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Abstract.® We present a new statistical framework for stochastic gram-
matical inference algorithms based on a state merging strategy. We pro-
pose to use multinomial statistical tests to decide which states should be
merged. This approach has three main advantages. First, since it is not
based on asymptotic results, small sample case can be specifically dealt
with. Second, all the probabilities associated to a state are included in a
single test so that statistical evidence is cumulated. Third, a statistical
score is associated to each possible merging operation and can be used
for best-first strategy. Improvement over classical stochastic grammatical
inference algorithm is shown on artificial data.

1 Introduction

The aim of stochastic regular grammatical inference is to learn a stochastic regu-
lar language from examples, mainly through learning the structure of a stochas-
tic finite state automaton and estimating its transition probabilities. Several
learning algorithms have been proposed to infer the structure of a stochastic au-
tomaton from a sample of words belonging to the target language [2, 13,3, 14].
These algorithms are based on the same scheme: they start by building a tree
which stores exactly the sample set and test possible state merging according to
a fixed order. The two key points of these algorithms are the order in which the
possible merging operations are evaluated and the compatibility function which
evaluates whether or not two states can be merged.

The order chosen to evaluate candidate merging operations is usually hier-
archical: states are ordered according to their depth in the tree and for a given
depth according to the symbol labeling their incoming edge, the symbols of the
alphabet being ordered according to an arbitrary order. Alternative strategies,
named data-driven [5] or evidence-driven [7] have been proposed to explore the
tree. However these strategies have been applied in a non probabilistic frame-
work and are not directly dependent on the statistical significance of a merging
operation.
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Merging compatibility function which have been proposed are based either
on local statistical tests [2,13,3] or on a global test [14]. This global test is
derived from the Kullback-Leibler divergence and the merged states are chosen
in order to balance the divergence from the sample distribution and the size of
the inferred automaton. The global test has been shown to yield better results
on a language modeling task, but its complexity is significantly higher than local
tests. In the present work, we will restrict our attention to local tests.

Local compatibility tests evaluate a candidate pair of states to be merged
according to two criteria:

— the compatibility of probabilities associated with outgoing transitions labeled
by the same symbol
— the compatibility of states final probabilities

For a given transition, Carrasco and Oncina [2] proposed to use Hoeffding bounds
to evaluate an upper bound of the difference between the transition probability
estimated on the sample set and the theoretical probability. From this bound,
they derive a compatibility criterion for two estimated transition probabilities.
However, the proposed tests suffer from the following limitations:

— the transition compatibility test is derived from an asymptotic bound and
is therefore designed for large sample sets. The case of small sample sets is
not addressed whereas it is particularly important for real life applications.

— the state compatibility test is based on several independent transition com-
patibility tests, and no cumulated evidence is used.

— the compatibility test does not interact with the evaluation order, even if
data or evidence based order is used.

Solutions were proposed only for the first limitation. In [13], states with too low
frequencies are not considered during the inference and afterward are merged
into special low frequency states. In [16], a statistical test is used to separate
low frequency states, which are merged at the end of the inference according to
heuristics.

We propose a new compatibility test based on a classical multinomial good-
ness of fit test. For each state, the set of outgoing transitions probabilities may
be modeled by a multinomial probability distribution on the alphabet. In this
framework, for each state, the set of observed frequencies for these transitions
is the realization of a multinomial random variable. The compatibility test be-
tween two states is then a classical statistical test : given the observed transition
frequencies, test the hypothesis that the two states share the same underlying
multinomial probability distribution. The advantages of this approach are:

— small value frequencies can be specifically dealt with, using exact tests.

— all outgoing transitions probabilities are considered in a single test, such that
evidence is cumulated.

— by normalizing the test score, several merging operations can be compared
and the evaluation order can be modified accordingly.
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The structure of this paper is as follows : first we recall the definition of
probabilistic finite state automata and present the Alergia inference algorithm.
Then we present a new multinomial framework for the inference algorithm and
propose solutions for small sample case and evidence driven search strategy.
Finally, the proposed tests and strategies are compared on artificial data.

2 Probabilistic Finite State Automaton

We consider probabilistic finite state automata (PFSA), which are a probabilistic
extension of finite state automata. A PFSA A is defined by < Q, X, 4,7, qo, F >
where

— (@ is a finite set of states

— X is the alphabet

— §:Q x X — @ is a transition function

— 7:Q x X —]0,1] is a function which returns the probability associated with
a transition

— qo is the initial state,

— F : @ — [0..1] is a function which returns the probability for a state to be
final

Furthermore, we only consider PFSA which are structurally deterministic. This
constraint comes from the learning algorithm. This means that given a state ¢
and a symbol s, the state reached from the state g by the symbol s is unique if
it exits.

In order to define a probability distribution on X* (the set of all words built
on X), 7 and F must satisfy the following consistency constraint :

VqEQ,[ZT(q,a) +F(g) =1

acX

A string ag - - - a;—1 is generated by an automaton A iff there exists a sequence
of states eg - - - ; such that

— € = 4o
- Vie [0,l - 1], (5(61',(11') = €41
- F(el) 75 0.
The automaton assigns to the string the probability
1-1
Pprsa(ao---ai—1) = [H (e, a;) | * Fler)
i=0

Note that PFSA are a particular case of Markov models with discrete emis-
sion probabilities on transitions and with final probabilities.
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Algorithm 1 Generic PFSA induction algorithm
Input:
I, training set (sequences)
«, a precision parameter
Output: a Probabilistic Finite State Automata
A « build_ PPTA(I;)
while (g;,q;) < choose_states(A) do
if is_compatible(q;,q;j, ) then
merge(A,gi, ;)
end if
end while
return A

2.1 Learning algorithm

Several algorithms have been proposed to infer PFSA from examples [2,13,14].
All these algorithms are based on the same scheme, which is presented as algo-
rithm 1.

Given a set of positive examples I, the algorithm first builds the proba-
bilistic prefix tree acceptor (PPTA). The PPTA is an automaton accepting all
examples of I, , in which the states corresponding to common prefixes are merged
and such that each state and each transition is associated with the number of
times it is used while parsing the sample set. This count is then used to define
the function 7: if C'(q) is the number of times the state ¢ is used while parsing
I, and C(q,a) is the number of times the transition (g, a) is used while parsing

I, then 7(q,a) = Cé’gq‘;) Similarly, if C'¢(g) is the number of times g is used as

final state in I for each state g, we have F(q) = %%. The second step of the
algorithm consists in running through the PPTA ( function choose_states(A)),
and testing whether the states are compatible as a function of the precision pa-
rameter « (is_compatible(q;,q;,)). If the states are compatible, they are merged
(function merge(4,g;,q;)). Usually, several consecutive merging operations are
done in order to keep the automaton structurally deterministic. The algorithm
stops when no more merging is possible. In the case of the Alergia algorithm [2],
the compatibility of two states is based on three different tests : the compatibil-
ity of their outgoing probabilities on the same letter, the compatibility of their
probability to be final and the recursive compatibility of their successors.

More formally, the compatible test is derived from Hoeffding bounds [6]. Two

states q1 and ¢y are compatible iff:
1 2 1 1
<y/5In— + (1)
2 a(\/c((h) \/0(112))

‘Cf((h) _ Cyla2) T2t , 1
Clq1) Cl(g2) 2 o\ /Clq1) /Clg)
Va € X,6g(q1,a) and dg(ge,a) are compatible (3)

Vg e X ‘C(qlaa) _ C(q2>a)

C(lh) C(Qz)

1
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However, these compatibility tests suffer from several limitations. First the
tests 1 and 2 are done independently and no cumulated evidence is used. Second,
theses tests derived from Hoeffding bounds which are asymptotic results. Their
behavior on finite and limited data is not considered. They are used to prove
the identification in the limit of the structure of the target automaton by the
algorithm , but might not be adapted for small sample cases.

The search order followed by the Alergia algorithm can also be improved.
This algorithm searches for possible merging between states of the PPTA using a
hierarchical order. States are ordered according to their depth in the tree and for
a given depth according to the symbol labeling their incoming edge, the symbols
of the alphabet being ordered according to an arbitrary order. When sufficient
data is available, the order in which merging operations are done at a given
depth is not critical, since only relevant state pairs are compatible. However, in
the case of limited data, it is important to perform first the merging operations
supported by the most evidence.

In section 3, we propose a framework for compatibility tests dealing with
these limitations.

3 Multinomial state model

Each state of the automaton is associated with a multinomial distribution mod-
eling the outgoing transition probabilities and the final probability. In other
words, each state is associated with a multinomial random variable with param-
eter 7 = {71, 72, -+, Tk }, each 7; corresponding to the transition probability on
the ith letter of the alphabet including a special final state symbol. If a tran-
sition on a given letter does not exist from a given state, its probability is set
to zero. In the PPTA, each state ¢ is seen as a realization of the multinomial
random variable 79 = {7{,74,---, 7%} of the state in the target automaton it
corresponds to. The problem of identifying the target automaton is the same
as finding the states in the PPTA which correspond to the same states in the
target automaton and thus must be merged. In our framework, states of the
PPTA which are assumed to be the realization of the same random variable can
be checked for compatibility according to a statistical test.

3.1 Multinomial compatibility test

We consider the Hy hypothesis that two states ¢; and ¢o of the PPTA must be
merged. In this case, they are both a realization of the same multinomial random
variable associated with the state of the target automaton they correspond to,
7 = {7r],74,---, 7% }. Using notations of section 2.1, for each state the expected
frequency for each transition i is respectively C'(¢1)7{ and C(g2)7{. The unknown
parameters of the random variables 77 can be estimated by maximum likelihood:

g _ Clq1,9) + Clg, )
’ Clq1) +Clg2)
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letter a letter b total
C(q1,a) C(q1,b)
tate |, = Olg)es iy = Ol cla)
C(g2,a) C(q2,b)
state g2 Haa = Clg2)? Hap = Clg2)? C(q2)
total C(a) = C(q1,a) + C(g2,a)|C(b) = C(q1,b) + C(g2,b)|N = Cq1) + C(q2)

Fig. 1. Observed and expected transition frequencies on a two letters alphabet for two
states under Ho hypothesis

The expected frequencies Hy; are then

C(qla Z) + 0(112,1) C(qla 7/) + C(Qzﬂ)
Cla) + Clg2) Clq1) + Clg2)

Figure 1 summarizes these results for a two letters alphabet in a contingency
table.

The Pearson statistic [11] is one of the most classical statistics to test the Hg
hypothesis:

C(QI)A;I =C(q1)

and C(Qz)}g =C(q)

Z (C(C_h,k') — Hyy, n Clqz, k) _H2k)

X? =
Hyy, Hyy,

k
Several other statistics have been proposed like the log-likelihood ratio statis-
tics [15] or the power-divergence statistics family [4]. All these statistics follow
asymptotically a x? distribution with K — 1 degrees of freedom. The Hy hy-
pothesis will be rejected with confidence « if the test statistic X2 is larger than
X2(K — 1,a). This statistic can be used in the following conditions:

— the sample set must be large enough to allow a multinormal approximation
of the multinomial distribution. Typically, C(¢) must be larger than 20 and
C(g,i) must be larger than 5 for all letters.

— the dimension of the multinomial random variables must be constant with
respect to the sample size.

In particular, the first condition implies that this statistic can not be used to
compare two states as soon as a transition is observed in one of them and not
observed in the other. Section 3.2 proposes a solution to this problem, common
in real data.

3.2 Small sample case

In the case where x? statistics can not be applied due to too small observed
frequencies, the Fisher exact test can be used. Given two states and their transi-
tion frequencies summarized in a contingency table, as show on Figure 1, this test
consists in computing the probability of all the contingency tables with the same
marginal counts as the tested table (same values for C(g;),C(g;),C(a),C(D))
and at least as unfavorable to Hy. For fixed marginal counts, the probability
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Algorithm 2 Recursive contingency table enumeration algorithm
Input:
a 2 x ¢ contingency table: x[2][c]
current position in table : j
line and column table sums : ng, n1,Co,---,C»r
partial column sum for current position sc
partial cell sum for cells already set sz
total table sum N
Output: enumerate all tables with same marginal counts
lj < maz(sc+ no + Cj — st — N,0) {set minimal value}
uj <+ min(ng — sz,c;) {set maximal value}
for z(1,j) = 1j to uj do
z(2,7) «+ C; — z(1,j) {set line 2 value}
sc < sc+ C; {update sc}
sz st + (1, j) {update sz}
if j #c—1 then
Enumerate_table(z[2][¢], j + 1, no, n1, Co, - - -, Cr, sc, sz, N) {recursive call}
else
z(1,7) < no — sz {set line 1 value}
z(2,7) «+ C; —z(1,7) {set line 2 value}
output table
end if
sc < sc — C; {update sc}
sz + st —z(1,j) {update sz}
end for

of a contingency table is given by an hypergeometric distribution. To compute
the Fisher exact test, we enumerate all the contingency tables with the same
marginal counts as the tested table and at least as unfavorable to Hy, we add
their probability computed by the hypergeometric distribution and directly com-
pare this sum to the confidence threshold a to accept or reject Hy.

March [8] proposed an iterative algorithm to enumerate all the contingency
tables at least as unfavorable to Hy. We propose a recursive version of this algo-
rithm in case of 2 x k tables (see algorithm 2). This algorithm only enumerates
the tables with correct marginal counts. It consists in a loop on all cells of the
table, in which all possible values are enumerated. Given a cell and a possible
value for this cell, the possible values for all other cells are computed with a
recursive call to the enumeration function.

3.3 Algorithmic complexity of the test

Using the multinomial compatibility test does not increase the initial complexity
of the inference algorithm since x? values can be tabulated. When using the
Fisher exact test, the number of contingency tables we need to evaluate in order
to compute is exponential in the number of degree of freedom in the table,
which is the size of the alphabet. However, several solutions have been proposed
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Algorithm 3 Evidence driven state merging
Input: a Probabilistic Prefix Tree Acceptor
Output: a Probabilistic Finite State Automata
set the initial state to red
set the direct successors of the initial state to blue
while there is a blue node do
evaluate all red/blue merging
if there exists a blue node incompatible with all red node then
promote the shallowest such blue node to red
else
perform the highest score red/blue merging
end if
end while

to evaluate the Fisher exact test without a complete enumeration of the possible
tables using properties of the multinomial distributions [10] or with dynamic
programming methods [9]. An hybrid algorithm, using both exact tests and
normal approximations has also been proposed [1].

3.4 Evidence driven search strategies

Alternative search strategies have been proposed in the framework of deter-
ministic finite automaton induction from positive and negative examples [5, 7].
Data-dependent strategy [5] is based on the idea that merging operations that
are supported by the most evidence must be done first. A variant of this strat-
egy, successfully implemented with an additional merging order constraint by
Lang [7], is known as the Blue-Fringe algorithm (see Algorithm 3). This algo-
rithm consists in maintaining a set of states already checked (red states) and a
set of states candidate for a possible merging operation (blue states). Blue states
are states directly accessible from a red state. All red/blue states pairs are con-
sidered. If at least one blue state is incompatible with all the red states, the
such blue node with lowest depth is promoted to red. Otherwise, the red/blue
merging operation with the highest score is done. Red and blue sets are updated
and all red/blue states pairs are considered again. The algorithm stops when
there is no more blue state.

We propose here an extension of the Blue-Fringe algorithm to infer proba-
bilistic automata. In the case of a multinomial compatibility test, we need to
compare the x2 values of all possible merging operations between a red and a
blue state. It is not possible to directly compare x? values since they depend
both on the number of observations and the size of the contingency table.

To compare the possible merging operations, we propose to use the p-value,
the significance level of the test. The p-value is the smallest value of a for which
Hy is rejected. A possible merging operation with a high p-value denotes a
strong association between the two states whereas a small p-value denotes a weak
association. Other y? results comparison coefficients, like Cramer’s V coefficient,
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Fig. 2. The SDFA corresponding to the Reber grammar

could be used, but they should be adapted to take into account the case when
the Fisher test is used. With a multinomial compatibility test in algorithm 3,
the merging operation with the highest score is the one with the highest p-value.

4 Experiments

In order to compare our approach with previously published results [2,3], we
have tested the multinomial based inference on artificial data. We used the Re-
ber grammar [12], presented on Figure 2, as the target automaton. We have
inferred automata on randomly generated learning sample sets of size varying
from 5 to 100 strings (about 100 to 2000 symbols). All results presented in this
section are averaged over 50 different runs of the experiments. The inference
algorithms tested were Alergia [2], the proposed inference algorithm based on
the multinomial compatibility function, denoted as Malergia, and the evidence-
driven variation, denoted as Blue-Malergia.

Since our goal is to improve inference when available data is limited, we do
not present inference results in the limit (when the learning set size grows to
infinity) but rather on small size learning sets.

All presented inference algorithms depend on a learning parameter (a in
algorithm 1). For each algorithm, this parameter has been tuned to the value
leading to the fastest convergence to an automaton with the same number of
states as the target automaton (o = 0.1 for Alergia and a = 0.005 for Malergia
and a = 0.001 for Blue-Malergia). Note that , if we use standard thresholds
on frequencies to decide when to apply exact tests, the number of parameters
needed when using multinomial tests is the same as Alergia.

Figure 3 shows the number of states of the inferred automaton as a function of
the size of the training set for the three algorithms. The two versions of Malergia
show a faster convergence to the correct number of states.

We have evaluated the statistical distance between the target language and
the inferred language. On a large sample S of the target language (10 000 words,
96232 symbols), we have computed the average difference between the probabil-
ity P, assigned by the target automaton and the probability P; assigned by the
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number of states
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Fig. 3. Number of states of the inferred automaton for increasing learning set size for
Alergia, Malergia and Blue-Malergia.
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Fig. 4. Value of L1 for increasing learning set size for automata inferred with Alergia,
Malergia and Blue-Malergia
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inferred automaton: 1

S| > 1Pi(w) = Py(w)]

weS

L1=

Figure 4 shows the value of L1 when the size of the learning sample is increasing.
The use of multinomial tests significantly reduce the average error made when
assigning a probability to a word in the target language with the inferred au-
tomaton. However , on this task, the advantage of using evidence driven strategy
is not shown. This point should be further explored.

5 Conclusion

We have proposed a new statistical framework for grammatical inference algo-
rithms based on a state merging strategy. Each state is considered as a realization
of a multinomial distribution and a merging operation of two states is evaluated
with a x? test. In this framework, small sample case can be particularly dealt
with, all frequencies concerning two states to be merged are used in a single
test so that statistical evidence is cumulated and possible merging operations
can be compared. Further evaluations of this framework should be conducted,
in particular on real data.

References

1. J. Baglivo, D. Olivier, and M. Pagano. Methods for analysis of contingency tables
with large an small cell counts. Journal of the American Statistical Association,
83(404):1006-1013, 1988.

2. R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of
a state merging method. In Proc. Int. Coll. on Grammatical Inference, volume 862
of Lecture Notes in Artificial Intelligence, pages 139-152. Springer Verlag, 1994.

3. R. C. Carrasco and J. Oncina. Learning deterministic regular grammars from
stochastic samples in polynomial time. RAIRO (Theoretical Informatics and Ap-
plications), 33(1):1-20, 1999.

4. N. Cressie and T.R.C. Read. Multinomial goodness-of-fit tests. Journal of the
Royal Statistical Society Series B, 46:440-464, 1984.

5. C. de la Higuera, J. Oncina, and E. Vidal. Identification of DFA: data-dependent
vs data-independent algorithms. In Laurent Miclet and Colin de la Higuera, edi-
tors, Proceedings of the Third International Colloquium on Grammatical Inference
(ICGI-96): Learning Syntaz from Sentences, volume 1147 of LNAI, pages 313-325,
Berlin, September 25-27 1996. Springer.

6. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13-30, March 1963.

7. Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the Ab-
badingo One DFA learning competition and a new evidence-driven state merging
algorithm. In Springer-Verlag, editor, Proc. Int. Coll. on Grammatical Inference,
volume 1433 of LNAI, pages 1-12, 1998.

8. D.L. March. Exact probability for r x ¢ contingency tables. Communications of
the ACM, 15(11):991-992, November 1972.



12

9.

10.

11.

12.

13.

14.

15.

16.

C. Kermorvant and P. Dupont

C. Mehta and N.R. Patel. A network algorithm for performing fisher’s exact
test in rxc contingency tables. Journal of the American Statistical Association,
78(382):427-434, 1983.

M. Pagano and K. Taylor Halvorsen. An algorithm for finding the exact significance
levels of r xc contingency tables. Journal of the American Statistical Association,
76(376):931-934, 1981.

K. Pearson. On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. Philosophy Magazine, 50:157-172,
1900.

A.S. Reber. Implicit learning of artificial grammars. Journal of verbal learning and
verbal behaviour, 6:855-863, 1967.

D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic prob-
abilistic automata. In Proceedings of the Eighth Annual Conference on Computa-
tional Learning Theory, pages 31-40, Santa Cruz, CA, 1995. ACM Press.

F. Thollard and P. Dupont. Probabilistic DFA inference using Kullback-Leibler
divergence and minimality. In Proc. Int. Conf. on Machine Learning, pages 975—
982. Morgan Kaufmann, San Francisco, CA, 2000.

S.S. Wilks. The large-sample distribution of the likelihood ratio for testing com-
posite hypotheses. Annals of Mathematical Statistics, 9:60-62, 1938.

M. Young-Lai and F. WM. Tompa. Stochastic grammatical inference of text
database structure. Machine Learning, 40:111-137, 2000.



