Probabilistic DFA Inference using Kullback-Leibler
Divergence and Minimality

Franck Thollard
Pierre Dupont
Colin de la Higuera

THOLLARDQ@QUNIV-ST-ETIENNE.FR
PDUPONT@QUNIV-ST-ETIENNE.FR
CDLHQUNIV-ST-ETIENNE.FR

EURISE, Jean Monnet University, 23 rue Dr P Michelon, 42023 Saint-Etienne, France

Abstract

Probabilistic DFA inference is the problem of
inducing a stochastic regular grammar from
a positive sample of an unknown language.
The ALERGIA algorithm is one of the most
successful approaches to this problem. In
the present work we review this algorithm
and explain why its generalization criterion,
a state merging operation, is purely local.
This characteristic leads to the conclusion
that there is no explicit way to bound the
divergence between the distribution defined
by the solution and the training set distribu-
tion (that is, to control globally the gener-
alization from the training sample). In this
paper we present an alternative approach,
the MDI algorithm, in which the solution
is a probabilistic automaton that trades off
minimal divergence from the training sam-
ple and minimal size. An efficient computa-
tion of the Kullback-Leibler divergence be-
tween two probabilistic DFAs is described,
from which the new learning criterion is de-
rived. Empirical results in the domain of lan-
guage model construction for a travel infor-
mation task show that the MDI algorithm
significantly outperforms ALERGIA.

1. Introduction

The problem of infering a formal grammar from a fi-
nite set of positive and negative examples of an un-
known language has been extensively studied (Sakak-
ibara, 1997; Honavar & Slutzki, 1998). In the iden-
tification in the limit framework, Gold (1967) shows
that negative examples are required even for learning
the class of regular languages, or equivalently for in-
ducing deterministic finite automata (DFAs). When
training data includes negative examples, the regular

positive and negative inference (RPNI) algorithm can
be used (Oncina & Garcia, 1992). This algorithm was
proven to identify in the limit the class of regular lan-
guages. Moreover the class of simple DFAs is polyno-
mially learnable under the simple PAC learning model
using the same algorithm (Parekh & Honavar, 1999).

Negative information, however, is not always available
in practical domains, as in the case of natural lan-
guage or speech applications. A promising approach
to learning DFAs from simple positive examples has
been recently proposed (Denis, in press), but real data
is also generally noisy, either because of transcription
errors or, for instance, because the data itself does
not consistently follow a formal syntax. One response
is to learn probabilistic deterministic finite automata
(PDFAs). One possible approach to learning PDFAs
consists of reducing the class of machines of interest to
discrete Markov models, also known as N-grams in this
context. Several extensions to variable order Markov
models have also been proposed (Ron et al., 1994; Saul
& Pereira, 1997). All these models, however, form a
proper subclass of PDFAs in which the maximal order
of dependence between several symbols in a sequence
is bounded. The general goal of the work presented
here is to be able to avoid this restriction and to learn
the entire class of PDFAs.

Several inference algorithms for probabilistic automata
have been proposed (Rulot & Vidal, 1988; Carrasco &
Oncina, 1994; Ron et al., 1995) but only Carrasco
and Oncina’s ALERGIA algorithm, a stochastic ex-
tension of the RPNI algorithm, is free from the re-
striction to the learning of acyclic automata (Carrasco
& Oncina, 1994; Carrasco & Oncina, 1999). This algo-
rithm has been applied to information extraction from
text (Freitag, 1997) or structured documents (Young-
Lai & Tompa, in press) and speech language model-
ing (Dupont & Chase, 1998). A detailed presenta-
tion of the ALERGIA algorithm is given in section 3.
The generalization operation of this algorithm is local

in the sense that pair of states will be merged if the
probabilistic languages associated to their suffixes are
close enough. This characteristic leads to the conclu-
sion that, in the context of the ALERGIA algorithm,
there is no explicit way to bound the divergence be-
tween the distribution defined by the solution and the
training set distribution (that is, to control globally
the generalization from the training sample).

We propose in section 4 an alternative approach, the
MDI algorithm, for which the solution is a probabilistic
automaton that trades off minimal divergence from the
training sample and minimal size. An efficient compu-
tation of the Kullback-Leibler divergence between two
probabilistic DFAs is described in section 4.1. The
new learning criterion is then detailed in section 4.2

Empirical results in the domain of language model con-
struction for a travel information task are presented in
section 5. They show that the MDI algorithm signifi-
cantly outperforms ALERGIA on this task.

2. Preliminaries

A probabilistic DFA (PDFA) is a 5-tuple (Q, %, d, g0, 7)
in which @ is a finite set of states, X is a finite alphabet,
d is a transition function, i.e. a mapping from Qx¥ to
Q, qo is the initial state, -y is the next symbol probabil-
ity function, i.e. a mapping from QxX U {#} to [0, 1].
A special symbol #, not belonging to the alphabet X,
denotes the end of string symbol. Hence (g, #) repre-
sents the probability of ending the generation process
in state g. The probability function must satisfy the
following constraints:

v(g,a) =0 ,ifd(g,a)=0,Yae X
EGEEU{#}"Y(q7 a) =1 7Vq € Q

The probability Pa(z) of generating a string z =
Z1...T, from a PDFA A = (Q,X,4,qo,7) is defined

o (ITiey v(dh =) v(g™, #)

_ if 6(¢%, z;) # 0 with ¢! = §(q¢?, z;),
Py(z) = forl <i<nandq' = qo

0, otherwise

Our definition of probabilistic automaton is equivalent
to a stochastic deterministic regular grammar used as a
string generator. Thus, > <. Pa(z) = 1. Note that
some work on the learning of discrete distributions uses
distributions defined on X" (that is) 5. P(z) =1,
for any n > 1), instead of X*.

Let I, denote a positive sample, i.e. a set of strings
belonging to the probabilistic language we are trying

to model. Let PT A(I) denote the prefiz tree acceptor
built from a positive sample I,. The prefix tree ac-
ceptor is an automaton that only accepts the strings in
the sample and in which common prefixes are merged
together resulting in a tree shaped automaton. Let
PPT A(I,) denote the probabilistic prefix tree accep-
tor. It is the probabilistic extension of the PT A(I;)
in which each transition has a probability proportional
to the number of times it is used while generating, or
equivalently parsing, the positive sample. Let C(q)
denote the count of state ¢, that is, the number of
times the state ¢ was used while generating I from
PPTA(Iy). Let C(q, #) denote the number of times a
string of I, ended on ¢. Let C(q, a) denote the count of
the transition (g,a) in PPT A(I;). The PPTA(L,) is
the maximal likelihood estimate built from I . In par-
ticular, for PPT A(I;) the probability estimates are

3 (g,a) =

a A
o and 7 (a,#) =

(

C

2.1 Quotient Automata and Inference Search
Space

The probabilistic automaton A/ denotes the automa-
ton derived from the probabilistic automaton A with
respect to the partition 7 of @), also called the quotient
automaton A/m. It is obtained by merging states of A
belonging to the same subset B in 7. When ¢ results
from the merging of the states ¢’ and ¢” , the following
equality must hold

v(g,0) = CLAEULA yoe U {#}
~@
NG WG
. (a)
~F0-00
(b)

Figure 1. A prefix tree acceptor (a) and a quotient automa-
ton (b).

Let Lat(PPTA(I;)) denote the lattice of automata
which can be derived from PPT A(I;). This lattice is
the set of all possible quotient automata of PPT A(Iy),
that is, the set of all probabilistic automata that can
be derived from PPTA(I,) by merging some states.
It defines the search space of all possible PDFAs that
can generalize the training sample (Dupont et al.,
1994). Figure 1 shows a prefix tree acceptor built from
the sample I, = {a,bb, bba, baab, baaaba} (probabili-
ties are omitted here for clarity) and a quotient au-
tomaton PPT A(I)/m corresponding to the partition

= {{0,1,3,5,7,10},{2,8,9}, {4}, {6} }. Each subset
of the partition represents a set of merged states and
is denoted by its state of minimal rank.

2.2 Kullback-Leibler Divergence

Let A = (Qa E; 5; 4o, ’Y) and A’ = (QIJ E; 515 qé)a ’Y')
be two PDFAs. Then D(P4 || Par) denotes the
Kullback-Leibler divergence or relative entropy (Cover
& Thomas, 1991).
D(Pa || Par) """ D(A || 4') =
reX*

The divergence can be interpreted as the additional
number of bits needed to encode data generated from
P4 when the optimal code is chosen according to Pa
instead of Pjy.

The divergence between two PDFAs can be decom-

posed over all pairs of transitions as follows (Carrasco,
1997) :

DU = 5 S er(ana)og 1LY
4 €Q ¢ €Q’ a€XU{H#} 5>
(1)

In equation (1), ¢;; denotes the probability mass in A
of the set L;; of prefixes common to state ¢; in A and
g; in A'. In general, the divergence becomes infinite
as soon as there is one symbol a such that v(g;,a) # 0
and v'(gj,a) = 0. As detailed in section 4.1, this will
never happen when the divergence between one PDFA
and one of its quotient automata is considered.

3. PDFA Inference and the ALERGIA
Algorithm

Algorithm 1 depicts in pseudocode the ALERGIA al-
gorithm (Carrasco & Oncina, 1994). It performs an
ordered search in the lattice Lat(PPTA(Iy)) which,
as described above, is the set of quotient automata of
PPTA(Iy). This ordered search can be described as
follows.

By construction, each of the states of PPT A(I,) cor-
responds to a unique prefix. The prefixes may be
sorted according to the standard order < on strings?!.
This order also applies to the prefix tree states. A
partition in the state set of the PPTA(Iy) consists
of an ordered set of subsets, each subset receiving the
rank of its state of minimal rank. The ALERGIA algo-
rithm proceeds in N — 1 steps, where N =O(||I]|) is

! According to the standard order, the first strings on

the alphabet ¥ = {a,b} are A < a < b < aa < ab < ba <
bb < aaa < ...

Z Py(z logP ((x))

the number of states of PPT A(I,). The partition 7 (%)
at step 4, that is, the quotient automaton obtained
at step i, is obtained by merging the two first sub-
sets, according to the standard order, of the partition
(i — 1) at step ¢ — 1 such that PPTA(I})/n(i) is a
compatible automaton. An automaton is compatible if
it is obtained from another compatible automaton by
a compatible merging. A compatible merging of two
states means that the probability of any of their suf-
fixes are similar within a certain threshold denoted a4.
The formal definition of this compatibility measure is
given below.

Algorithm 1 ALERGIA.

input

I, // A positive sample
aa // A precision parameter
output

a PDFA // A probabilistic DFA
begin

// N is the number of states of PPT A(I4)
// One subset for each prefix in the order <
m+ {{0},{1},... ,{N —1}} A« PPTA(l;)

// Loop on the subsets of partition m
fori=1to || —1
// Loop on the subsets of lower rank
for j=0toi—1
// Merging of subset B; and subset B;
if compatible (i,j,a4) then
o Tr\{Bj, Bl} U {Bl U Bj}
A/m'«derive(A, ")
7'« determ_merge (A/7")

A+ Alr"
w7’
bgef}k // Break j loop
€ena 1
end for // End J loop
en;i forA //End ¢ loop
return

end ALERGIA

The function derive (A,n') returns the quotient au-
tomaton A with respect to partition 7’. The automa-
ton A/7' may be non-deterministic. The function de-
term_ merge (A/7') returns the partition 7" obtained
by recursively merging all subsets of 7' that create a
non-determinism. If A/7' is deterministic, the parti-
tion 7" is equal to partition 7.

The function compatible (i,7,a4) controls the merg-
ing of states. It returns TRUE if the states ¢ and
j are compatible within the precision defined by the
parameter a4 and FALSE otherwise. The compatibil-
ity measure derives from the Hoeffding bound (Ho-
effding, 1963). Formally, two states ¢ and ¢» are
a4-compatible (0 < as < 1) if the two following con-

ditions hold

C(q1,0) C(g2,a) 1 2 1 1
(2.1) Clq1) C(g2) <43 In aa (\/m + m)7
Va € 2 U {#}

(2.2) §(g1,a) and 6(qa, a) are a g —compatible, Va € ¥

Condition (2.1) defines the compatibility between each
pair of transitions outgoing respectively from state ¢;
and ¢a. Condition (2.2) requires the compatibility to
be recursively satisfied for every pair of succesors of
these states?.

Figure 2 depicts one step of the ALERGIA algorithm.
We assume that the quotient automaton at step i is
represented at the top of this figure® and that states 5
and 2 satisfy the compatibility measure. States 5 and 2
are then merged resulting in a new quotient automaton
which, in this case, is non-deterministic. Subsequent
merging steps are then performed to eliminate non-
determinism. This results in the automaton depicted
at the bottom of the figure.

The two main features of the ALERGIA algorithm are
(1) the order in which candidate states for merging are
tried and (2) the compatibility measure between two
states. The relevance of this merging order is explained
in detail in Carrasco and Oncina (1999).

We argue here that the compatibility measure can be
improved. Indeed this measure is only based on dis-
tances between suffixes (down to the prefix tree leaves
because of the recursive condition (2.2)) of the two
candidate states. In particular, it is independent of
the probability mass associated to the prefixes of these
states. In other words, pairs of states with an asso-
ciated count that is too low, will always be consid-
ered compatible, resulting in inappropriate mergings.
This was observed experimentally by Young-Lai and
Tompa (in press) who introduced some refinements to
this compatibility measure.

Another related problem comes from the fact that
there is no explicit way to bound the divergence be-
tween the training sample distribution and the distri-
bution associated to the PDFA obtained after merging.

If one succesor state is undefined, as the transition
function § is partial, its associated counts are set to zero.

In this case, condition (2.1) can be computed, assuming
02

s .
3Probabilities are left out to make the figure more read-
able.

Merging of 8 and 4.

O—-0—-

AL A
-® b®a@

Merging of 7 and 2.
362
- b
O—-0

Merging of 9 and 4.

@%—@ ‘

Merging of 10 and 6.
a

G

Figure 2. One step of the ALERGIA algorithm.

In other words, there is no way to globally control the
generalization from the training sample. This obser-
vation leads to a new compatibility measure detailed
in section 4.2 and the associated learning algorithm
described in section 4.3.

4. MDI Algorithm

We present here the Minimal Divergence Inference
(MDI) algorithm, which aims at inducing PDFAs while
trading off minimal divergence from the training sam-
ple distribution and minimal size. This algorithm
can be considered as a new formalization of Stolcke’s
(1994) Bayesian learning method. Indeed a possible
solution with null divergence is the prefix tree accep-
tor PPTA(Ly) itself. It is also the maximal likeli-
hood estimate built from the training sample. On the
other hand, favoring small automata, or equivalently
automata derived from PPTA(I;) with a large num-
ber of mergings, defines a prior probability propor-
tional to the solution size. Trading off both effects is
thus equivalent to maximizing the posterior probabil-
ity of the model given the training data.

Apart from a clear interpretation in terms of KL di-

vergence, the main advance over Stolcke’s work is the
reduced complexity of the MDI algorithm. As detailed
in section 4.3, the total number of candidates for merg-
ing which are evaluated is O(N?), where N denotes
the size of PPTA(I}). The greedy search proposed
by Stolcke requires the same complexity at each step
of the inference, resulting in an overall complexity of
O(N3). All experiments reported in Stolke (1994), in-
cluding those with additional heuristics to speed up
the search, only deal with very small problems (alpha-
bets containing a few symbols, training sample con-
taining typically less than 100 strings). Experiments
reported in section 5.2 deal with significantly larger
problems and never took more than a few hours of
CPU time on a personal computer.

4.1 Computation of the KL Divergence

Let Ao = (Q°,%,48°% 43,7°) be the probabilistic prefix
tree acceptor PPT A(I,) built from a positive sample
I, and Ag/mo1 = A1 = (Q1,%,8%,¢,7), a quotient
automaton of Ag. By definition of a quotient automa-
ton (see section 2.1), each state ¢; in Ag exactly cor-

responds to one state g; 2 By, (gi) in A;. In other
words, Br,, (¢;) denotes the subset of the partition 7oy
to which the state g; belongs.

The set L;; of common prefixes to state ¢; in Ay and
any state of A; is necessarily empty for all states but
g;- Thus the probability mass c;; associated with L;; is

zero for all j but i. Let ¢; = ci; denote this probability
mass. Moreover, as Ay is a tree, there is only one prefix
for each state g; and ¢; simply denotes the probability
of reaching ¢; from the tree root.

These properties lead to a simplified version of equa-
tion (1) to compute the divergence between Ay and
All

D(AollA) = X X

2 €Qo a€XU{#}

-2 X

2 €Qo0 a€XU{#}

¢i 0(qi,a)log %

= —H(Ao) Ci Yo ((Iz; a) IOg 71 (QD a’)

3)

where H(Ap) denotes the entropy of Ag. The di-
vergence D(Agy||A1) is always finite in this case as
yl(ql-,a) # 0 if y0(gi;,a) # 0. Let Ay = A1/7T12 be
a quotient automaton of A;. By construction, A, is
also a quotient automaton of Ay for some partition mgs.
Thus the divergence D(Ap||A42) can be incrementally
computed as follows:

D(Ao|[A2) = D(Aol|A1) (4)
71 (q’n a)

+ X X cilg,a)log———

¢ €Qo12 a€XU{#} Y2 (Qia a)

where QOIZ = {q’i € QO |Bﬂ'01 (qz) 7é B7T02 (qz)} denotes

Algorithm 2 MDI.

input

I, // A positive sample
aum // A precision parameter
output

a PDFA // A probabilistic DFA
begin

// N is the number of states of PPT A(I4)
// One subset for each prefix in the order <
m <+ {{0},{1},... ,{N —1}} A« PPTA(ly)

// Loop on the subsets of partition 7
fori=1to || —1
// Loop on the subsets of lower rank
for j=0toi—1
// Merging of subset B; and subset B;
7 TK'\{B]‘, Bq,} U {Bz U Bj}
A/’ derive(A,w")
7' «determ_merge (A/7")
// Compute the size difference
nmerge < (|4| — |A/7"|)
// Confirm merging if compatible
if compatible (7, 7", anr,nmerge) then
A+ A"
w7
break
end if
end for
end for
return A

end MDI

// Break j loop

// End j loop
//End ¢ loop

the set of states in Ay which have been merged to
derive A, from A;.

4.2 MIDI Compatibility Criterion

Assume A; is a temporary solution of a PDFA infer-
ence algorithm and A is a tentative new solution de-
rived from Al. A(Al,AQ) = D(A0||A2) - D(A0||A1)
denotes the divergence increment while going from A
to As. The new solution A, is considered to be com-
patible with the training data if the divergence incre-
ment relative to the size reduction, that is, the reduc-
tion of the number of states, is small enough. For-
mally, let aps denote a compatibility threshold. The
compatibility is satisfied if:

A(Ag, Az)

— <L 5
R ©)

4.3 Description of the MDI Algorithm

Algorithm 2 depicts in pseudocode the MDI algorithm.
It follows the same search order as the ALERGIA algo-
rithm. The value of nmerge in the inner loop on j gives
the reduction of automaton size while deriving A /="
from A. The function compatible(n, ", anr, nmerge)

implements the criterion (5). It returns TRUE if this
compatibility measure falls below the threshold aj,
and FALSE otherwise. All other functions are identical
to those described in section 3. The overall complex-
ity of this algorithm, evaluated as the number of state
pairs which are considered for merging, is O(N?) where
N denotes the size of PPT A(1).

5. Experiments

Evaluation of non-probabilistic inference methods is
usually based on correct classification rates of new pos-
itive and negative data (Langet al., 1998). In the case
of PDFA inference, alternative measures are possible,
since the problem is often stated as estimating a prob-
ability distribution over the set of possible strings.

The quality of the PDFA A = (Q, X, 4, qo,y) is mea-
sured by the per symbol log-likelihood of strings x be-
longing to a test sample according to the distribution
defined by the solution P4(x) computed on a test sam-

ple S:

IS| =

L= —ﬁ S5 log P(ad o)

j=1i=1

where P(a:i|q’) denotes the probability of generating
xf, the i-th symbol of the j-th string in S, given that
the generation process was in state ¢'. This average
log-likelihood is also related to the KL divergence be-
tween an unknown target distribution and the pro-
posed solution by considering the test sample as the
empirical estimate of the unknown distribution.

The test sample perplexity PP is most commonly used
for evaluating language models of speech applications.
It is given by PP = 2. The minimal perplexity
PP =1 is reached* when the next symbol z/ is always
predicted with probability 1 from the current state g*
(i.e. P(zll¢®) = 1) while PP = |Z| corresponds to
random guessing from an alphabet of size |X|.

In order to guarantee that the probability of pre-
dicting any symbol from any given state is always
strictly positive, the PDFA must be smoothed. We
use here linear interpolation with a unigram model®
Pi(z;) = C(z;)/T where C(z;) denotes the count of
symbol z; in a training sample of 7" symbols:

P(zilg’) = By(¢", i) + (1 — B)Pr(x:)
This smoothing technique is very rudimentary but, be-

4Such a perfectly informed model cannot be constructed
in general.

5If some alphabet symbol never occurs in the training
sample, the unigram model itself needs to be smoothed.

cause it is so simple, it best reflects the quality of the
PDFA itself.

Section 5.1 explains how the learning data is split into
three sets. PDFA inference with the ALERGIA and
MDI algorithms is performed on the training sample.
The compatibility threshold a4 and ajs, and optimal
interpolation coefficients 8’s are adjusted in order to
minimize the perplexity on a separate validation set.
Finally the performance of both algorithms is assessed
on an independent test set.

5.1 The ATIS task

The Air Travel Information System (ATIS) cor-
pus (Hirschman, 1992) was developed under a DARPA
speech and natural language program that focussed on
developing language interfaces to information retrieval
systems. The corpus consists of speakers of American
English making information requests such as,

“Uh, I'd like to go from, uh, Pittsburgh to Boston next
Tuesday, no wait, Wednesday".

We use the ATIS-2 sub-corpus in the experiments re-
ported here. This portion of the corpus was devel-
oped under Wizard-of-Oz conditions in which a human
being secretly replaced the speech recognition compo-
nent of an otherwise fully automated dialogue system.

The ATIS-2 collection is officially defined as containing
a training set and two evaluation sets. The training
set contains 13,044 utterances (130,773 tokens). The
vocabulary contains 1,294 words. We used the first
evaluation set (Feb92, 974 utterances, 10636 tokens)
together with the training set to randomly generate 10
independent data sets. The first 90 % were used for
PDFA inference and the last 10 % were used as vali-
dation sets to tune our free parameters (a4, anr,3's).
The second evaluation set (Nov92, 1001 utterances,
11703 tokens) was used as our independent test set.
In the context of these experiments, alphabet symbols
represent words from the ATIS vocabulary and strings
represent utterances.

5.2 Results

Figure 3 reports the average perplexity obtained with
ALERGIA and MDI over 10 independent validation
sets as a function of the number of strings in the
training sets. In each case, the value of the free
parameters was adjusted to minimize the perplexity.
The optimal value a4 is approximately 0.25 in all
cases while optimal ajs ranges from 2.1073 for small
samples (|S|=1000) down to 3.10~* for large samples
(IS|=12000). With a’s being set to their optimal val-
ues, less than 2% relative perplexity difference is ob-

served while changing the interpolation parameter
in the range [0.5,0.7]. This illustrates the robustness
of the smoothing mechanism with respect to this pa-
rameter. o

" ALERGIA ——
100 | MDI

9 -
80 -

70

Perplexity

60 -

50

40

30

0 2000 4000 6000 8000 10000 12000

Training sample size

Figure 3. Learning curves: ALERGIA vs MDL

Table 1 summarizes the results obtained on the in-
dependent test set for different models. The 1-gram
model denotes the unigram which was interpolated
with the PDFAs obtained with ALERGIA and MDI.
The 3-gram (1) model denotes a trigram smoothed
with the same technique. The 3-gram (2) model is
smoothed with back-off to lower order estimates (Katz,
1987) with modified back-off distributions as proposed
by Kneser and Ney (1995). The second column reports
the test set perplexity. It shows that MDI significantly
outperforms ALERGIA and is slightly better than a
3-gram using the same smoothing mechanism. The
dramatic perplexity reduction obtained with back-off
models indicates that more sophisticated smoothing
technique for PDFAs are required. Preliminary results
show that interpolating about 10 different PDFAs ob-
tained with various ajs gives a test set perplexity of

41.
Table 1. Independent test set results

[Model | PP [# param [% parsed |
1-gram 148 1163 100%
ALERGIA 71 13468 53%

MDI 56 8981 62%
3-gram (1) 59 30813 31%
3-gram (2) | 14 45224 31%

The third column in table 1 reports the number of es-
timated parameters.® The last column gives a gener-
alization measure computed as the number of strings
accepted without smoothing by the various models.
It shows that MDI offers a better generalization than
ALERGIA. Note that a unigram model gives a perfect
generalization according to this criterion at the cost of
a much higher perplexity.

5This figure corresponds to the number of transitions
for PDFAs and the number of non-zero counts for N-gram
models. When a given model combines several models us-
ing either interpolation or back-off, the total number of
parameters is reported.

6. Discussion

In this paper we study the problem of PDFA inference
from a positive sample of an unknown stochastic lan-
guage. Several approaches to this problem have been
proposed, among which the ALERGIA algorithm and
its variants are most successful (Carrasco & Oncina,
1994; Young-Lai & Tompa, in press). We argue that
its generalization criterion, a state merging operation,
can be significantly improved as it does not globally
control the level of generalization from the learning
sample. We propose an alternative approach, the MDI
algorithm, which relies on a new formalization of Stol-
cke’s (1994) Bayesian learning method. In particu-
lar, the MDI algorithm aims at inducing a PDFA that
trades off minimal divergence from the training sample
and minimal size. Empirical results in the domain of
language model construction for a travel information
task show that the MDI algorithm offers a 21% test
set perplexity reduction as compared with ALERGIA.

Several heuristics have been proposed for improving
the quality of DFA inference to overcome the lack of
learning data (Lang et al., 1998; Juille & Pollack,
1998). Even though PDFA inference is a distinct prob-
lem, as it not only requires inference of the DFA struc-
ture but also correct estimation of its probabilities, it
would be worth investigating whether these heuristics
would be useful in conjunction with the MDI algo-
rithm.

We believe that improved smoothing techniques is a
key issue in applying PDFA inference methods on real
data. The smoothing mechanism detailed in section 5
is particularly simple. Clustering alphabet symbols
before PDFA inference was shown to reduce perplex-
ity on new data (Dupont & Chase, 1998). Back-off
smoothing is a very powerful technique to improve the
perplexity obtained with N-gram models. Adaptation
of this smoothing technique to PDFAs that cannot be
reduced to N-grams is one of our major research goals.

Acknowledgements

We wish to thank Lin Chase for her careful reading of
this manuscript.

References

Carrasco, R. (1997). Accurate computation of the rel-
ative entropy between stochastic regular grammars.
Theoretical Informatics and Applications, 31, 437—
444.

Carrasco, R., & Oncina, J. (1994). Learning stochas-
tic regular grammars by means of a state merging
method. Grammatical Inference and Applications,

ICGI’94 (pp. 139-150). Alicante, Spain: Springer
Verlag.

Carrasco, R., & Oncina, J. (1999). Learning deter-
ministic regular gramars from stochastic samples in
polynomial time. Theoretical Informatics and Ap-
plications, 33, 1-19.

Cover, T., & Thomas, J. (1991). Elements of informa-
tion theory. New York: Jonh Wiley and Sons.

Denis, F. (in press). Learning regular languages from
simple positive examples. In Machine Learning.

Dupont, P., & Chase, L. (1998). Using symbol clus-
tering to improve probabilistic automaton inference.
Grammatical Inference and Application, ICGI’98
(pp. 232-243). Ames, Iowa: Springer Verlag.

Dupont, P., Miclet, L., & Vidal, E. (1994). What is the
search space of the regular inference ? Grammati-
cal Inference and Application, ICGI’94 (pp. 25-37).
Alicante, Spain: Springer Verlag.

Freitag, D. (1997). Using grammatical inference to im-
prove precision in information extraction. Proceed-
ings of the ICML’97 Workshop on Automata Induc-
tion, Grammatical Inference, and Language Acqui-
sition. Nashville, Tennessee.

Gold, E. (1967). Language identification in the limit.
Information and Control, 10, 447-474.

Hirschman, L. (1992). Multi-site data collection for
a spoken language corpus. Proceedings of DARPA
Speech and Natural Language Workshop (pp. 7-14).
Arden House, NY.

Hoeffding, W. (1963). Probability inequalities for sums
of bounded random variables. Journal of the Amer-
ican Statistical Association, 58, 13-30.

Honavar, V., & Slutzki, G. (Eds.). (1998). Grammati-
cal inference. No. 1433 in Lecture Notes in Artificial
Intelligence. Ames, Iowa: Springer-Verlag.

Juille, H., & Pollack, J. (1998). A stochastic search
approach to grammar induction. Greammatical In-
ference (pp. 126-137). Ames, Iowa: Springer-Verlag.

Katz, S. (1987). Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustic,
Speech and Signal Processing, 35, 400-401.

Kneser, R., & Ney, H. (1995). Improved backing-off
for m-gram language modeling. International Con-
ference on Acoustic, Speech and Signal Processing
(pp. 181-184). Detroit, Michigan.

Lang, K., Pearlmutter, B., & Price, R. (1998). Re-
sults of the abbadingo one DFA learning competi-
tion and a new evidence-driven state merging algo-
rithm. Grammatical Inference (pp. 1-12). Ames,
Iowa: Springer-Verlag.

Oncina, J., & Garcia, P. (1992). Inferring regular lan-
guages in polynomial update time. In N. Pérez de
la Blanca, A. Sanfeliu and E.Vidal (Eds.), Pattern
recognition and image analysis, vol. 1 of Series in
Machine Perception and Artificial Intelligence, 49—
61. Singapore: World Scientific.

Parekh, R., & Honavar, V. (1999). Simple DFA are
polynomially probably exactly learnable from sim-
ple examples. Proceedings of the Sizteenth Interna-
tional Conference on Machine Learning (pp. 298—
306). Bled, Slovenia: Morgan Kaufmann.

Ron, D., Singer, Y., & Tishby, N. (1994). Learn-
ing probabilistic automata with variable memory
length. Proceedings of the Seventh Annual Con-
ference on Computational Learning Theory. New
Brunswick, NJ: ACM Press.

Ron, D., Singer, Y., & Tishby, N. (1995). On the
learnability and usage of acyclic probabilistic au-
tomata. Proceedings of the Eighth Annual Confer-
ence on Computational Learning Theory (pp. 31—
40). Santa Cruz, CA: ACM Press.

Rulot, H., & Vidal, E. (1988). An efficient algorithm
for the inference of circuit-free automata. Advances
in Structural and Syntactic Pattern Recognition (pp.
173-184). Springer-Verlag.

Sakakibara, Y. (1997). Recent advances of grammat-
ical inference. Theoretical Computer Science, 185,
15-45.

Saul, L., & Pereira, F. (1997). Aggregate and mixed-
order Markov models for statistical language pro-
cessing. Proceedings of the Second Conference on
Empirical Methods in Natural Language Processing
(pp. 81-89). Somerset, New Jersey: Association for
Computational Linguistics.

Stolcke, A. (1994). Bayesian learning of probabilistic
language models. Doctoral dissertation, Division of
Computer Science, University of California, Berke-
ley.

Young-Lai, M., & Tompa, F. (in press). Stochastic
grammatical inference of text database structure. In
Machine Learning.

