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Abstract.*

We introduce a new class of probabilistic automata: Probabilistic Resid-
ual Finite State Automata. We show that this class can be characterized
by a simple intrinsic property of the stochastic languages they gener-
ate (the set of residual languages is finitely generated by residuals) and
that it admits canonical minimal forms. We prove that there are more
languages generated by PRFA than by Probabilistic Deterministic Finite
Automata (PDFA). We present a first inference algorithm using this rep-
resentation and we show that stochastic languages represented by PRFA
can be identified from a characteristic sample if words are provided with
their probabilities of appearance in the target language.

Introduction

In the field of machine learning, most realistic situations deal with data provided
by a stochastic source and probabilistic models, such as Hidden Markov Models
(HMMs) or probabilistic automata (PA), become increasingly important. For
example, speech recognition, computational biology and more generally, every
field where statistical sequence analysis is needed, may use this kind of models.
In this paper, we focus on Probabilistic Automata.

A probabilistic automata can be described by its structure (a Finite State
Automata) and by a set of continuous parameters (probability to emit a given
letter from a given state or to end the generation process). There exist several
fairly good methods to adjust the continuous parameters of a given structure to
a training set of examples. However the efficient building of the structure from
given data is still an open problem. Hence most applications of HMMs or PA
assume a fixed model structure, which is either chosen as general as possible (i.e.
a complete graph) or a priori selected using domain knowledge.

Several learning algorithms, based on previous works in the field of grammat-
ical inference, have been designed to output a deterministic structure (Proba-
bilistic Deterministic Finite State Automata: PDFA) from training data ([1], [2],
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[3]; see also [4], [5] for early works) and several interesting theoretical and exper-
imental results have been obtained. However, unlike to the case of non stochastic
languages, DFA structures are not able to represent as many stochastic languages
as non deterministic ones. Therefore using these algorithms to infer probabilistic
automata structures introduces a strong, and possibly wrong, learning bias.

A new class of non deterministic automata, the Residual Finite State Au-
tomata (RFSA), has been introduced in [6]. RFSA have interesting properties
from a language theory point of view, including the existence of a canonical
minimal form which can offer a much smaller representation than an equivalent
DFA ([7]). Several learning algorithms that output RFSA have been designed in
[8] and [7]. The present paper describes an extension to these works to deal with
stochastic regular languages.

We introduce in Section 1 classical notions of probabilistic automata and
stochastic languages. In Section 2 we explain how the definition of residual lan-
guages can be extended to stochastic languages, and we define a new class of
probabilistic automata: Probabilistic Residual Finite State Automata (PRFA).
We prove that this class has canonical minimal representations. In Section 3
we introduce an intrinsic characterization of stochastic languages represented
by PDFA: a stochastic language can be represented by a PDFA if and only if
the number of its residual languages is finite. We extend this characterization
to languages represented by PRFA: a stochastic language can be represented
by a PRFA if and only if the set of its residual languages is finitely generated.
We prove in Section 4 that the class of languages represented by PRFA is more
expressive than the one represented by PDFA. This results is promising as it
means that algorithms that would identify stochastic languages represented by
PRFA would be able to identify a larger class of languages than PDFA inference
algorithms. Section 5 presents a preliminary result along this line: stochastic
languages represented by PRFA can be identified from a characteristic sample
if words are provided with their actual probabilities of appearance in the target
language.

1 Probabilistic Automata and Stochastic Languages

Let X be a finite alphabet and let X* be the set of finite words built on X. A
language L is a subset of X*. Let u be a word of X*, the length of u is denoted
by |u|, the empty word is denoted by . X* is ordered in the usual way, i.e. u < v
if and only if |u| < |v| or |u| = |v| and u is before v in lexicographical order. Let
u be a word of X*, v is a prefiz of u if there exists a word w such that u = vw.
A language L is prefizial if for every word u of L, the set of prefixes of u is a

subset of L. Let E be a set, D(E) = {(ae)eeE € [0,1)Card®) | Y ecE Qe = 1}
denotes the set of distributions over E and D({1,...,n}) is denoted by D(n).

A stochastic language L on X is a function from X* to [0,1] such that
> wes» L(u) = 1. We note p(w | L) = L(w), or simply p(w) when there is
no ambiguity. If W is a set of words, p(W) = >_, cw p(w). Let SL(X) be the
set of stochastic languages on X.



A probabilistic finite state automaton (PFA) is a quintuple (X,Q, ¥, t,T)
where @ is a finite set of states, ¢ : @ X X' x  — [0, 1] is the transition function,
t: @ — [0,1] is the probability for each state to be initial and 7 : @ — [0,1] is
the probability for each state to be terminal. A PFA need satisfy }° .o t(q) =1
and for each state g,

Q)+ Y. > elgaq) =1 (1)

a€X ¢'€Q

Let ¢ also denote the extension of the transition function, defined on @ x

I*xQ by plg,wa, q') =3 neq e, w,q")p(q",a,q') and p(g,¢,¢") = 1ifg = ¢'
and 0 otherwise.

We extend ¢ again on Q x 2% x Q by ¢(q,U,¢") =3, cv (@, w,q").

The set of initial states is defined by Qr = {q € @ | t(q) > 0}, the set of
reachable states is defined by Qreqcr, = {g € Q | 3q1 € Qr1,9(qr, X*,q) > 0} and
the set of terminal states is defined by Q1 = {q € Q | 7(¢) > 0}. We only consider
here PFA such that: Yq € Qreach, 3aT € QT,0(q, X*,q1) > 0.

Let A=(X,Q,p,t,7) be a PFA. Let pa be the function defined on X* by

paw) = Y (e, ud)r(d). (2)

7,4’ €EQXQ

It can be proved that p4 is a stochastic language on X which is called the
stochastic language generated by A.

For every state g, we denote by A, the PFA A, =< X,Q, ¢, 14,7 > where
tq(q) = 1. We denote pa,(w) by pa(wl|q).

A probabilistic deterministic finite state automaton (PDFA) is a PFA A =
(X,Q,p,t,7) with a single initial state and such that for any state ¢ and for
every letter a, there is at much one state ¢’ such that ¢(g,a,q") > 0.

The class of stochastic regular languages on X is denoted by Lppa(X). It
consists of all stochastic languages generated by probabilistic finite automata.
Also, the class of stochastic deterministic reqular languages on X is denoted
by Lppra(X). It consists of all stochastic languages generated by probabilistic
deterministic finite automata.

2 Probabilistic residual finite state automata (PRFA)

We introduce in this section the class of probabilistic residual finite state au-
tomata (PRFA). This class extends the notion of RFSA defined in [6]. We extend
the notion of residual language for stochastic languages and we define a class of
probabilistic automata based on this new notion. We study its properties and
prove that the class of PRFA also defines a new class of stochastic languages
strictly including the class of stochastic deterministic regular languages. PRFA
also have a canonical form, a property in common with RFSA and PDFA.

Let L be a language, and let u be a word. The residual language of L with
respect to u is u 'L = {v | wv € L}. We extend this notion to the stochastic



case as follows. Let L be a stochastic language, the residual language of L with
respect to u, also denoted by u~!L, associates to every word w the probability
p(wlu™L) = pluw|L)/p(uX*|L) if p(uX*|L) # 0. If p(uX*|L) =0, u 'L is not
defined. Let Ly,(X) be the class of stochastic languages on X having a finite
number of residual languages.

A RFSA recognizing a regular language L is an automaton whose states are
associated with residual languages of L. We propose here a similar definition in
the stochastic case.

Definition 1. A PRFA is a PFA A = (X,Q, p,t,7) such that every state defines
a residual language. More formally

VgeQ,Iue 5* Ly =u""pa. (3)

The class of stochastic residual regular languages on the alphabet X' is de-
noted by Lprra(X). It consists of all stochastic languages generated by proba-

bilistic residual finite automata on X. Figures 2 and 3.4 show two examples of
PRFA.

Let L be a stochastic language on X, let U be a finite subset of X* and let
w € X*. We define the set of linearly generated residual languages of L associated
with U:

LGL(U) = {l € SL(X) | Hay)uev € DU),l = Z au.u_lL} (4)

uelU

and we define the set of linear decompositions of w associated with U in L:

Decompr,(w,U) = {(au)ueU €DWU) |w'L = Z au.u_lL} . (5)

uelU

Let U be a finite set of words. We say that U is a finite residual generator of
L if every residual language of L belongs to LG, (U). U is short if and only if for
all word u of U there is no smaller word v such that v 'L = u L. Let L4(X)
be the class of stochastic languages on X' having a finite residual generator. Note
that LfT g Lfrg-

We prove now that we can associate with every language L generated by a
PRFA a unique minimal short residual generator, called the base By, of L.

Remark 1. Let A= (X,Q,¢,t,7) be a PRFA generating a language L. We can
observe that {u € ¥* | 3¢ € Q,L, = v LA v < u,u™'L = v71L} is a finite
short residual generator of L with the same cardinality as ). Therefore finding
a minimal residual generator of L gives us the possibility to construct a minimal
PRFA generating L.

Theorem 1. Base unicity
Every language L of Ly has a unique minimal short residual generator
denoted by Br,.



Proof. Let U = {u1,..., wi} and V = {v1,..., vy} be two minimal short resid-

ual generators of L and suppose that [ > m. We prove that U = V. From the

definition of a residual generator, we can deduce that for all 7 in {1,...,l} there

exists a;,; € D(I) and for all j in {1,...,m} there exists 8 € D(m) such that
u; 'L = > ai’jU.;lL and UJTIL =" Bjkuy, ' L. Therefore

m 1 ! m
17 _ E § -1 _ E E A, —1
u‘L L - aiaj ﬂ‘ﬂkuk L - az,]ﬂ],k uk L'
7j=1 k=1 k=1 j=1

This implies that 37, o j6j,x = 1if i = k and 0 otherwise. Indeed, if there
exist (vk)1<k<i € D(I) such that u; 'L = 22:1 yruy 'L with 7; # 1 then

1 n
_ _ _ K
ui'L=7u'L+ Y mug'L= Y 1 Z -y L.
k=1,k%i k=1,k#i Vi

Hence U \ {u;} would be a residual generator which contradicts the fact that U
is a minimal residual generator.

Let jo be such that o j, # 0. Thus for all k¥ # i, a;,j,8j,,x = 0. Hence By, =
0 which implies that 8;,,; = 1. As a consequence, vj_OlL = 22:1 Biokup 'L =
ui_lL. Finally for all 7 there exists j such that ui_lL = v]-_lL, thatisU =V. O

As we can associate with every language L of L., a base Br, we can build a
minimal PRFA from By, using the following definition. We call this automaton
a minimal PRFA of L and we prove that it is a PRFA generating L and having
the minimal number of states.

Definition 2. Let L be a language of Lyy. For all word u, let (ayv),cp, be

an element of Decompr,(u, Br) such that u='L = > veBy Qqypv L. A minimal
PRFA of L is a PFA A= (X, ,BL,p,t,7) such that

Yu € Bg, t(u) =
V(u,u') € Br,Va € X, o(u,a,u') = ayq, - p(aX*|u=tL), (6)
Vu € Br, 7(u) = p(elu=1L).

Theorem 2. Let L be a language of Ls,y, a minimal PRFA of L generates L
and has the minimal number of states.

Proof.
A is minimal:
It is clear that a PRFA generating L must have at least as many states as
words in the base of L, i.e. at least as many states as A.
A is a PRFA generating L:
By construction we have for all u in Br, pa(e|u) = p(elu=1L).



Now suppose that for any word w such that |w| < k and for all w in Bz, we
have pa(w|u) = p(w|u!L). Then considering the letter a

palawlu) =3, cq #(u, a,u')pa(wlu)
= Yoweq Yuawp(@Z*[u™ L)pa(wlu’)
=Y weo Quauwp(@X*ut L)p(w|w'~' L) (by the induction hypothesis)
— oS T Dplwua='L)  (by ()L = Syyer, Guawt' L)
= p(aw|u~'L).

We proved that Yu € Br,u™'L = pa,. Given that

L=e¢'L= z o qu L= Z Qe uPA, = Z Hu)pa, =pa

u€EBL u€EBL u€EBL
A generates L. O

One can observe that the above definition does not define a unique minimal
PRFA, but a family of minimal PRFA. Every minimal PRFA is built on the base
of the language, but probabilities on the transition depend on the choice of the
values -

3 Characterization of stochastic languages

We propose here a characterization of stochastic languages represented by PDFA
based on residual languages. We then prove that PRFA also have a similar
characterization.

3.1 PDFA generated languages

The class of stochastic languages having a finite number of residual languages is
equal to the class of stochastic languages generated by PDFA.

Theorem 3. Ly, = Lppra

Proof.

(1) Let A=(X,Q,p,t,7) be a PDFA. For any state ¢ € Qreqch, We nOte u, the
smallest word such that ¢(go,uq,q) > 0 where Qr = {go}. For any w € X*, if
w~ 'L is defined, there exists a unique g such that ¢(qo,w,q) > 0 and therefore
wlL = u;lL.

(2) Let L € Ly, (X), let us construct a PDFA generating L. Let U be a minimal
set of words such that for any word w such that w=' L is defined, there is a word
w in U such that w='L = u~'L.

For such words w, the word u of U such that w™'L = u~'L is denoted by
Uy. We construct A = (X,U, p,1,7) with t(u:) = 1, 7(u) = p(elu~L) for all
u € U and ¢(u,a,u’) = p(aX*|u=1L) if u' = uy, and 0 otherwise, for all words
u and u' of U and for every letter a.



In order to prove that p4 = L, it is sufficient to prove that Vw € X*, p4(wX*) =
p(wX*|L). By construction, for all word u in U:

pa(EX*lu) = p(eX*|lu™'L) =1 and Va € X,pa(aX*|u) = p(aX*|u~' L)

Let us assume that for every w in X<k and for every u in U, pa(wX*|u) =
pwX*lu™1L). Let w € X% a € ¥ and u € U, If p(uaX*|L) = 0, we have
palawX*|u) = plawX*|lu=tL) = 0 and otherwise let u' the unique word of U
such that ¢(u,a,u’) >0

palawE*|u) = o(u, a,u")pa(wE*|u')
= pa(aZ*|u)pa(wZ*|u)
= p(aZ*|lu 1 L)p(wX*|u'"1L) (by the induction hypothesis)

= plawE*|u~"L) since (ua) 'L = v~ "

Then Yu € U,pa, = v~ 'L. In particular, as t(u.) =1, pa = pa,, =& 'L = L.
Therefore, A is a PDFA generating the language L. |

We propose here a similar characterization for Lpgrr 4, also based on intrinsic
properties of the associated languages.

3.2 PRFA generated languages

We prove that Lprra is the class of languages having finite residual generators;
it includes languages which may have an infinite number of residual languages.

Theorem 4. Ly, = Lprra.

Proof. Let A = (X,Q,¢,t,7), we prove that pa € Ly,,(X). For all words w and
w such that pa(uX*) #0,

pa(wlu='pa) = (quQ Yoea L(q’)<p(q’,u,q)pA(wlq)) /pa(uX¥)
= quQ Qq -pA(w|u;1pA)
where u, is the smallest word such that (u,)'pa is the stochastic residual
language generated by the state ¢, and ag = }_ . g, (q)p(d',u,q)/Pa(ul™).

Verify that }° .o a = 1.
The converse is clear from Theorem 2. O

4 Expressiveness of Lprra

In this section, we prove that the class of stochastic languages defined by PRFA
is more expressive than the one defined by PDFA, although not as expressive as
the one generated by general PFA.

Theorem 5.
Lppra C Lprra € Lpra.
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Fig. 1. A PFA generating a language not in Lprra

Proof. Inclusions are clear, we only have to show the strict inclusions.

(1) Lprra € Lpra

Let L be the language generated by the PFA described on Figure 1. As
X = {a}, all residuals are (a™)~'L. We consider a = 2.

s n . . §
p(€|(an)—1L) _ p(a | ) _ a*(1—a)+B"(1-8) _ 1_a +1 4 gn+l

- p(anX*|L) ar+p8m ar+pn
— grrtyprt 2 _ BB
=l =1 - 5

Hence p(g|(a™)~1L) is a strictly decreasing function (as 0 < 8 < 1). Suppose
that p4 has a finite residual generator U. Let ug = a™ € U such that for all
uin U, p(elug"L) < p(elu='L) and let n > ng. Then there exists (a?)ycr €
D(Card(U)) such that

pel(@m) ™ L) =Y aip(elu™"L) > Y alp(elug ' L) = p(elug ' L)
u€eU u€eU

which is impossible since p(g|(a™)~!L) is strictly decreasing.

(2) Lepra © Lprra

ap

[0}
& b,1-23

¢1-2a
2 12 |

Fig. 2. A PRFA generating a language not in Lppra.

Let L be the language generated by the PRFA described on Figure 2. Let us
consider the case when o = 32, then

an+1 +ﬂn+1 _ ﬂ2n+2 +Bn+1

mir) =
pla™|L) : 5

and
o p(a™|L ,82(n+1) +Bn+1 8- /32
pel(an) ') = P P e
p(anX*|L) pr+B A +1
as p(e|(a™)~1L) is a strictly increasing function (0 < 8 < 1), it is clear that the
number of residual languages cannot be finite. Therefore it can not be generated
by a PDFA. O




5 PRFA Learning

We present in this section an algorithm that identifies stochastic languages.
Unlike other learning algorithms, this algorithm takes as input words associated
with their true probability to be a prefix in the target stochastic language. In this
context, we prove that any target stochastic language L generated by a PRFA
can be identified. We prove that the sample required for this identification task
has a polynomial size as function of the size of the minimal prefix PRFA of L.
As Lppra € Lprra, the class of stochastic languages identified in this way
strictly includes the class of stochastic languages identified by algorithms based
on identification of PDFA. The use of an exact information on the probability
of appearance of words is unrealistic. We will further extend our work to cases
where probabilities are replaced by sample estimates.

5.1 Preliminary definitions

Definition 3. The minimal prefix set of a stochastic language L is the pre-
fixial set composed of the words whose associated residual languages cannot be
decomposed by residual generated by smaller words. More formally,

Pm(L)={u€L|puZ*|L)>0Au'Lg LGL({ve Z* |v<u})}. (7)
Remark 2. Forall wordu, LGr,({v € X* |v < u}) = LGL({v € Pm (L) | v < u}).

When L is a stochastic language generated by a PRFA, Pm (L) is finite. This
set will be the set of states of the PRFA output by our algorithm.

Definition 4. The kernel of L contains Pm (L) and some successors of ele-
ments of Pm (L). More formally,

K(L)={e}U{wa € 2" | p(waX*|L) >0ANw e Pm(L)yAa€ X}. (8)

K (L) contains the words which will be tested by the algorithm in order to
know whether they are states of the output PRFA.

Remark 3. Tt can be easily be shown that Pm (L) and K (L) are prefixial sets,
Br, € Pm (L) C K(L), and therefore Pm (L) and K (L) are finite residual gen-
erators of L.

Definition 5. Prefix PRFA are PRFA based on a prefixial set of words and
whose non deterministic transitions only occur on mazimal words.
Let A= {(¥,Q,p,t,7) be a PRFA. A is a prefix PRFA if

— @ is a finite prefizial set of X*,
— pw,a,w') #Z0=>w =waV (wa & Q ANw' < wa).

Example 1. Automaton 4 in Figure 3 is an example of a minimal prefix PRFA.
Its set of states is Pm (L) = {e,a,b}, and K(L) = {e,a,b,aa,ba}, where L is
the generated language.
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Proposition 1. Every stochastic language L generated by a PRFA can be gen-
erated by a prefit PRFA whose set of states is Pm (L). We call them minimal
prefit PRFA of L.

Proof. The proof is similar to the proof of Theorem 2. |

Definition 6. Let L be a stochastic language, a rich sample of L is a set S of
couples (u, p(uX*|L)) € X*x[0,1]. Let w1 (S) denote the set {u € X* | I(u,p) € S}.

Definition 7. Let L be a stochastic language, v a word and U and W two finite
sets of words such that: Yu € U U {v},u 'L is defined. Er(v,U,W) is defined
as the linear system composed of:

1. 0<a, <1 forallueU,

2. Y uey @ =1,
8. pwE*w™L) =Y oy aup(wE*|u™tL) for every word w in W.

Definition 8. Linear systems associated with a rich sample.

Let L be a stochastic language, v a word and U a finite set of words. Let S
be a rich sample of L such that: Vu € U U {v},u € m(S) and u='L is defined.
Let Eg(v,U) = Er(v,U,W) where W = {w € Z*|Vu € UU {v},uw € m1(5)}.
Note that Es(v,U) can be computed from S.

The set of solutions of Es(v,U) is denoted by sol(Es(v,U)).

We shall use this linear system to test whether a given stochastic residual
language v='L is in LG (U).

Definition 9. A characteristic sample of a stochastic language L € L¢yg is a
rich sample S such that

K(L) Cm(S) and Yv € K(L), let U, = {u € Pm (L) | u < v}
sol(Es(v,Uy)) = Decompr,(v,Uy).

Remark 4. Every rich sample containing a characteristic sample is characteristic.
If S is a characteristic sample of L then for every v in K (L), sol(Es(v,U,)) #
0 is equivalent to Decompr,(v,U,) # 0 which is equivalent to v 'L € LGL(U,).

Lemma 1. Every language L of Ly, has a finite characteristic sample contain-
ing O(Card(Pm (L))? Card(X)) elements.

Proof. We note S, the rich sample such that 71 (S) = X*. It is clear that
Seo 18 a characteristic sample. For every v in K(L), solutions of Eg(v,U,)
can be described as the intersection of an affine subspace of ]RCard(U,,) with
[0, l]Card(U“). Hence there exists a finite set of equations (at most Card(U,)+1),
and thus a finite set of words of X*, providing the same solutions. The rich sam-
ple generated by these equations for every v in K(L) is characteristic. Such
a minimal rich sample contains at most Card(K (L)) x (Card(Pm (L)) +1) =
O (Card(Pm (L))? x Card(X)) elements. O

The learning algorithm described below outputs a minimal prefix PRFA of
the target language when the input is a characteristic sample.
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5.2 1mpPRFA Algorithm

1mpPRFA
input : a rich sample S
output : a prefix PRFA A = (X, Q,p,t,7)

begin
Q<+ {e};ie) «1;Vae X p(e,a,e) <0
W+ {a € X¥|aem(S) and p(aX*) > 0};
do while W #
veminW; W« W — {v}; Let w € X*,a € X s.t. v =wa ;
if sol(Es(v,Q)) = () then
Q — QU{v};Vue QYo € T, p(v,z,u) < 0;
W+ WU {vx € m(9) | z € ¥ and p(vzX*) > 0};
p(w,a,) & pwas*)/pwE");
else
let (au)ucq € sol(Es(v,Q))
for all u € @ do ¢(w,a,u) + a, X (p(waX*)/p(wX*))

end if
end do
for all g€ Q do 7(¢) + 1— (¢, %,Q);

end

Theorem 6. Let L € Lprra and let S be a characteristic sample of L, then
giwven input S, algorithm ImpPRFA outputs the minimal prefit PRFA in polyno-
mial time as function of the size of S.

Proof. When the algorithm terminates, the set of states Q is Pm (L)

Let Q! (resp. v[1) denote the set Q (the word v) obtained at iteration 4 just
before the if. Considering W # () at the beginning (else pa(e) = 1).

From the definition of Pm (L), QM = {e} = {u € Pm (L) | u < vl11}.

Let us assume that Q% = {u € Pm (L) | u < v!*}. At step k + 1 there are
two possibilities:

1. If sol(Es(v, Q")) # § then as v~'L € LGL(Q"), v ¢ Pm (L) and
QW = QI = {u € Pm(L) |u< U[k]} = {u € Pm(L)|u< v[k+1]} .

2. If sol(Es(vl*, Q1)) = § then as (W)L ¢ LGL(QM), v € Pm(L). Tt
follows that Q¥+ = Q¥ U {v[¥1} and as the word v is increasing to each

iteration
QU+t = {u € Pm (L) |u< u[kH]} .

As a consequence @ C Pm (L). We also have Pm (L) C @. Indeed, if we
assume that there exists w in Pm (L) and not in @) then there exists a prefix x
of w such that Decompr(z,{u € Pm (L) |u<z}) # § = = ¢ Pm (L) and as
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Pm (L) is a prefixial set this is contradictory. Consequently the output state set
Q is Pm (L).

The algorithm terminates
Let Wl denote the set W obtained at iteration . From the definition of the
kernel of L

Wl ={a e ¥|aen(S) and p(aZ*) > 0} C K(L).
Assume that W C K(L) then at step k + 1 there are two possible cases:

1. If sol(Es(v, Q)) # 0 then W+l = Wkl — {4} C K (L)

2. If sol(Es(v,Q)) = 0 then as Decompr,(v,Q) = 0,and Q = {u € Pm (L) | u < v}
(see the first part of the proof), v € Pm (L) and for every letter a if
va € m1(S) and p(vaX*) > 0 then va € K(L). It follows

wik+1] — (W[k] — {v}) U{va € m1(S) | a € ¥ and p(vaX™*) > 0} C K(L)

As at every step one element of W is removed and K (L) is finite, the algorithm
terminates.

The output automaton is a minimal prefix PRFA of L
By construction the automaton is a minimal prefix PRFA of L. Thus A
generates L (see the proof of Proposition 1 ).

Complexity of the algorithm

There is Card(K (L)) iterations of the main loop, and we operate a resolution
of a linear system of maximal size Card(S) + Card(Pm (L)) + 1 (solvable in
polynomial time), and Pm (L) C K(L) C m1(S). Hence the algorithm complexity
is polynomial in the size of Card(S). O

Example 2. We consider the target being automaton 4 at Figure 3. We construct
a characteristic sample

1 1 1 1 1 1 7 1
={(e,1),(a,2), (b, = - - - — L ).
5 = {1 (@, ), 0, 3) a0, ), (0, ). Caaa, ), (b, 1), (a0, ), Gaaa, ).}

al2 " :
al2 = N
1. € 2. b 3. b

Fig. 3. An execution of algorithm 1mpPRFA
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First Step: The algorithm starts with @ = {¢} and W = {a,b}. One con-
siders adding the state a,

a, =1
Es(a, {e}) = { P@Z*le™' D)a; = p(aZ*|a~"L)

_ plaX*la”'L) _ p(aaX*)/p(aX*)
then ae = Csme=rry = 5508
state a is added (see Figure 3.1).

Step 2: Q = {g,a}, W = {b,aa}
One considers adding the state b,

= 2. As this system has no solution, the

Q¢ + Qg = ].
Bs(b,{e,a}) = { 30 + lag = j(obtained using a)

As this system has no solution in [0, 1]?, the state b is added (see Figure 3.2).

Step 3: Q = {¢,a,b}, W = {aa, ba}
One considers adding the state aa,

(67 + Qg + ap = 1
Es(aa,{e,a,b}) = %as +lag + élab = 2 (obtained using a)
30 + a4 + ga, = 15 (obtained using aa)
wich is equivalent to a. = 0, a, = %, ap = % The state aa is not added and two
transitions are added (see Figure 3.3).

Step 4: Q = {¢,a,b}, W = {ba}

One considers adding the state ba. The system Eg(ba, {€,a,b}) is equivalent
to a; = 0,a, = 0,ap = 1. The state ba is not added and the target automaton
is returned (see Figure 3.4).

Conclusion

Several grammatical inference algorithms can be described as looking for natural
components of target languages, namely their residual languages. For example,
in the deterministic framework, RPNI-like algorithm ([9], [10]) try to identify the
residual languages of the target language, while DELETE algorithms ([8] and
[7]) try to find inclusion relations between these languages. In the probabilistic
framework, algorithms such as ALERGIA [1] or MDI [3] also try to identify the
residual languages of the target stochastic language. However these algorithms
are restricted to the class Ly, of stochastic languages which have a finite number
of residual languages.
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We have defined the class Ly,, of stochastic languages whose (possibly in-
finitely many) residual languages can be described by means of a linear expres-
sion of a finite subset of them. This class strictly includes the class Ly,.

A first learning algorithm for this class was proposed. It assumes the avail-
ability of a characteristic sample in which words are provided with their actual
probabilities in the target language. Using similar techniques to those described
in [2] and [3], we believe that this algorithm can be adapted to infer correct struc-
tures from sample estimates. Work in progress aims at developing this adapted
version and at evaluating this technique on real data.
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