compared to the RM based
algorithm when the Fj3 evaluation criterion is considered.

Our future work includes improvements to the model se-
lection algorithm in order to deal with larger training sets.
Indeed, it is possible to use a sequential optimization method
[11] in the smallestSphereRadius function and chunking
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Fig. 5. The F)3 model selection algorithm tested with the Diabetes dataset.
Top: Comparison between the Fjg model selection algorithm and the radius-
margin based method. Bottom: Evolution of precision, recall and of the Fg
score accoring to different 3 values.

techniques [9], [15] in the trainFgSVM function. This typi-
cally allows to solve problems with more than 10 variables.
Moreover, we believe that the inverse matrix H~! can be
computed incrementally during the chuncking iterations, using
the Schur inversion formula for block matrices [12].
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