Smoothing probabilistic automata:
an error-correcting approach

Pierre Dupont! and Juan-Carlos Amengual?

! EURISE, Université Jean Monnet
23, rue P. Michelon

42023 Saint-Etienne Cedex — France

pdupont@univ-st-etienne.fr

2 Universidad Jaume I de Castellon

Campus de Riu Sec
12071 Castellon — Spain

jcamen@inf.uji.es

Abstract. In this paper we address the issue of smoothing the probability
distribution defined by a probabilistic automaton. As inferring a probabilistic
automaton is a statistical estimation problem, the usual data sparseness problem
arises. We propose here the use of an error correcting technique for smoothing
automata. This technique is based on a symbol dependent error model which
guarantees that any possible string can be predicted with a non-zero probability.
We detail how to define a consistent distribution after extending the original
probabilistic automaton with error transitions. We show how to estimate the
error model’s free parameters from independent data. Experiments on the ATIS
travel information task show a 48 % test set perplexity reduction on new data
with respect to a simply smoothed version of the original automaton.

1 Introduction

The goal of learning a probabilistic deterministic finite automaton (PDFA) is to induce
a DFA structure from data and estimate its constituent transition probabilities. As the
structure itself constrains the probability distribution over the set of possible strings,
the inference procedure can be considered to be a single problem of statistical estima-
tion. Several learning algorithms for probabilistic automata have been proposed [16, 3,
15], but the smoothing issue has not been addressed. In particular, when probabilistic
automata are used for modeling real data, as in the case of natural language interfaces,
the usual problem of data sparseness arises. In other words only a few strings are actu-
ally observed in the training sample and many strings that could be observed receive
a zero probability of being generated even after the generalization introduced by the
inference algorithm.

Smoothing the probability distribution fundamentally requires us to discount a
certain probability mass from the seen events and to distribute it over unseen events
which would otherwise have a zero probability. Considering that a string with zero
probability is a string for which there is no path between the initial state and an

accepting state in a probabilistic automaton®, error-correcting techniques [2] can be
used towards this end.

Error-correcting techniques extend automata to allow acceptance of, in principle,
any string. Using error correction allows us to compute the probability of accepting
the string with minimal error. Several criteria can be used to guide this process. For
instance, we can look for the minimal number of editing operations necessary to accept
a string. Alternatively, we can search for the accepting path of maximal probability in
a probabilistic error-correcting parser. In the latter case, the error model parameters
need to be estimated and possibly smoothed as well.

Definitions and notations are given in section 2.1. The ALERGIA algorithm, which
will be used for PDFA inference, is briefly presented in section 2.2. The criterion for
evaluating the quality of a PDFA, that is the perplexity computed on an independent
test sample, is detailed in section 2.3. We present in section 3 our baseline smoothing
technique using linear interpolation with a unigram model.

The formal definition of the proposed error-correcting model and the method for
estimating its free parameters are fully described in section 4. Experiments on the ATIS
task, a spoken language interface to a travel information database, were performed in
order to assess the proposed smoothing techniques. The task is presented in section 5.
Finally we show how error-correcting techniques improve the baseline perplexity. These
experiments are detailed in section 6.

2 Preliminaries

In this section we detail the formal definition of a probabilistic DFA (PDFA). Next, we
review briefly the ALERGIA algorithm which will be used in our experiments to infer
PDFA. Finally we present the measure for estimating the quality of PDFA inference
and smoothing.

2.1 Definitions

A PDFA is a 5-tuple (@, X, 6,qo,7) in which @ is a finite set of states, X is a finite
alphabet, 6 is a transition function, i.e. a mapping from QxX to @, qo is the initial state,
«v is the next symbol probability function, i.e. a mapping from QxX U {#} to [0,1]. A
special symbol #, not belonging to the alphabet X, denotes the end of string symbol.
Hence ~(q, #) represents the probability of ending the generation process in state g
and ¢ is an accepting state if y(q,#) > 0. The probability function must satisfy the
following constraints:

v(q,a) =0,ifd(g,a) =0,Yae ¥
EaEEU{#}’Y((b a) =1 7Vq € Q

! We assume here that no existing transition in an automaton has a zero probability.

The probability P4 (z) of generating a stringx = x1 ... 2, from aPDFA A = (Q, X, §, qo,)

is defined as '
(ITrey v (d', 3)) v(q™, #)

_ if 6(¢", x;) # 0 with ¢ = 6(¢*, =),
Py(z) = forl1 <i<mnandq'=qo

0, otherwise

The language L(A) generated by a PDFA A is made of all strings with non-zero prob-
ability:
L(A) = {z | Pa(z) > 0}

Our definition of probabilistic automaton is equivalent to a stochastic deterministic
regular grammar used as a string generator. Thus,) . Pa(x) = 1. Note that some
work on the learning of discrete distributions uses distributions defined on X (that is
Y zesn P(x) =1, for any n > 1), instead of X*.

Let I, denote a positive sample, i.e. a set of strings belonging to a probabilistic
language we are trying to model. Let PT A(Iy) denote the prefiz tree acceptor built
from a positive sample I, . The prefix tree acceptor is an automaton that only accepts
the strings in the sample and in which common prefixes are merged together resulting in
a tree shaped automaton. Let PPT A(I,) denote the probabilistic prefix tree acceptor. It
is the probabilistic extension of the PT'A(I) in which each transition has a probability
proportional to the number of times it is used while generating, or equivalently parsing,
the positive sample.

2.2 PDFA inference

Several inference algorithms for probabilistic automata have been proposed [16, 3, 15]
but only Carrasco and Oncina’s ALERGIA algorithm, a stochastic extension of the
RPNI algorithm [14], is free from the restriction to the learning of acyclic automata.
This algorithm has been applied to information extraction from text [7] or structured
documents [17], speech language modeling [5] and probabilistic dialog modeling [10].

The ALERGIA algorithm performs an ordered search in a lattice of automata
Lat(PPT A(I,)). This lattice is the set of automata that can be derived from PPT A(I,)
by merging some states. The specific merging order, that is the order in which pair of
states are considered for merging, is explained in detail and fully motivated in [4]. At
each step of this algorithm, two states are declared compatible for merging, if the prob-
ability of any of their suffixes are similar within a certain threshold «. This parameter
« indirectly controls the level of generalization of the inferred PDFA.

2.3 Evaluation criterion

Evaluation of non-probabilistic inference methods is usually based on correct classi-
fication rates of new positive and negative data [12]. In the case of PDFA inference,

the model quality can no longer be measured by classification error rate, as the funda-
mental problem has become the estimation of a probability distribution over the set of
possible strings.

The quality of a PDFA A = (Q, X, §,qo,7) can be measured by the per symbol log-
likelihood of strings x belonging to a test sample according to the distribution defined
by the solution P4(z) computed on a test sample S:

IS| |z

IL= | ~rsr 3 3 log Plalle

j=1 i=1

where P(wﬂqi) denotes the probability of generating xf , the i-th symbol of the j-
th string in S, given that the generation process was in state ¢'. This average log-
likelihood is also related to the Kullback-Leibler divergence between an unknown target
distribution and the proposed solution by considering the test sample as the empirical
estimate of the unknown distribution (see e.g. [5]).

The test sample perplexity PP is most commonly used for evaluating language
models of speech applications. It is given by PP = 2L, The minimal perplexity PP = 1
is reached” when the next symbol 7 is always predicted with probability 1 from the
current state ¢' (i.e. P(z!|¢") = 1) while PP = |%| corresponds to random guessing
from an alphabet of size | X|.

3 Interpolation with a unigram model

In this section we present the basic smoothing technique which will serve as our refer-
ence model for smoothing probabilistic automata.

A wunigram model is a probabilistic model in which the probability of any symbol a
from X is independent from its context. It can be simply estimated by computing the
frequency C(a) of @ in a training sample containing N tokens. The probability P(a) is
given by

and the probability P;(z) of a string x = 2, ...z, is given by

|z]

Pi(z) = [[P(=:)

i=1

In general not all symbols are observed in the training sample and the unigram
distribution is smoothed according to a discounting parameter d [13]:

= Ga)=d it C(a) >0
= N
P(a) { N% otherwise (1)

% Such a perfectly informed model cannot be constructed in general.

where D is the total discounted probability mass

d

{a| C(a)>0}

and Ny is the number of unseen symbols in the training sample

Ng = Z 1.

{a|C(a)=0}

A smoothed unigram model is guaranteed to assign a non-zero probability to any
string which will be denoted P;(z). It is equivalent to the universal automaton built
from the alphabet X with transitions probabilities defined according to equation (1).
If P4(x) denotes the (possibly null) probability assigned to a string = by a PDFA A, a
smoothed distribution is obtained by linear interpolation with the smoothed unigram
model:

P(z) = B-Pa(z) +(1—B)-P(z) ,with0<B<1.

This smoothing technique is very rudimentary but, because it is so simple, it best
reflects the quality of the PDFA itself. This smoothed probabilistic distribution serves
as our reference model. In the sequel we study whether error-correcting techniques can
improve over this reference model, that is whether a probabilistic model with smaller
perplexity on independent data can be obtained.

4 Error-correcting model

Given A, a PDFA, and its language L(A), error transitions can be added in order to
make it possible to accept any possible string from X* with a non-zero probability.
This error model is fully described in section 4.1.

The problem of estimating the error-correcting model free parameters, which are
the probabilities of error transitions, is detailed in section 4.2. Once the error model has
been estimated from data, there may still be some string which cannot be generated
with a non-zero probability. This is due to the fact that some error transitions may
not have been seen during the estimation of the error model. Smoothing of the error
model is then required as explained in section 4.3.

The adaptation of the original PDFA distribution in order to include the error
transition probabilities to build a consistent model is described in section 4.4. Once
the error model has been defined and its parameters estimated, the probability P(z)
of generating any string = from the original PDFA extended with error transitions can
be computed. An efficient algorithm to compute a path of maximal probability in any
probabilistic automaton A (i.e. an automaton possibly including cycles and possibly
non-deterministic) was recently proposed [1]. This algorithm is briefly presented in
section 4.5. We use this algorithm here to reestimate iteratively the error model as
described in section 4.6.

4.1 Model definition

Our error model is based on the addition of error transitions to an existing PDFA
resulting in an extended automaton. These error transitions accounts for the possibility
of inserting any symbol at any state, of substituting any existing transition labelled
by a symbol a by any other symbol from the alphabet or of deleting the transition (or
equivalently substituting a by the empty string A).

Figure 1 illustrates the addition of error transitions to a PDFA. Initially there
are only two transitions from state g labeled by a and b, respectively. The original
automaton is extended with insertion transitions, substitution transitions and deletion
transitions. Note that for this example the alphabet is assu{)ned to have two symbols,
Y ={a,b}.

a
a | A
b
b a
A
(a) (b)
Original automaton Extended automaton

Fig. 1. Addition of error transitions to a PDFA

The parameters of the general error model are the following:

— P(X\ = a| q) which denotes the probability of inserting symbol a while being in
state ¢

— P(a — b| g, ¢') which denotes the probability of substituting a by b while going
from ¢ to ¢'. In particular P(a — a | ¢, q') denotes the probability of substituting
a by a, that is of taking the original transition labeled by a from state q.

— P(a — X | g, ¢') which denotes the probability of deleting a while going from ¢ to
q.

Estimating an error model consists of estimating the error transitions probabilities.
In order to minimize the number of free parameters, these probabilities can be made
dependent on the symbol but independent of the transitions (or the state) they apply
to. The parameters of the symbol dependent error model now become:

— P(\ — a) which denotes the probability of inserting symbol a in any state.

— P(a — b) which denotes the probability of substituting a by b while taking any
transition labeled by a.

— P(a — \) which denotes the probability of deleting a while taking any transition
labeled by a.

Alternatively, the error model can be made state dependent instead of symbol depen-
dent. In our case, we adopt a symbol dependent error model as the alphabet is usually
known before the automaton inference process. State independence also allows us to
merge several error models as described in section 6.4.

4.2 Estimation of an error model

Once a PDFA is given or inferred from a training sample, the parameters of the error
model can be estimated on an independent sample. For any string z from this indepen-
dent sample, the probability of generating the string can be computed. This requires
that a consistent probability distribution can be defined for the extended automaton
as detailed in section 4.4. Note also that after the extension of the original automaton
with error transitions, the new automaton is no longer deterministic. Following a Viter-
bi criterion, the probability of generating x can be approximated by the probability
of the most likely path to generate xz. An efficient algorithm to compute this path is
described in section 4.5.

The set of editing operations used while generating the independent sample from
the extended automaton can be stored and the associated counts can be computed:

— C(), a) denotes the number of insertions of the symbol a.

— C(a,b) denotes the number of substitutions of the symbol a by b. In particular,
C(a,a) denotes the number of times the symbol a was asserted, that is, not sub-
stituted while parsing the independent sample.

— C(a, \) denotes the number of deletions of the symbol a.

— C(#) denotes the number of (end of) strings.

As the proposed error model is state independent several estimates of its parameters
for various underlying automata can be computed. Combining these estimates simply
amounts to summing the respective error counts. This property will be used in our
experiments as explained in section 6.4.

4.3 Smoothing of the error counts

Some counts associated with error transitions may be null after estimating the error
model. This is the case when some error transitions are never used along any of the
most likely paths computed while parsing the independent sample. This problem can
be solved by adding real positive values to the error counts. We use four additional
parameters €;ng, Esub,Edel ANA Epgerr t0 SMoOOth the error counts :

— C(a,b) = C(a,b) + coup if a # b
- g(aa a) = C(aa a) + Enoerr
- C(a7 /\) = C(aa /\) + Edet

4.4 Definition of the extended PDFA distribution

In the original PDFA P(a|q) = (g, a) denotes the probability of generating the symbol
a from state ¢ whenever such a transition exists. This transition probability can be
estimated from the training sample from which the PDFA was built. The maximum
likelihood estimate for (g, a) is given by

Cy(a)
Cq

v(¢g,a) =

where C,(a) denotes the number of times the symbol a was generated from state ¢ and
C,; denotes the number of times the state ¢ was observed while parsing the training
sample. We can assume that the counts Cy(a) and C, are strictly positive, as any
transition (or state) which would not satisfy this constraint would be initially removed
from the original PDFA.

The probability distribution of the extended automaton can be defined as follows.
The total insertion count Cj,, is defined as

Cins = Y_ C()\a)
acX
and its complementary count (57— is defined as

Cem=Y. . Cab) + CH)

a€X beXU{A}

Let Py, = Tiome— denote the probability of inserting any symbol. The proba-

bility of the transitions from any state ¢ in the extended automaton are computed as
follows:

— the probability of inserting a while being in state q:

C(\a)

P(A%alq)iP(’_)a)ZPins'T (2)

the probability of substituting a by b, for any symbol b in the alphabet X' (including
the case where a = b), from state q :

-~

C(a,b)

P(a = blg) = P(a = b)-v(¢g,a) = =
beXU{A} C(a,b)

(]- _Pins))

] -v(g,a) (3)

the probability of deleting a from state q :

~

C(a, \)
EbEEU{A} C(a,b)

— the probability of generating the end of string symbol # from state ¢ :

P(#1q) = (1 = Pins) - v(¢, #) (5)

Pla— Mg) = Pla—= A)-v(g;a) = | (1 = Pins) -

] -v(g,a) (4)

4.5 Computation of the most likely path

The general problem of finite-state parsing with no error correction can be formulated
as a search for the most likely path or equivalently the minimum cost® path through
a trellis diagram associated to the PDFA A and the string = to be parsed. This trellis

3 Sums of negative log probabilities rather than products of probabilities are used.

is a directed acyclic multistage graph, where each node qi corresponds to a state g; in
a stage k. The stage k is associated with a symbol z;, of the string to be parsed and
every edge of the trellis t;, = (g, q] +1) stands for a transition between the state ¢; in
stage k and the state g; in stage k + 1 (Fig. 2 (a)). Thanks to the acyclic nature of this
graph, dynamic programming can be used to solve the search problem, leading to the
well-known Viterbi algorithm [6].

Fig. 2. Trellis with: a) Substitution and proper PDFA transitions b) Insertion tran-
sitions ¢) Deletion transitions in an acyclic PDFA d) Deletion transitions in a cyclic
PDFA. Every edge is labeled with a symbol of X.

The trellis diagram can be extended in a straightforward fashion to parse errors
produced by substitution and insertion actions. Efficient error correcting parsing can be
implemented because such an extended trellis diagram still has the shape of a directed
acyclic multistage graph (Fig. 2 (a),(b)). However, the extension of the trellis diagram
to parse errors produced by deletion of one or more (consecutive) symbol(s) in the
original string results in a graph form that includes edges between nodes belonging to
the same stage k (Fig. 2 (c)). In particular, when the automaton A has cycles dynamic
programming can no longer be used as the problem becomes one of finding a minimum
cost path through a general directed cyclic graph (Fig. 2 (d)). As noted in [8], we can
still take advantage of the fact that most edges, for this kind of graph, still have a
left-to-right structure and consider each column as a separate stage like in the Viterbi
algorithm.

An efficient algorithm for computing the most likely acceptance path that includes
error operations in general automata was proposed in [1]. This algorithm can be consid-
ered as an extension of the Viterbi algorithm. The main difference lies in the fact that
an order has to be defined when parsing deletion transitions (see Fig. 2 (c), (d)) for
adequately performing the required computations during local (state) minimizations.
In particular, it is based on the definition of a pseudo-topological state ordering, that is
an extension to cyclic graphs of the usual topological ordering. This pseudo-topological
ordering is computed and efficiently stored in a hash table during a preprocessing stage
which detects the backward edges, i.e. those edges which produce cycles in A. This leads

to a fixed order for the traversal of the list of nodes (states of the PDFA) at any stage
of the parsing process in order to update the cumulated costs whenever required.

Full details of the computation of this state ordering, the resulting parsing algorithm
and practical evaluations are presented in [1]. We use here this algorithm to compute
the most likely path of generating a string from the extended PDFA.

4.6 Greedy reestimation of the smoothed distribution

Computing the most likely path using the technique described in section 4.5 is e-
quivalent to computing the path of minimum cumulated cost. For example the cost
D,(a — b) of substituting a by b from state ¢ is given by Dy(a — b) = —log P(a — b|q).
Thus the maximization of a product of probabilities becomes a minimization of additive
costs.

The initial error model can not be derived from the probabilistic error model de-
scribed in section 4.4, as the error counts are initially unknown and the extended
(smoothed) PDFA distribution can not be computed. However a set of editing cost-
s can be defined a priori, for instance according to the Levenshtein distance [11]:
DA = a) =1, Dga > b) =1ifa # b, Dg(a - a) = 0 and Dy(a — A) = 1.
Once the initial editing costs are defined, the counts of insertions, substitutions and
deletions that minimize the Levenshtein distance criterion on an independent sample
can be computed as described in section 4.1. Note that, in this particular case, only
the structure of the PDFA is required. A new error model can then be derived from
these error counts, and this estimation can be iterated with a true probabilistic error
model. This reestimation process is performed until a maximum number of iterations
is reached (typically 10) or until the relative change of perplexities computed on two
consecutive iterations falls below a certain threshold (typically 1%).

During this iterative procedure, the original PDFA distribution can also be reesti-
mated by adding to the original counts, C; and Cj(a), their values computed on the
independent sample and by modifying accordingly the estimate of (g, a). This will be
referred to as reestimation of non-error transitions.

5 The ATIS task

The Air Travel Information System (ATIS) corpus [9] was developed under a DARPA
speech and natural language program that focussed on developing language interfaces
to information retrieval systems. The corpus consists of speakers of American English
making information requests such as,
“Uh, I'd like to go from, uh, Pittsburgh to Boston next Tuesday, no wait, Wednesday".
Each user was given several goal scenarios to work with, in which he or she had to
try to make travel arrangements between multiple cities in North America. A database
containing information from the Official Airline Guide was at the heart of the sys-
tem. Users could ask questions about a wide variety of items in the database, ranging
from flight information to aircraft equipment descriptions and even meals served on
particular flights. They could speak naturally to the machine, as there was no fixed
interaction language or required sequence of events. Spoken language phenomena such

as truncated words, hesitations, false starts, and verbal error recovery are common in
the corpus. It is commonplace to find multiple turn interactions (and thus multiple
utterances from a user) between the user and machine for solving each scenario.

6 Experiments

6.1 Data sets

We use the ATIS-2 sub-corpus in the experiments reported here. This portion of the
corpus was developed under Wizard-of-Oz conditions in which a human being secretly
replaced the speech recognition component of an otherwise fully automated dialogue
system. The ATIS-2 collection is officially defined as containing a training set and two
evaluation sets. The training set, which we used for inferring PDFAs, contains 13,044
utterances (130,773 tokens). The vocabulary contains 1,294 words. We used the first
evaluation set (Feb92, 974 utterances, 10636 tokens) as a validation set to estimate
the baseline perplexity and an error model. The second evaluation set (Nov92, 1001
utterances, 11703 tokens) was used as our independent test set. In the context of these
experiments, alphabet symbols represent words from the ATIS vocabulary and strings
represent utterances.

6.2 Baseline perplexity

A PDFA is inferred from the training set using the ALERGIA algorithm. The resulting
PDFA consists of 414 states and 12,303 transitions. It accepts 55 % (532 strings)
of the validation set, illustrating the need for smoothing the PDFA distribution. In
particular the validation set perplexity is infinite without smoothing. Figure 3(a) shows
the perplexity obtained after smoothing by interpolating with a unigram model as
explained in section 3. The optimal perplexity (70) is obtained for 8 equal to 0.5.

6.3 Validation set perplexity with error model

The initial error model parameters are estimated from training and validation sets by
counting the observed editing operation frequencies so as to minimize the Levenshtein
distance (see section 4.6). As some error transitions are not observed during this pro-
cess, the initial error table is then smoothed (see section 4.3). The additional smoothing
parameters (€ins, Esubs Edel AN Epperr) are adjusted in order to minimize the perplexity
on the last 10 % of the validation set while estimating the error model only on the first
90 % of the validation set. Their optimal values are €;,s = 0.1, €545 = 0.1, £4¢; = 0.1
and €,0err = 0.0.

Figure 3(b) shows the perplexity obtained on the validation set during reestimation
of the error model. The initial perplexity (41) is achieved after the initial estimation of
error parameters, based on the counts of the editing operations which minimize Leven-
shtein distance. In the first case (type I model), only error transitions are reestimated
resulting in a 10% relative perplexity improvement (from 41 to 37). In the second
case (type II model), error and non-error transitions probabilities are reestimated. The
perplexity obtained after 10 iterations is 28.

Validation set perplexity 2Error—correcting model reestimation on validation set
T T T T T T T 4, T T T T T

150
. error transition reestimaton -<---
40 R .error and non-error transition reestimation —— -
oy
38 -
> > 36
£ £
= = 34 r
1] 1]
a a 32t
30
28
60 26
0O 01 02 03 04 05 06 07 08 09 0 2 4 6 8 10
interpolation parameter: 8 iterations
(a) (b)

Fig. 3. Perplexity results

6.4 Estimating the error model by cross-validation

In the experiments described in section 6.3, the error model was constructed and rees-
timated on the validation set. The training set, which represents about 13 times more
data, was not used for estimating the error model as the original automaton is guar-
anteed to accept all training strings without errors. However a better estimate of the
error model can be obtained using cross-validation. This procedure can be summarized
as follows:

— Concatenate training and validation set in a single data set.

— Construct N (typically 10) different partitions of this data set.

— For each partition, infer a PDFA on the first part (typically 90 % of the data set)
and estimate an error model on the second part (typically the remaining 10 %)
following the greedy procedure described in section 4.6.

— Merge all error models by summing up the error counts obtained on each partition.

Merging of several error models is simple in our case, as these models are symbol
dependent but do not depend on the structure of the underlying automaton. Once the
error model is estimated by cross-validation, a final reestimation on the validation set
can be performed using the original automaton constructed on the training set only.

6.5 Independent test set perplexity

Table 1 summarizes the final results computed on an independent test set. The ref-
erence model is a PDFA interpolated with a unigram using the optimal interpolation
parameter estimated on the validation set (8 = 0.5). Type I error model refers to the
model obtained after reestimating only the error transition probabilities on the valida-
tion set. Type II error model refers to the model obtained after reestimating both error
and non error transitions probabilities. In both cases the error model probabilities may

be simply computed on the validation set or can be estimated by cross-validation (CV)
following the procedure described in section 6.4.

Table 1. Test set perplexity

Model Perplexity
Unigram smoothing (8 = 0.5) 71
Type I error model 40
Type II error model 41
CV + Type I error model 37
CV + Type II error model 37

The reestimation of non-error transitions does not improve the perplexity of the
extended PDFA on an independent test set. The significant perplexity decrease on the
validation set, as seen in figure 3(b), is thus a result of overfitting to the validation
data. On the other hand, cross-validation allows for up to 10 % relative perplexity
reduction. Finally these results show a 48 % relative perplexity reduction as compared
to the perplexity obtained by interpolating with a unigram model.

7 Conclusions and future work

We have examined the issues of smoothing probabilistic automata by adding error tran-
sitions to an original probabilistic automaton structure. The probability distribution of
the extended automaton is such that any possible string can be predicted with non-zero
probability. We explained how to define a consistent error model and how to estimate
its free parameters from independent data.

Practical experiments on the ATIS travel information task show a 48 % test set
perplexity reduction on new data with respect to a simply smoothed version of the
original automaton.These experiments illustrate the risk of overfitting when both the
error model and the initial non error transitions are reestimated. On the other hand,
cross-validation allows us to estimate a more reliable error model which results in
significant perplexity reduction on new data.

The error model proposed here is symbol dependent but state independent. In
particular, the probability of inserting a given symbol a does not depend on where this
symbol is inserted. In order to refine the error model without significantly increasing
the number of free parameters, the relative weight of error versus non-error transitions
could also be estimated for each state.

We presented here the error correcting approach as a method for extending a proba-
bilistic deterministic automaton. Most existing inference algorithms produce determin-
istic machines which after extension with error transitions become non-deterministic.
The techniques presented here handle this non-determinism. Thus, smoothing of au-
tomata which are non-deterministic from the start is also something we can pursue.

Clustering alphabet symbols before PDFA inference was shown to reduce perplex-
ity on new data [5]. Combination of this technique with error correcting will also be
investigated in the future.

References

1.

2.

&

10.

11.

12.

13.

14.

15.

16.

17.

J.-C. Amengual and E. Vidal. Efficient error-correcting viterbi parsing. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-20(10), October 1998.

J.-C. Amengual, E. Vidal, and J.-M. Benedi. Simplifying language through error-
correcting techniques. In International Conference on Spoken Language Processing, pages
841-844, 1996.

R. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state
merging method. In Grammatical Inference and Applications, ICGI’94, number 862 in
Lecture Notes in Artificial Intelligence, pages 139-150, Alicante, Spain, 1994. Springer
Verlag.

R. Carrasco and J. Oncina. Learning deterministic regular gramars from stochastic sam-
ples in polynomial time. Theoretical Informatics and Applications, 33(1):1-19, 1999.

P. Dupont and L. Chase. Using symbol clustering to improve probabilistic automaton
inference. In Grammatical Inference, ICGI’98, number 1433 in Lecture Notes in Artificial
Intelligence, pages 232—243, Ames, Iowa, 1998. Springer Verlag.

G.D. Forney. The Viterbi algorithm. IEEE Proceedings, 3:268-278, 1973.

D. Freitag. Using grammatical inference to improve precision in information extraction.
In Workshop on Automata Induction, Grammatical Inference, and Language Acquisition,
Fourteenth International Conference on Machine Learning, Nashville, Tennessee, 1997.
G.W. Hart and A. Bouloutas. Correcting dependent errors in sequences generated by
finite-state processes. IEEE Trans. on Information Theory, 39(4):1249-1260, July 1993.
L. Hirschman. Multi-site data collection for a spoken language corpus. In Proceedings of
DARPA Speech and Natural Language Workshop, pages 7-14, Arden House, NY, 1992.
K. Kita, Y. Fukui, M. Nagata, and T. Morimoto. Automatic acquisition of probabilistic
dialogue models. In Proceedings of ISSD96, workshop of the International Conference on
Spoken Language Processing, pages 196-199, Philadelphia, October 1996.

J.B. Kruskal. An overview of sequence comparison. In D. Sankoff and J.B. Kruskal, editors,
Time Warps, String Edits, and Macromolecules: the Theory and Practice of Sequence
Comparison, pages 1-44. Addison-Wesley, Reading, Massachusetts, 1983.

K.J. Lang, B.A. Pearlmutter, and R.A. Price. Results of the abbadingo one DFA learning
competition and a new evidence-driven state merging algorithm. In Grammatical Infer-
ence, number 1433 in Lecture Notes in Artificial Intelligence, pages 1-12, Ames, Iowa,
1998. Springer-Verlag.

H. Ney, U. Essen, and R. Kneser. On structuring probabilistic dependences in stochastic
language modelling. Computer Speech and Language, 8:1-38, 1994.

J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In
N. Pérez de la Blanca, A. Sanfeliu, and E.Vidal, editors, Pattern Recognition and Image
Analysis, volume 1 of Series in Machine Perception and Artificial Intelligence, pages 49—
61. World Scientific, Singapore, 1992.

D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic probabilistic
automata. In Proceedings of the Eighth Annual Conference on Computational Learning
Theory, pages 31-40, Santa Cruz, CA, 1995. ACM Press.

H. Rulot and E. Vidal. An efficient algorithm for the inference of circuit-free automata.
In G. Ferrate, T. Pavlidis, A. Sanfeliu, and H. Bunke, editors, Advances in Structural and
Syntactic Pattern Recognition, pages 173-184. NATO ASI, Springer-Verlag, 1988.

M. Young-Lai and F. Tompa. Stochastic grammatical inference of text database structure.
To appear in Machine Learning, 2000.

