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Abstract

Word sense discrimination aims at automatically determining which
instances of an ambiguous word share the same sense. A fully unsu-
pervised technique based on a high dimensional vector representation
of word senses was proposed by Schütze [10]. While this model was
assumed to be Gaussian, results were only reported for the K-means
approximation. In this work, a local vector-based model of reduced
dimensionality which is linguistically coherent and can be computed
for multivariate Gaussian mixtures is proposed. Several practical ex-
periments are conducted on the New York Times News 1997 corpus.
They show the advantages of unrestricted Gaussian models compared
to K-means. The correct discrimination rate is further increased when
using regularized Gaussian models as proposed in [2].

1 Introduction

The purpose of word sense disambiguation is to determine the ex-
act sense of an instance of an ambiguous word used in a certain
context. Disambiguation is potentially useful in any linguistic
application for which word sense matters as in automatic trans-
lation, text categorization, speech understanding, etc.

Word sense disambiguation techniques can be divided into
three broad categories: supervised techniques, dictionary (or
thesaurus)-based and unsupervised techniques. All these tech-
niques use the possible senses of the ambiguous word, the con-
texts of the instances of the ambiguous word and some sense
informants. The difference between them lies in the knowledge
sources used (e.g. dictionary).
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Supervised techniques require a semantically tagged corpus,
i.e. a set of documents in which each ambiguous instance w is
correctly labeled with a semantic tag, which serves as training
corpus. The senses are defined by the semantic tags present in
the corpus. The contexts consist of windows around instances
of w and informants are the words belonging to those context
windows. For dictionary-based techniques, a raw (i.e. untagged)
corpus is used but a dictionary or a thesaurus gives the addi-
tional knowledge to define senses. The third technique, which
is studied here, is fully unsupervised and only needs a raw cor-
pus. In such case, a particular sense cannot be assigned to an
ambiguous instance. Here the problem is to automatically de-
termine which instances can be clustered as sharing the same
sense, the sense labels being arbitrary. This task can be per-
formed through unsupervised clustering of word contexts which
represent the unknown senses. Note that dictionary-based tech-
niques are sometimes also referred to as unsupervised techniques
since they do not require a semantically tagged corpus. To make
this distinction clear, we refer to fully unsupervised disambigua-
tion as word sense discrimination.

Due to the small size of semantically tagged corpora and as
discrimination only requires raw data which is easy to obtain, it
is worthwhile to concentrate effort on discrimination techniques.
Schütze introduced vector representation of word contexts where
unsupervised clustering of word senses is performed in a high di-
mensional vector space [10]. Assuming a Gaussian distribution
for each cluster, this model can be estimated iteratively with
the expectation-maximization (EM) algorithm [4]. For compu-
tational reasons, Schütze used a simplified model estimated with
the K-means algorithm [5]. However the use of the Gaussian
model improves the results as shown in [3]. Unfortunately, in
a high dimensional vector space, a diagonal covariance matrix
has to be assumed to simplify the computation and avoid nu-
merical difficulties. In this paper, following the ideas of Sinclair
and Véronis about word senses [11, 12], an adapted version of
Schütze’s technique is proposed to compute word contexts in a
smaller dimensional space. This approach is linguistically more
coherent and is able to avoid some simplification assumptions of
the Gaussian model. The algorithm which is then used to com-
pute the model is a regularized version of the EM algorithm for
mixture models proposed in [2]: the modified M-step uses the
regularized Mahalanobis distance to determine the shape of the
Gaussian components.

A short overview of the theories of Sinclair and Véronis, which
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bring us to adapt Schütze’s representation, is given in section 2.
Schütze’s model and our proposed model are presented in sec-
tion 3. The improved EM algorithm used in the experiments is
detailed in section 4. Several experiments have been performed
on the New York Times News; they are described in section 5 as
well as the results obtained.

2 Distributional information

In the task of disambiguation, the important question to solve is
the following: given an instance of an ambiguous word, what does
its meaning indicate? Sinclair claims that “the structure realizes
sense and therefore normally differentiates one sense from an-
other” [11]. By structure, Sinclair means collocations (i.e. words
occurring with each other) and similar patterns. This point of
view was already the one of Meillet: “the sense of a word is
defined only by the average of its linguistic uses” [8]. Surface
clues, i.e. syntax and collocations, are thus valuable informants
for meaning. According to Sinclair and Véronis, a ten words
window around (i.e. five before and five after) the ambiguous
word gives enough context.

Véronis summarizes this idea by the term distributional in-
formation which gathers syntactic and collocational information.
He gives an example of the power of such information using the
ambiguous French word barrage (= dam, roadblock, opposition)
[12]. In the two following sentences, the prepositions sur (on)
or à (to), which are syntactic information, allows us to disam-
biguate barrage:
(1) le barrage sur le Rhône, le barrage sur l’autoroute (the dam on

the Rhône river, the roadblock on the highway)

(2) le barrage à la loi (the opposition to the law)

The collocation information gives enough clues to differentiate
the “dam” or “roadblock” senses of barrage. Barrage (= dam)
will frequently occur with verbs such as édifier (edify), constru-
ire (build), démolir (destroy), while barrage (= roadblock) will
be found with verbs such as dresser (put up), franchir (cross),
démanteler (dismantle).

As Véronis points out, ordinary dictionaries are inappropriate
for the disambiguation task because there are chiefly concerned
with the definition of meaning and not with distributional in-
formation. This is one of the reasons this work focuses on dis-
crimination techniques and try to adapt the model proposed by
Schütze in order to add distributional information.
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3 Local context representation following
Schütze’s model

First, the model as proposed by Schütze is presented. Then, the
way to adapt the model according to linguistic facts in order to
work in vector spaces of smaller dimensionality is described.

3.1 Schütze approach

In the original Schütze’s approach, words, contexts and senses
are represented in a high-dimensional real-valued vector space
[10]. Two types of representation can be distinguished: word
vectors and context vectors.

Word vector

A word w can be represented by a vector in which each com-
ponent corresponds to a word v occurring in the corpus. The
vector components represent frequencies of co-occurrence: the
component associated with word v is the number of times that
v occurs as a neighbor of w in the corpus. A neighbor is a con-
tent word occurring in a context window centered on w. These
content words are the informants in this approach.

Schütze examines two different ways to choose the vector di-
mension: a local selection which focuses on the 1,000 most fre-
quent words occurring as neighbors of the ambiguous word and
ignores the rest of the corpus; a global selection which chooses
the 2,000 most frequent words in the entire corpus. In the global
manner, word vectors are computed only for the 20,000 most
frequent words of the corpus. To compute the most frequent
words of the corpus, stop words are excluded. Stop words are
conjunctions, prepositions, articles and other words, which ap-
pear often in documents yet alone may contain little meaning.
In our adapted model described in section 3.2, some stop words
are however used as they may contain important clues for sense
discrimination.

Context vectors and senses

The context of an instance w is represented by a vector x ob-
tained as the weighted sum of the word vectors of w’s neighbors.
Given a context C and word vectors vi of the corresponding
neighbors vi of w, the context vector x is defined as follows:

x =
∑
vi∈C

aivi. (1)
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The weight ai of vector vi is the inverse document frequency, a
measure of its discriminative capability: ai = − log di

D , D denot-
ing the number of documents in the corpus and di the number
of documents in which vi occurs.

Similar context vectors can be seen as forming clusters in
vector space. Each cluster represents one sense of an ambiguous
word and can be characterized by its mean and covariance ma-
trix. The sense of a new instance w is then assigned to the most
similar cluster.

3.2 Adapted model

As collocations matter in disambiguation, local selection is used.
The corpus has been lemmatized1, which was not the case in
Schütze’s model. For each ambiguous word, all the lemmas oc-
curring in a small lemmas window around the ambiguous word
instances in the corpus are taken into account. These lemmas
are the informants and their number vary according to the am-
biguous word. The word vector for each informant is computed
in the same way as Schütze did, except that the vector dimension
is drastically reduced.

A stop list (which normally contains stop words) is used while
computing the most frequent lemmas, but it does not include
prepositions given their importance in the disambiguation pro-
cess [12], as stressed in section 2.

Focusing on local selection, it is now the concept of con-
texts around an ambiguous word which makes more sense than
the concept of documents in which the ambiguous word occurs.
The weight computation is thus slightly different: D denotes the
number of contexts (i.e. the window of lemmas) examined for
an ambiguous word in the corpus and di the number of contexts
in which vi occurs.

4 Unsupervised discrimination

In this section, K-means, unrestricted Gaussian mixture and the
regularized EM for Gaussian mixtures are presented.

4.1 K-means

K-means [5] is also referred to as hard clustering because each
vector x is assigned to its closest cluster mean (or center) cj

1The part-of-speech tagger TreeTagger which is also a lemmatizer (links every word to
its lexical entry in a dictionary) and achieves 96.36% accuracy is used, cfr [9].
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according to the Euclidean distance in vector space: ∆E =
(x− cj)

T (x− cj). Given K cluster means, the context vectors
of the training set are first assigned to their closest means. Clus-
ter means cj are then recomputed. This process is iterated as
long as the cj vectors change. Once the parameters have been
estimated on the training corpus, the sense of a new instance of
w can be assigned from the vector x associated to it by finding
its closest mean.

4.2 Finite Gaussian mixtures

Mixtures of Gaussian distributions are commonly used for un-
supervised learning tasks [7]. They have been shown to be ef-
fective in numerous clustering problems ranging from fire detec-
tion to tissue segmentation of brain magnetic resonance images.
Provided the number of components in the mixture is known,
the maximum likelihood estimates of the model parameters can
be computed in an elegant way by applying the expectation-
maximization (EM) algorithm [4].

A finite Gaussian mixture is defined as a linear combination
of K Gaussian component densities:

p(x) =
K∑

j=1

P (j)p(x|j). (2)

The mixing proportions P (j) are non-negative and must sum to
one, and p(x|j) is the distribution of cluster j. It is defined by

p(x|j) = (2π)−
d
2 |Σj |−1/2 exp (−∆/2) , (3)

where ∆ = (x− cj)
T Σ−1

j (x− cj) is the Mahalanobis distance
and d the dimension of the context vectors. Fitting the mixture
components to the clusters consists then in estimating the centers
cj , the covariance matrices Σj and the mixing proportions P (j)
based on the observed data {xn}N

n=1.
In order to maximize the likelihood L =

∏N
n=1 p(xn) of the

observed data, EM operates in two stages. First, in the E-step,
the expected value of some “unobserved” data is computed, us-
ing the current parameter estimates and the observed data. The
“unobserved” data are called responsibilities and they represent
the probability that a data point was generated by a well-defined
mixture component. Subsequently, during the M -step, the ex-
pected values computed in the E-step are used to update the
model parameters in such a way that the likelihood is increased.
Each iteration step t can be summarized as follows [7]:
E-step:
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P (t)(j|xn) =
p(t)(xn|j)P (t)(j)

p(t)(xn)
. (4)

M -step:
c(t+1)

j =
∑N

n=1 P (t)(j|xn)xn∑N
n=1 P (t)(j|xn)

, (5)

Σ(t+1)
j =

∑N
n=1 P (t)(j|xn)

(
xn − c(t+1)

j

) (
xn − c(t+1)

j

)T

∑N
n=1 P (t)(j|xn)

, (6)

P (t+1)(j) =
1
N

N∑
n=1

P (t)(j|xn). (7)

Once the parameters have been estimated on the training
corpus, the sense of a new instance of w can be assigned from
the vector x associated to it by applying Bayes’ rule.

4.3 The regularized Mahalanobis distance

Numerical difficulties in the use of EM for Gaussian mixtures
may arise due to singularities in the likelihood function, leading
to a component to collapse (i.e. its width tends to zero). This
is even more troublesome in high dimensional spaces or when
the data set is sparse. This problem was discussed in [1] and
accredited to the concept of isolation. In [2], it was proposed
to use the regularized Mahalanobis distance in order to improve
the estimation of the clusters.

The multivariate Gaussian uses the Mahalanobis distance ∆
to determine its shape. When the number of data samples con-
tributing to the computation of the covariance matrix of a com-
ponent is small with respect to the dimension d of the data sam-
ples, this matrix may be singular. Moreover, the use of ∆ tends
to produce hyperellipsoidal components, leading to unusually
large and elongated densities. By contrast, when one consid-
ers the Euclidean distance ∆E , large data clusters tend to split
unnecessarily, as the component densities are hyperspherical.

Based on the hyperspherical character of ∆E and the hyper-
ellipsoidal character of ∆, one can construct a regularized Maha-
lanobis distance ∆R as a convex combination of both distances:

∆R = (1− λ)∆ + λ∆E , λ ∈ [0, 1]. (8)

Parameter λ controls the trade-off between hyperspherical and
hyperellipsoidal components. Large value of λ should be used
when the covariance matrices cannot be estimated reliably.

Consider again the E- and M -step. Introducing the regular-
ized Mahalanobis distance consists in adapting, at each iteration
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step t, the covariance matrix of each component density accord-
ing to (8). Therefore, the following adaptation rule is inserted
at the end of the M -step:

Σ(t+1)
j =

[
(1− λ)

(
Σ(t+1)

j + εI
)−1

+ λτI

]−1

, (9)

where I is the d×d identity matrix and ε is called the safety fac-
tor. Its role is to stabilize the learning process whenever needed
by converting a singular matrix to a non-singular one. Using
different values of ε do not make much difference as long as they
are significantly smaller than the variance of the data samples
[2]. Finally, τ is a scaling factor taking the range of the data
into account. It is computed according to the rule-of-thumb
τ = d

√
K/σ2

x, where σx is the standard deviation of the data.

5 Experiments and results

The role of pseudowords is described in section 5.1. Section 5.2
describes the corpus used in the experiments. Results of the
different experiments are given in section 5.3.

5.1 Pseudowords

In order to test the performance of sense discrimination algo-
rithms on naturally ambiguous words, a large number of in-
stances have to be disambiguated by hand. As this is a time-
consuming task, it is convenient to generate artificially ambigu-
ous words: pseudowords. A pseudoword is the union of two or
more natural words.

Discrimination of pseudowords does not exactly reflect the
discrimination task of real ambiguous words but precautions can
be taken so as to best reflect a natural case [6]. For example,
the real ambiguous word motion has two main senses: physi-
cal movement and proposal for action. A hundred instances of
motion were manually tagged to determine its sense distribu-
tion. The corpus is then searched for two unambiguous words
having a frequency of occurrence roughly fitting the ambiguous
word sense distribution. In the case of motion, the unambiguous
words animal and river satisfy this requirement. All instances
of animal and river in the training corpus are then replaced by
the pseudoword animal-river.

The first four rows of table 1 give the pseudowords built to
represent four natural ambiguous words (respectively motion,
train, interest and suit) and their frequencies of occurrence in
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Pseudoword # lemmas Senses Training Test
animal-river 10, 932 animal 1, 662 156

river 4, 103 270
rely-illustration 5, 859 rely 1, 073 109

illustration 2, 458 243
data-school 22, 908 data 5, 855 707

school 20, 880 1, 955
railway-admission 3, 968 railway 354 23

admission 1, 240 116
railway-train 4, 911 railway 354 23

train 1, 437 150
jury-judge 12, 149 jury 4, 191 380

judge 6, 924 922
lawyer-judge 15, 274 lawyer 5, 454 668

judge 6, 924 921

Table 1: Number of pseudoword occurrences and number of lemmas in the
contexts.

the training and test sets. For the components of the last three
pseudowords, nouns which belong to the same field and should
occur in quite similar semantic contexts have been chosen.

5.2 Corpus

The available corpus selected for our experiments is the New
York Times News of 1997. The training set comes from the
first six months issues (January 1997 till June 1997). It contains
74,369,799 word (∼ 500 megabytes). The test set is extracted
from the first 17 days of December 1997. The test set contains
7,805,395 word (∼ 50 megabytes).

Contexts of lemmas (i.e. lemmas window around the ambigu-
ous word) are considered for each ambiguous word. Table 1 gives
the number of lemmas occurring in the contexts and not belong-
ing to the stop list for each pseudoword used as ambiguous word
in our experiments. A small window size is used: five lemmas
before and after the ambiguous word.

5.3 Results

Vectors of dimension 20 corresponding to the 20 most frequent
lemmas are used. Experiments have also been done with 5, 10
and 50 dimension vectors. Five and ten dimensions do not pro-
vide enough information for disambiguation while fifty dimension
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did not improve the results.
Experiments have been run with the K-means algorithm and

with the EM algorithm for Gaussian mixtures. For the latter,
three implementations have been used: one assuming a diagonal
covariance matrix for each cluster (dFGM in table 2), one using
a full covariance matrix (FGM ) and one using the regularized
Mahanalobis distance as explained in section 4.3 (mFGM ).

All algorithms require an a priori fixed number of clusters. In
the experiments, the number of clusters is fixed at two (binary
sense discrimination). Table 2 gives the discrimination results
for the pseudowords considered. The first two measures (S1, S2)
gives the percentage of correct senses for each of the two words
making the pseudoword. As the sense labels are arbitrary in a
sense discrimination experiment, the most frequent sense (S1)
is considered to be attributed to the most frequent word in the
training (e.g. river for the animal-river pseudoword). The ac-
curacy is taken as the average correct discrimination rate for
both senses S1 and S2; clusters are thus considered equiproba-
ble, disregarding the number of word vectors in each cluster. The
accuracy given here differs from the one in [10] and [3] where it
was computed as the total percentage of correct discrimination,
disregarding the sense labels. However we believe that the for-
mer reflects better the quality of the disambiguation process in
general. The optimal value for the parameter λ is selected by
exhaustive search, its range being known (λ ∈ [0, 1]).

The accuracy of the Gaussian model is in general higher than
the accuracy of K-means. Working with a full covariance matrix
is thus worthy and, in all cases, the regularized FGM gives better
results. Remark that using unrestricted FGM becomes feasible
in a local context as the number of parameters to estimate are
severely reduced. Indeed, in the local vector-based approach the
dimensionality of the vector space is reduced by a factor 100 as
compared to the global model which was shown to performed
best in Schütze’s experiments. Remark also that the compu-
tational overhead of regularized FGM is negligible compared to
regular FGM, while improving discrimination. A performance of
roughly 60-70% is achieved for most pseudowords. The good per-
formance for rely-illustration is probably due to the fact that the
two components making the pseudoword have different parts of
speech (noun, verb). For the first four pseudowords in the table 2,
the results are on average better (accuracy of 67.1%, 68.7% and
71.7% for the diagonal FGM, FGM and the regularized FGM re-

2Average results on these four pseudowords are reported for comparison purposes.
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Pseudowords K-means dFGM FGM mFGM
animal-river S1 77.4 52.6 48.9 48.9

S2 15.4 57.7 78.9 78.9
acc. 46.4 55.1 63.9 (λ = 0.0) 63.9

rely-illustration S1 95.1 90.5 92.5 90.5
S2 67.0 94.5 89.0 100.0

acc. 81.0 92.5 90.8 (λ = 0.4) 95.3
data-school S1 84.1 65.9 59.2 78.1

S2 19.1 50.3 48.5 40.3
acc. 51.6 58.1 53.9 (λ = 1.0) 59.2

railway-admission S1 92.4 47.4 58.6 45.7
S2 25.6 78.3 73.9 91.3

acc. 59.0 62.8 66.3 (λ = 0.2) 68.5

average accuracy 59.5 67.1 68.7 71.7
railway-train S1 89.3 56.0 88.0 92.0

S2 41.7 60.9 52.2 52.2
acc. 65.5 58.4 70.1 (λ = 0.2) 72.1

jury-judge S1 85.7 52.9 53.7 56.8
S2 24.2 52.1 59.7 58.1

acc. 54.9 52.5 56.7 (λ = 0.1) 57.0
lawyer-judge S1 85.7 65.7 75.5 78.7

S2 10.1 63.2 64.6 62.6
acc. 47.9 64.5 70.0 (λ = 0.1) 70.7

Total average accuracy 58.0 63.4 67.4 69.5

Table 2: Discrimination results in %.

spectively), except for K-means (59.5%), than the ones achieved
in [3] using Shütze’s global vector-based approach (accuracy of
62.1% and 55.8% for K-means and the diagonal FGM respec-
tively). Finally, the clusters obtained with the Gaussian model
are more balanced than with K-means, for all the pseudowords.

6 Conclusion

A local vector-based model related to Schütze’s approach is pro-
posed for unsupervised sense discrimination. The main idea is
to reduce the dimension of the high dimensional word vectors by
means of linguistic facts. By a drastic reduction of the dimen-
sionality (i.e. by a factor 100 as compared to Schütze’s global
model), the simplified assumptions on the Gaussian mixtures are
not required anymore. Experimental results show that Gaussian
mixtures with full covariance matrices does improve the results.
The best performances are obtained when using the regularized
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Mahalanobis distance. The Gaussian models lead to balanced
clusters.

The approach proposed here is also linguistically coherent
(use of collocation, small context window, taking into account
prepositions) and its results can be explained by linguistic in-
tuition (e.g. for the rely-illustration pseudoword for which the
components have different parts of speech).

Several additional extensions will be considered in the future.
We plan to add syntactic structure to the model: dimensions of
the vector could be positional part-of-speech tags. The number
of considered senses has to be studied: currently only binary
sense discrimination is considered. We also plan to test the model
on real ambiguous words.
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