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Abstract. Standard state-merging DFA induction algorithms, such as RPNI or
Blue-Fringe, aim at inferring a regular language from positive and negative
strings. In particular, the negative information prevents merging incompatible
states: merging those states would lead to produce an inconsistent DFA. Whenever
available, domain knowledge can also be used to extend the set of incompatible
states. We introduce here mandatory merge constraints, which form the logical
counterpart to the usual incompatibility constraints. We show how state-merging
algorithms can benefit from these new constraints. Experiments following the
Abbadingo contest protocol illustrate the interest of using mandatory merge con-
straints. As a side effect, this paper also points out an interesting property of state-
merging techniques: they can be extended to take any pair of DFAs as inputs rather
than simple strings.

1 Introduction

Deterministic Finite Automaton (DFA) induction is a popular technique to infer a regu-
lar language from positive and negative strings defined over a finite alphabet 3. Several
state-merging algorithms have been proposed to tackle this task, including RPNI [1]],
EDSM and Blue-Fringe (also known as redBlue) [2]]. These algorithms start from a tree-
shaped automaton, the so-called prefix tree acceptor (PTA), that accepts the positive
sample S only, and successively merge states to generalize the induced language. The
order in which pairs of states are considered for merging is the key difference between
the respective algorithms. In all cases, the generalization is controlled by the negative
sample S_ to prevent merging incompatible states. Merging those states would lead to
build an inconsistent machine, that is a DFA which accepts at least one negative string.

The availability of negative information is theoretically motivated since positive and
negative samples are required to identify in the limit any super-finite class of languages,
including the regular language class [3]. The convergence proof of RPNI, for instance,
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is related to the definition of a characteristic sample. When RPNI receives as input such
a sample, it is guaranteed to output the target machine, that is, the canonical automaton
of the target language. Such a characteristic sample includes O(n?) negative strings,
where n denotes the number of states of the target machine.

When few negative strings are available, one can rely on another kind of knowledge,
typically provided by the application domain. For example, when some additional in-
formation is available about incompatibilities between states of the initial automaton,
state merging algorithms can easily be extended to avoid merging states that are known
to be incompatible [45]. This technique, sometimes referred to as state coloring, may
be seen as incompatibility constraints on the induction algorithm.

Our previous work applies grammatical inference to the Requirements Engineering
(RE) domain [6]. In such an applicative context, domain-specific information, repre-
sented as incompatibility constraints, can be used in conjunction with negative strings
to avoid poor generalizations while reducing the induction search space. In the same
work, we introduced the QSM algorithm, an active learning extension to RPNI or Blue-
Fringe with membership queries [7]]. These queries are generated during the induction
process and provide additional positive and negative strings, overcoming the limitations
of an initially sparse learning sample.

The present work introduces a new kind of constraints, called mandatory merge con-
straints. They form the logical counterpart to the incompatibility constraints. This pa-
per investigates this kind of constraints and how to extend state-merging algorithms to
handle them. The extended algorithm, called MSM, has been evaluated using an ex-
perimental protocol inspired by the Abbadingo competition [2]]. We show experimen-
tally that MSM converges faster than existing algorithms. This result is actually quite
straightforward since MSM uses a richer information as input. However, two additional
observations are arguably the actual contributions of this work.

Firstly, DFA induction algorithms using state-merging typically include a recursive
merging process to reduce the non-determinism of temporary solutions. Such a merg-
ing for determinization process is often implemented assuming a tree invariant prop-
erty. This property states that, when considering two states to be merged, at least one of
them is the root of a tree. Such a property, which holds for RPNI and Blue-Fringe, but
interestingly not for EDSM, is a sufficient condition for the determinization process to
be finite. We argue here that, even though it is convenient, the tree invariant property is
not required as the determinization process stops by itself. The important consequence
of this observation is that the initial automaton to be considered no longer needs to be
a tree representing a finite sample. Hence MSM naturally gives rise to the Automa-
ton State Merging (ASM) algorithm, that is a state-merging induction algorithm which
takes as input a positive regular language represented by a DFA A, and a negative
sample S_, and outputs a regular language L with L(A) C L C X*\ S_. Secondly,
we discuss a natural extension to ASM which takes as input a positive DFA A and a
“negative” DFA A_ and returns a regular language L with L(A,) C L C X*\ L(A_).
The initialization of this extended algorithm would immediately detect an inconsistency
whenever L(A;) N L(A_) # 0.

The rest of this paper is structured as follows. Section[2]briefly reviews the Require-
ment Engineering application context which originally motivated the present work.
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Section[lreviews the DFA state-merging induction algorithms and the use of incompat-
ibility constraints. Section[d introduces mandatory merge constraints and describes the
MSM algorithm. Section [3] presents the experimental protocol and the results obtained
using MSM on synthetic data and on a RE case study. The ASM algorithm to deal with
positive and negative automata as inputs is discussed in section[6l Our conclusions and
future works are presented in section [7}

2 The Synthesis of Software Behavior Models Seen as a DFA
Induction Problem

It has been claimed that the hardest part in building a software system is deciding pre-
cisely what the system should do. This is the general objective of Requirements Engi-
neering (RE). Automating parts of this process can be addressed by learning behavior
models from scenarios of interactions between the software-to-be and its environment.
Indeed, scenarios can be represented as strings over an alphabet of possible events and
they can be generalized to form a language of acceptable behaviors. Whenever behav-
iors are modeled by finite-state machines, the problem becomes equivalent to automaton
induction from positive and negative strings.

Scenarios are typical examples of system usage provided by an end-user involved in
the requirements elicitation process. A simple message sequence chart (MSC) formal-
ism is used for representing scenarios. A MSC is composed of vertical lines representing
time-lines associated with agent instances, and horizontal arrows representing interac-
tions among such agents. Figure [I] depicts some scenarios for a simple train system.
The system is composed of four agents: a train controller, train motor and doors, and a
passenger. For example, the scenario “Start/Stop” expresses that the train controller can
start the train and then stop the train from the initial state.

Related works on RE are described in [[7]. The technique proposed in the present
paper allows one to inductively synthesize behavior models from positive and negative
scenarios while taking into account their flowcharting in a high-level Message Sequence
Chart (hMSC). A hMSC is a directed graph where each node references a scenario.
Edges indicate the acceptable flowcharting of these scenarios, allowing the end-user to
reuse scenarios within a specification and to introduce sequences, loops, and alterna-
tives. Figure [Tl presents an example of scenario flowcharting for the train example. An
induction approach for behavior synthesis is relevant because a PT' A can easily be de-
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Fig. 1. Some scenarios for a simple train system and their flowcharting in a hMSC (center)
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emergency stop emergency open

Fig. 2. A labeled Prefix Tree Acceptor generated for the train system

rived from the positive and negative scenarios: the transitions drawn as solid lines form
a spanning tree of the hMSC resulting in the initial PTA of Figure 2l Moreover, the
hMSC provides additional information that must be used during the induction process:
dashed lines allow one to identify equivalent system states. A label is associated to
those equivalent states in the PT A (x in the example). The MSM algorithm introduced
in section [ ensures that they will be merged by the induction process.

3 State-Merging DFA Induction with Incompatibility Constraints

This section briefly reviews the DFA induction problem using state-merging algorithms
and incompatibility constraints. The concept of quotient automaton, strongly related
with state-merging, is introduced in section 3.1l Section B.2] presents a family of state-
merging algorithms, RPNI being one representative example. Section[3.3 describes one
efficient way to handle incompatibility constraints in such algorithms.

3.1 State-Merging and Quotient Automaton

State-merging DFA induction algorithms, such as RPNI, start from an initial automaton
called a prefix tree acceptor PT A(S4 ). It is the largest trimmed DFA accepting exactly
S (see the automaton on the left of Fig.[3). The generalization operation obtained by
merging states is defined through the concept of quotient automaton, relative to a par-
tition 7 of the state set of the original atomaton. States belonging to the same subset,
or block, of 7 are merged in the quotient automaton (see the automaton on the right of
Fig.[B). Any accepting path in the PT A is also an accepting path in PT' A/7. As a quo-
tient automaton corresponds to a particular partition, the set of possible generalizations
which can be obtained by merging states of an automaton A can be searched through
a lattice of partitions Lat(A) [8].

Fig.3. (left) PT A(S+) with Sy = {\, a,bb,bba,baab} and A\ denoting the empty string;
(right) a quotient automaton A = PTA/m where 7 = {{0}, {1}, {2,4},{3,6},{5},{7}}.
Accepting states are represented as doubly circled nodes.



State-Merging DFA Induction Algorithms with Mandatory Merge Constraints 143

3.2 State-Merging DFA Induction Algorithms

RPNI is a very well known DFA induction algorithm [[1]]. It can be seen as a particular case
of the state-merging algorithm described in Algorithm([Il It takes a positive and a negative
sample as input. The first step constructs the PTA[. An initial partition is initialized and
successively updated by the main loop of the algorithm. At each step of this loop, two
blocks of the partition are selected as candidate for merging. These partition blocks pre-
cisely define the states of the quotient automaton P7"A /. In other words, each step can
be interpreted as merging two states of a quotient automaton, which forms an intermediate
solution of the algorithm. When compatible with the negative sample, this intermediate
solution is kept for the next step, otherwise it is simply discarded. The algorithm continues
by selecting other blocks to merge, until no more state pairs can be considered.

Algorithm 1. A state-merging DFA induction algorithm

Algorithm STATE-MERGING DFA INDUCTION ALGORITHM
Input: A positive and negative sample (S, S_)

Output: A DFA A consistent with (S, .S_)

// Compute a PT A, let N denote the number of its states
PTA «— Initialize(S4, S—);m«— {{0}, {1},....{N —1}}

// Main state-merging loop
while (B;, B;) < ChoosePair (7) do
Thew < Merge(w, B, Bj)
if Compatible(PTA/Tpew, S—) then
T < Tnew

return PTA/7

// This function merges two blocks and removes non-determinism recursively
Merge(w, B;, Bj) begin
m — a\{Bi, B;} U {B; UB;}
while (By,, B;) < FindNonDeterminism(w, B;, B;) do
7w < Merge(w, By, By)

return
end

The pseudo code of the Merge function is shown below the main loop. The first line
simply updates the partition 7 by effectively merging the two block arguments. Merging
two blocks B; and B; may lead to a non-deterministic quotient automaton; the partition
is then recursively updated in order to reduce the non-determinism.

The ChoosePair function determines which pairs of blocks to consider for merg-
ing. In the particular case of the RPNI algorithm, it relies on the standard lexicographi-
cal order on strings. The Blue-Fringe algorithm uses an heuristic approach according to
the order in which state pairs are chosen, while identifying as soon as possible the states
which are incompatible with all their predecessors [2]. For both algorithms, the block
B; in the main loop and, by extension, the block B, in the Merge function, are always
the roots of a tree. This is the tree invariant property already mentioned in section [Il
This property also helps implementing particularly simple and fast algorithms [2].

! The reason why the PT A is built using S as well as S_ results from a variant motivated in
section[33]
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Fig. 4. Augmented PT A from the sample (S+, S—) = ({\, a, bb, bba, baab}, {ab,b}). The pos-
itive sample can be represented by the PT A illustrated on the left of Fig3l This PT A can be
augmented by the negative sample, by coloring states reached by a negative string as black. Ac-
cepting states (of positive strings) are filled in grey in this figure.

3.3 Handling Incompatibility Constraints

Negative strings play a crucial role in automaton induction algorithms, as they are used
to avoid merging incompatible PT A states. When few negative strings are provided in
the initial sample S_, alternative sources of knowledge can be used to play a similar
role. In particular, knowledge about incompatibilities between states of the PT'A can
easily be incorporated in the induction process as coloring constraints. As the negative
sample S_ can itself be encoded as such constraints, we used this particular example to
illustrate the technique in Fig.[dl

To ensure that the solution returned by the induction algorithm correctly rejects S_,
it suffices to avoid merging black and grey states of the PT A. In other words black
and grey states form incompatible pairs. This black/grey coloring can be captured by
a partial function f.,;(Q) — {grey,black}, where @Q is the set of PT A states. A
quotient automaton PT A /7 respects the coloring constraint if, Vg1, g2 € @ such that
feot(q1) # feoi(g2) and both are defined, if ¢ € B; and g2 € B; then B; # B;. In
other words, each block B may contain any number of uncolored states (4 and 6 in our
example) but grey and black states must be kept separate from each other. Checking
the constraints can be efficiently performed in the Merge function. The Compatible
function in the main loop can thus be replaced by a compatibility test between merged
blocks in the Merge function. This algorithm is able to detect inadequate solutions
during the determinization procedure itself, speeding up the induction process. This
improvement is illustrated in section ] where the MSM algorithm is introduced. More
details about this state coloring technique can be found in and examples of RE
domain-specific information in [[7]. Domain knowledge represented as incompatibility
constraints has also been used for subsequential transducer learning [9].

4 State-Merging with Mandatory Merge Constraints

Section 2l explains why mandatory merge constraints arise in our RE application con-
text. We present here, the MSM (Mandatory State Merging) algorithm, a straightfor-
ward adaptation of Algorithm[I]to deal with such constraints.

Mandatory merge constraints are the logical counterpart to the incompatibility con-
straints. It is interesting to elaborate briefly on the logical differences between them.
Consider for example the PT A of Fig.[4l Grey and black states are known to be incom-
patible: merging them would lead to a solution that accepts at least one negative string.
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In addition, we assume that some domain-specific knowledge allows the user to state
that go and ¢g in this PT'A do in fact represent the same state in the target machine.
In our application domain, this kind of knowledge takes the following form: “From the
initial state, the software accepts exactly the same future behaviors after the occurrence
of event b (state 2) and the sequence of events baa (state 6)”. By virtue of the mapping
between states of a canonical DFA and residual languages (the “future behaviors” in
our example), these states must be merged by the induction process: not merging them
will lead to a solution that does not respect this positive domain knowledge.

Capturing mandatory merge constraints uses a similar mechanism to state coloring,
this one being called state labeling. Formally, we introduce a partial labeling func-
tion f1,5(Q) — {r,s,t,...}, where Q is the set of PT A states and r, s, ¢ are labels.
States with the same label must be merged by the induction process. In our example,
the fact that states go and ¢ must be merged is captured by fias(q2) = fian(gs)- A
quotient automaton PT A/ respects the labeling constraints if, Vq1, g2 € @ such that
frav(q1) = fiab(g2) and both are defined, if ¢; € B; and ¢» € B; then B; = B;.

Given a particular partial coloring function f.,; and a particular partial labeling func-
tion fj4p, their influence on the induction process is the following. States with different
colors may not be merged, while states with the same color may be merged. States
with different labels may be merged, while states with the same label must be merged.
It is worth stressing that the labeling information does not replace the negative knowl-
edge, which is included in the coloring constraints. In the extreme case where all states
are correctly labeled but no incompatibility constraints (hence no negative examples)
are present, all states can, and actually will, be merged. In short, labeling and coloring
information help together to achieve a good generalization accuracy.

The apparent symmetry between the two types of constraints is however not reflected
in the merging process. Coloring (or incompatibility) constraints must be enforced at
each step of the algorithm while the labeling (or mandatory) constraints need not be.
Indeed, if any intermediate solution violates the coloring constraint, it will also be vi-
olated by any quotient automaton of this intermediate solution. In other words, when
such a constraint is violated no more path exists in the search space to an adequate
solution. This is the reason why intermediate solutions are checked at each step of the
algorithm and discarded if required.

In contrast, an intermediate solution not respecting a labeling constraint does not im-
ply that a quotient automaton of this solution would not. A trivial example of this fact
is the PT' A itself: in our example, states go and gg must be merged while not being
originally in the same block, thus initially violating the labeling constraint. Under the
hypothesis that labeling and coloring constraints are consistent with each other, some
quotient automaton of the P7T'A may however be consistent with all constraints. Dy-
namically checking whether an intermediate solution PT A /7 not satisfying a labeling
(or mandatory merge) constraint, can indeed lead to a consistent automaton looks to be
a difficult task. The MSM algorithm described below adopts a straightforward approach
to satisfy labeling constraints without the need for such a dynamic check.

MSM (see Algorithm [2)) is a state-merging induction algorithm ensuring that both
kinds of constraints are satisfied. As motivated in section 3.3l incompatibility con-
straints between states provided by the state coloring (including those provided by the
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negative sample) are checked in the Merge function instead of the main loop; an excep-
tion mechanism can be used to handle incompatibility notifications. Secondly, all blocks
that must be merged according to the labeling information are merged immediately, that
is, before entering the main loop. The FindSameBlocks function identifies pairs of
blocks in 7 having the same label. These blocks are merged using the Merge func-
tion. This ensures that potential non-determinism is actually reduced. If coloring and
labeling constraints are inconsistent, the avoid exception is not caught by the algorithm
and typically raised to the user. If successful, the first while loop produces a quotient
automaton PT A/ respecting both coloring and labeling constraints. The partition 7
is then further updated by the usual state-merging loop. While this loop takes care of
respecting coloring constraints, the labeling constraints could simply not be violated
anymore. Indeed, after the initial phase, states that must be merged are necessarily in
the same blocks of 7 and those states will remain merged forever.

Algorithm 2. MSM, a DFA induction algorithm that satisfies incompatibility (col-
oring) and mandatory merge (labeling) constraints

Algorithm MSM

Input: A non-empty initial positive and negative sample (S, S_)
Input: Labeling and coloring constraints

Output: A DFA A consistent with (S, S_) and all constraints

// Compute a PTA, let N denote the number of its states
PTA «— Initialize(Sy, S—); m « {{0},{1},....,{N —1}}
// Merge all states according to labeling constraints
while (B;, B;) < FindSameBlocks (7) do
7w « Merge(m, By, By)

// Main state-merging loop
while (B;, B;) < ChoosePair (m) do
try
m <« Merge(w, B, Bj)
catch avoid
// next state pair to consider

return PTA/7

// This function merges two blocks and removes non-determinism recursively
// while checking coloring constraints
Merge(n, B;, B;) begin
if Incompatible(B;, B;) then
raise avoid
T — F\{Bi, B]‘} @) {BrL U Bj}
while (By,, B;) <« FindNonDeterminism(w, B;, B;) do
7 « Merge(m, By, By)
return 7
end

The implementation of MSM looks a priori straightforward. Starting from the PT A,
a DFA A is built by merging all states that must be merged. Next, the main state-merging
loop is executed from A. It is however worth stressing that the tree invariant property
does not hold in MSM. This observation may require to significantly review the actual
implementation of this algorithm. Interestingly, the main merging loop and the Merge
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merge {3}and {0} merge {2} and {4}

_—

@ﬂ :

Fig. 5. Recursive determinization process. States {3} and {0} of an arbitrary DFA are merged,
which causes a non-determinism on letter b from state {0,3}. The destination states {2} and {4}
are subsequently merged to reduce the non-determinism.

function can be implemented without the tree invariant property because the recursive
determinization process stops naturally on the first DFA encountered. This observation
allows one to start from an arbitrary DFA and, as soon as non-determinism occurs, to
reduce it. Figure 8] gives an example of such a recursive operation.

5 Evaluation

MSM has been evaluated on synthetic data as well as on the RE train case study briefly
introduced in section 2l Sections B.1] and discuss the respective results of these
experiments.

5.1 Experiments on Synthetic Data

To evaluate MSM on synthetic data, we used an experimentation protocol inspired from
the Abbadingo contest [2]. In our current implementation, MSM is equivalent to RPNI
when no mandatory merged constraints are present. In other words, the merging order
is exactly the one of RPNI if no labeling constraints are considered. In this context,
the objective of this evaluation is mostly to quantify the proportion of domain-specific
information required to get better generalization results. The experimentation protocol
that we used to achieve this objective is outlined below.

Experiments are made on randomly generated target DFAs with 32 and 64 states
and an alphabet of 2 letters. Accepting states are chosen randomly by flipping a fair
coin. These automata are trimmed to remove unreachable states and minimized to ob-
tain canonical target machines. The number of states of a DFA generated using this
procedure is approximately 3/5 of the requested size, which has been increased ac-
cordingly. As in Abbadingo, if the depth of the resulting automaton is not equal to
p = 2xloga(n) — 2, it is simply discarded.

A learning and testing set for a target DFA with n states consists of n? randomly
generated strings. These strings are generated using a uniform distribution over the
collection of all binary strings of length [0, p + 5]. This set is randomly divided into
two samples of the same size: a learning sample on which MSM is run and a testing
sample used to measure the adequacy of the resulting solution. Strings of the learning
sampled are labeled as positive or negative according to the target DFA. MSM is run on
increasing proportions of the learning sample.
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Fig. 6. Classification accuracy for RPNI, Blue-Fringe and MSM

In order to simulate domain-specific information leading to mandatory merge con-
straints, unique labels are associated to randomly chosen states of the target DFA. In-
creasing proportions of the number of states labeled in this way have been used: 5%,
10%, 20% and 100%. States of the PT'A used by MSM are labeled by jointly visiting
it with the target DFA and reporting encountered labels. This labeling constrains the
induction process as explained in section [

Figure[@lreports the proportion of independent test samples correctly classified while
increasing the learning sample. Curves in this plots correspond to executions of RPNI,
Blue-Fringe and MSM with different labeling proportions. Each point in these plots is
the average value computed over 200 independent runs. MSM overcomes RPNI on all
executions, which was actually expected, but illustrates experimentally that forcing to
merge initially some (correctly labeled!) states does not prevent from converging. 5% of
labeling information is comparable, from the point of view of the generalization accuracy,
to the use of the Blue-Fringe heuristic for selecting state pairs to be merged. Beyond this
proportion, the accuracy continues to increase. Interestingly, it is already visible when
the sample is sparse. This fact is particularly helpful in our RE context, where learning
sample is initially provided by an end-user. Moreover, it is worth noting that, as pointed
out in section[] the identification of the target does not reduce to a trivial problem even
with 100% of labeling information when only few negative examples are available.

Although not yet implemented, we are confident that using mandatory merge con-
straints would also improve the generalization accuracy of the Blue-Fringe and QSM
algorithms (the interested reader may refer to [7]] for an experimental comparison be-
tween RPNI, Blue-Fringe and QSM without labeling constraints).

5.2 Experiments on a RE Case Study

An accuracy gain is also expected when using MSM for behavior model synthesis. In
order to quantify this gain, the algorithm has been evaluated on an extended version
of the train system introduced in section [2l In this respect, the evaluation protocol is
slightly different from the one presented in the previous section: the target model of
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the train system has been built manually as a DFA of 18 states with an alphabet of size
10 (see Figure[7). A typical collection of scenarios has also been built for the system
and represented as an augmented PTA: 9 positive and 5 negative strings for a total of
55 states.

Mandatory merge constraints are defined by labeling pairs of equivalent PTA states.
These pairs are chosen following a “loop identification” heuristic, representative of the
way such a specification is incrementally built by an end-user using an hMSC. For
instance, opening then closing the doors from the initial state (without any intermediate
event) naturally returns in the initial state (see the loop between states 0 and 2 in Figure[Z]
and the way this loop is easily represented in the hMSC of Figure[T)). However, some
loops are less natural to identify from the scenarios: the sequence of events (leaving,
high, approaching, low, atstation) form a loop starting from state 3 for example.
Equivalent state pairs of the PTA identified in this way have been classified in four
categories, following the expected difficulty for an end-user of discovering them in
the scenarios. MSM has been evaluated on increasing proportion of mandatory merge
constraints, following this classification.

o Table 1. Classification accu-
racy obtained with different se-
tups on the train case study. The
number of labeling constraints
|lab| refers to the number of
PTA states pairs declared to be
©) equivalent.

Algorithm |lab| Accuracy

RPNI - 0.55
BlueFringe - 0.83
MSM 0 055
3 0.71
6 073
10 0.88
Fig. 7. Target model of the train system 15 0.90

Table [Il compares the accuracy of the DFA induced using RPNI and BlueFringe as
well as MSM with an increasing number of mandatory merge constraints. The reported
accuracy is the average classification rate computed over 10 independent test samples,
each one containing 80 (positive or negative) strings. The results confirm what has
been observed on synthetic data. Increasing the number of mandatory merge constraints
(that is, enriching the hMSC with additional transitions) leads to a better accuracy,
outperforming BlueFringe when such information is rich enough. The results also show
that no algorithm has been able to identify perfectly the target DFA on such sparse
samples. It is worth noting that, for the need of this evaluation, only few sources of
negative information have been used while such sources do exist in this application
domain [7]]. Further improvements could also be obtained by using mandatory merge
constraints with the BlueFringe search order.
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6 DFA Induction from Positive and Negative DFAs (Deterministic
Finite Automata) as Inputs

Relaxing the tree invariant property has additional benefits which we discuss in this
section. The main state-merging loop of MSM (see Algorithm[2) actually generalizes a
language represented by an arbitrary DFA, under the control of all negative knowledge
represented as incompatibility constraints. It is possible to factor out the state-merging
loop from MSM as a new algorithm ASM (for Automaton State Merging), which gen-
eralizes a positive DFA A taken as input, under the control of a negative sample S_,
ignoring here other incompatibility constraints for the simplicity of the discussion. The
pseudo-code of ASM is given in Algorithm[3l

The first step of this algorithm aug-
Algorithm 3. ASM, a DFA induction ments A, with the negative sample S_
algorithm that generalizes a positive in a way similar to the augmentation of a
DFA A, under the control of a negative ~ FTA(S%). Each negative string can be

sample S_ decomposed as uwv, where u is the longest
prefix already present in A and reaches a

Algorithm ASM state ¢, and v is the suffix of this negative
Input: A positive DFA A and a negative sample string. When v is empty, q is marked as a
Output: A DFA A consistent with (A4, S_) negatively accepting (= black) state if not

yet marked as positively accepting; if ¢
is already a positively accepting (= grey)
state, an inconsistency error between A
and S_ is reported to the user. When v
is not empty, a new branch rooted at ¢ is
added to the automaton, ending in a new

// Augment the automaton A 4 with states
// marked/added from S_
M «— Augment (A4, S_)

// Compute the natural order on M
7T «— NatOrder (M)

// Main state-merging loop negatively accepting state.
™ Generalize () The function NatOrder computes the
return M /7 natural order of the states of M using a

breadth first search of the states and num-
bering each of them when encountered.

The search ends when each state has been reached. We assume here for simplicity
that this function returns the trivial partition 7 with each state in its own block, the
blocks being naturally ordered. The Generalize function corresponds to the main
state-merging loop and returns the updated partition.

ASM is the actual algorithm we use for the synthesis of behavior models in our RE
application domain. Unfolding the hMSC as a labeled PT A is in fact not required and
one can directly generalize, using ASM, the automaton that would be produced from
the hMSC by the deductive technique of [10].

The ASM algorithm itself may be further extended. Indeed, the extension which
consists in replacing finite positive string S by a regular language represented as a
DFA A, can also be applied to the negative sample. This lead to an induction algo-
rithm ASM*, which takes as input both a positive DFA A and a negative DFA A_.
In ASM*, the Augment function produces the composition of A, and A_ as a col-
ored automaton M. More precisely, the state space of M is the product of the states
of A, and A_ (extended whenever necessary to be complete DFAs). A state of M is
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positively accepting if the corresponding state is accepting in A . Similarly, it is neg-
atively accepting if the corresponding state in A_ is accepting. If both conditions hold
at the same time for at least one state of M, an inconsistency error between A, and
A_ is reported to the user. Figure[8lillustrates this composition mechanism on a simple
example. The natural order is computed on M. The main state-merging loop is then
executed while checking for the coloring constraints as usual in the recursive Merge
function.

There could be no need to compute explicitly the product automaton M since the
associated coloring constraints, which follow from the common prefixes between A
and A_, can be computed and updated dynamically, as nicely shown in [5]. We believe
however that it is useful to consider such a product automaton for defining the state
ordering relation computed in NatOrder. Doing so, the prefixes of the negative strings
in L(A_), including possibly some prefixes that do not belong to L(A_) themselves,
can be used to define the search order. In this sense, strict prefixes of positive and
negative strings are considered in the same way. This is indeed the natural extension
to the augmented PT A(S1, S_) used to define the search order in the Blue-Fringe
algorithm. We also note that [3] generalizes those ideas to non-deterministic automata.
However the authors do not stress the possibility to start the whole induction process
from both a positive and a negative automaton, as a consequence of relaxing the tree
invariant property.

N N S A A
NGG RNG o - W - WG

Fig. 8. Composition of A4 (left) and A_ (middle) to get a product automaton M (right) with
coloring constraints

Finally, it is worth noting that RPNI2, the incremental version of the RPNI algo-
rithm introduced in [[I1]], unfolds the current DFA when a new negative example is
received and wrongly accepted by the current machine. The unfolded DFA is subse-
quently merged following a different path in the search space. As such, RPNI2 is al-
ready able to restart the generalization process from a DFA not restricted to be a tree.
However the tree invariant property is satisfied in RPNI2 since the unfolding is guaran-
teed to go back to a temporary solution that RPNI would have considered if run on the
updated samples.

7 Conclusion and Future Work

Coloring constraints are classically used in automaton induction techniques to control
the state merging process while generalizing the positive sample. Such coloring con-
straints define which states are incompatible, that is, cannot be merged without giving
rise to an inconsistent machine. We introduce here mandatory merge constraints, imple-
mented using a partial labeling function, as the logical counterpart to the incompatibility
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constraints. We propose the MSM algorithm, a natural extension to state-merging algo-
rithms such as RPNI or Blue-Fringe, that can deal both with coloring and labeling con-
straints. We present experimental comparisons between MSM, RPNI and Blue-Fringe
following a protocol inspired by the Abbadingo competition.

The MSM extension looks straightforward from an algorithmic point of view but it
actually relaxes the tree invariant property. This property states that, among two states
considered for merging, at least one is always the root of a tree-shaped (sub-)automaton.
The tree invariant property is often assumed in DFA induction algorithms when recur-
sively merging pairs of states to reduce non-determinism. However such a merging for
determinization process naturally stops by itself and the tree invariant property is thus
not required. As a consequence, the MSM algorithm gives rise to the ASM algorithm
that takes a DFA A and a negative sample S_ as inputs. ASM is the actual induction
algorithm we use in our Requirements Engineering application domain which moti-
vated, in the first place, the definition of mandatory merge constraints. We also describe
the ASM* algorithm, which further extends ASM, and takes as input both a positive
and a negative DFA.

Our future work includes several points. Our current implementation of MSM, and
hence of ASM, relies on the RPNI search order. MSM and ASM can also be adapted to
the Blue-Fringe strategy typically with the EDSM scoring function to adapt the search
order. Doing so would only require to compute the scoring function between state pairs
as a side product of the recursive merging operation applied here on general graphs. In
this regard, the implementation would be similar to the original EDSM algorithm (i.e.
without the Blue-Fringe strategy) but with coloring and labeling constraints. A further
step is to extend the QSM algorithm [[7] to add the active learning feature.

ASM* raises interesting theoretical questions since inferring from a positive and a
negative DFA no longer fits exactly in the identification in the limit framework. The de-
finition of a characteristic sample would need to be adapted as well as the experimental
protocol.
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