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Abstract. In this paper, we propose a way of incorporating additional
knowledge in probabilistic automata inference, by using typed automata.
We compare two kinds of knowledge that are introduced into the learning
algorithms. A statistical clustering algorithm and a part-of-speech tagger
are used to label the data according to statistical or syntactic informa-
tion automatically obtained from the data. The labeled data is then used
to infer correctly typed automata. Compared to a previously proposed
method which improved grammatical inference, our approach yields bet-
ter automata. The inference of typed automata with statistically labeled
data provides language models competitive with state-of-the-art n-grams
on the Air Travel Information System (ATIS) task.

1 Introduction

Probabilistic finite state automata (PFA) have received increasing attention over
the past few years. They are used in prediction tasks [GLT01], pattern recogni-
tion tasks [LVA194] and language modeling tasks [SO94], in tasks where data is
sequential or structures, regularities in the data have to be described and where
the dependencies can be long-term. As models they are richer than purely statis-
tical models (Markov chains, n-grams [RBH93]) but poorer than complex models
such as Bayesian Networks [Kol99]. They are equivalent to hidden Markov mod-
els (HMMs) [Jel98], but become more constrained if the PFA are deterministic.
Determinism, on the other hand, allows for faster parsing (computing the prob-
ability of a string or a set of strings) and for the use of a variety of learning
algorithms from the grammatical inference framework. Moreover, learning algo-
rithms for HmMs and Pras differ in spirit since the structure (number of states
and edges) is usually fixed for HmMs and is learned for PFAs.

Grammatical inference consists in learning formal grammars for unknown
languages when provided with examples of strings belonging (or not) to the lan-
guage. Regular grammatical inference, in which the target grammar is supposed
to be regular, has received most of the attention.
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If one is provided with positive and negative examples, algorithm RPNI
[0OG92] can be used to infer deterministic finite automata. Neural approaches
have also been proposed [LGF00]. Grammar induction techniques have been
used in a variety of tasks and fields: information extraction [Fre97,SMR99|, pat-
tern recognition [LVAT94], or time series [GLT01] are some examples.

In the case where only positive examples are available, theoretical results
[Gol67] show that the task becomes considerably harder. An alternative is to
learn a probabilistic finite automaton from the data, learning the regularities of
the distribution rather than those of the language: several algorithms have been
proposed [C094,5094, TDAIH00,YLTO0] for this task.

These algorithms generally perform well on small benchmarks but are not
currently able to obtain significant results on real world tasks where the size of
the alphabet, the lack of learning data or the noise are serious obstacles. An
alternative to better these techniques is to reduce the search space, or to put it
like McAllester and Schapire [MSO01]: “to seed the search with sufficient initial
regularities”.

One way to do this is through the inclusion of prior knowledge in models,
which is an important and successful feature in machine learning. Very often,
the complexity of the intended model is such that the quantity of learning data
is insufficient. The success of a model and a learning algorithm depends on their
ability to include prior knowledge, in order to compensate for the lack of data.
Alternatively, with only a fixed set of data, prior knowledge allows to learn more
complex functions. In general prior knowledge is additional external knowledge
that is not used during the learning phase. When the knowledge is used twice,
first to classify, order or prepare the data, and second for the actual learning,
we will use the term of additional knowledge. It is generally accepted that prior
knowledge is taken from a different source than the actual data the learning
process is going to use. Yet in the sequel we will be allowing the additional
knowledge to be merely another point of view on the learning data.

In the specific context of probabilistic model learning, the importance of
additional knowledge has been shown in applications of Hidden Markov Models;
whereas mathematically founded methods exist to estimate the parameters of
the probability distribution in these models (the EM algorithm [DLR77]), the
quality of these estimations widely depend on the chosen structure of the models
(number of states, number of transitions and topology); the success of HMMs in
several application domains, like speech recognition or computational biology,
is partly due to the use of additional knowledge to design the structure of the
models:

— in speech recognition, the knowledge on the phonemic structure of utter-
ances induces the left-to-right structure of the HMM (Bakis models) and
also facilitates the learning process with data segmentation [RBH93];

— in computational biology, additional knowledge regarding the mean length
of proteins and additional distribution of amino acids is used to design the
models [DEKM99].
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We believe that the use of additional knowledge in grammatical inference can
bring a number of advantages:

— first, the search space of the deterministic finite automata inference task is
well defined [DMV94]. This space depends on the learning data available, and
can be extremely large. The use of additional knowledge on the structure of
the target automaton reduces the search space by excluding from the search
automata which do not conform with this knowledge;

— second, additional knowledge can complete the learning data, for example
by providing implicit counter-examples: strings known not to belong to the
target language;

— finally, real world constraints that the induced formal language must satisfy
can be introduced in a simple way.

Additional knowledge has already been used in grammatical inference by
Bernard & de la Higuera [BAIHO1] in their ILP system called GIFT!. GIFT learns
a tree automaton from a set of terms, which is later translated into a logic
program. The algorithm is applied to structured data, and a typing system of this
data is also inferred (for instance, rules that state that a person has two parents
one of which is male and the other female). Typing is used to avoid impossible
situations (for example, in a family relationship, someone with two fathers).
Kermorvant & de la Higuera [KdIHO02] have proposed a framework to include
additional knowledge in the automaton inference algorithms. In this framework,
additional knowledge regarding sequences to be modeled can be included in
automata using typing.

In this paper, we propose to infer typed automata from labeled sequential
data. Typing is performed through the use of an initial parse of the data where
either statistical clusters of strings are formed (inducing one type per class) or
by part-of-speech labeling through an adapted Brill tagger [Bri92]. It should be
noticed that the adapted tagging will be limited in the sense that prefixes will
have to be tagged in an uniform way. This constraint should be considered as a
compromise. By doing so the complexity of the learning algorithm is not worse
than the complexity of the original one, as testing whether a given merge is
compatible with the typing can be done in constant time. The induced types are
used by a classical grammatical inference algorithm, ALERGIA, that constructs
a probabilistic finite state automaton.

We compare the use of these two kinds of additional knowledge in the frame-
work of language modeling: on the Air Travel Information System (ATIS) task,
the results we report are comparable with those achieved by state-of-the art
n-grams models.

2 Regular Language Learning from Tagged Data

The search space for regular languages inference has been studied by Dupont et
al. [DMV94]. Basically, when inferring a regular language from a sample set I,

! Grammatical Inference For Terms.
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the search space is a partition lattice defined by the set of states of the prefix tree
acceptor (PTA) which is the smallest deterministic automaton accepting exactly
I, and in which each state has at most one predecessor. The least upper bound
of the lattice is the partition corresponding to the universal automaton which
accepts all strings on the alphabet. Under the hypothesis of the presence of a
characteristic set in the sample set, we are insured that the target automaton
belongs to the lattice. However, since the size of the lattice is exponential in the
size of the sample set, we need a good strategy to explore this lattice. Evidence
driven strategies have already been proposed [dOV96,LPP98].

Regular language inference from real data, such as natural language sentences
or biological sequences, raises additional difficulties. First, negative information
is not always available. Secondly, real data is generally noisy. If we choose to
learn probabilistic finite automata we can, in principle, handle both the lack of
negative information and the presence of noise. Besides, background knowledge of
the application domain is often available. In [KdIH02] a framework that includes
additional knowledge in the automaton inference algorithms is proposed. This
framework is the application of typing, as known for terms and trees, to finite
state automata. In this paper, we propose to infer typed probabilistic automata
from tagged data.

2.1 Typed Probabilistic Finite State Automata

We consider probabilistic finite state automata (PFA), which provide a proba-
bilistic extension of finite state automata. A PFa Ais atuple < @, X, 6,7, qo, F >
where:

— @ is a finite set of states,

— XY is an alphabet,

—0:Q x X — @ is a transition function,

7 : @ x X —]0..1] is a function which returns the probability associated with

a transition;

— qo is the initial state,

— F: @ — [0..1] is a function which returns the probability for a state to be
final.

Furthermore, we only consider PFA which are structurally deterministic. This
means that from any given state ¢ at most one state can be reached on any
given alphabet symbol. This has two implications. First, we restrict our attention
to the particular class of distributions that can be generated by deterministic
Pra (PDFA). Second, inference algorithms explicitly searching for PDFA, such as
ALERGIA [CO94], can be used.

In order to define a probability distribution on X* (the set of all strings built
on XY), the automaton must be trimmed (without useless states) and 7 and F'
must satisfy the following consistency constraint:

Vg € Q, [ZT(q,a) + F(q) =1

acXr
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A string ag - - - a;—1 is generated by an automaton A iff there exists a sequence
of states eg - - - ¢; such that

— € = 4o
—Vie [0,l - 1], (5(61',0/1') = €41
— F(er) #0.
The automaton assigns to the string the probability
1—1
PPFA(G() s al_l) = [H T(ei, ai) * F(el) (].)
i=0

Note that a PFA can be seen as a particular case of Markov models with
discrete emission probabilities on transitions and with final probabilities.

Typed automata are introduced in [KdIH02]. A typed PFA A is defined as a
tuple < @, X, 0,7, qo, F, S,0 > where:

- Q,X,9,T,q0, F are the same as in classical PFA,

— S is a set of sorts,

— o is a typing function which associates a single sort to each state of the
automaton.

A typed probabilistic automaton is a probabilistic automaton with typed states.
There are several ways to define the typing function ¢. In [KdIH02|, it was
proposed to define the typing function o by a type automaton constructed by an
expert, on the basis of some knowledge he may have of the domain. In this paper,
we propose to automatically infer the typing function from labeled sequential
data. Labeled sequential data corresponds to strings where the symbols that
appear are tagged. Such data is very often available and can take the form of
a tagging over the sequences, for example part-of-speech tagging for natural
language sentences or secondary structure for protein sequences.

We define the extension of o to words such that o(w) = o(§(ge,w)) for all
w € Pref(L), where Pref(L) the set of all the prefixes of all the strings recognized
by the typed automaton. We define o, (u) as the sort of prefix u in the context
of string uw.

Typing functions could, in theory, be as complex as one may want. Practically
we do not want typing to be a burden to learning. The choice in this paper is to
make type-checking easy, even if that introcuces limits for the typing function.
The typing function (o) must be able to type all states, and therefore possible
strings in a regular manner. Therefore, if L is the set of all possible strings, two
conditions must be met:

— Yu € L,o(u) is defined;
— Yuv,uw € L = 0y (1) = 0y (u).

A typing function o is admissible if the above conditions hold.

Hence one can associate various types to a symbol, but only one type to a
string. It should be noticed that this is a strong condition: in usual cases tags are
computed by taking into account both left and right-hand contexts. In section 4
we discuss various ways of lifting this condition.
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Algorithm 1 Generic PFA induction algorithm
INPUTS
I, training set (sequences)
a, a precision parameter
OUTPUT
a probabilistic finite state automaton

A « build PPTA(1;)
while (g;,q;) < choose_ states(A) do
if is_ compatible(q;,qj, ) then
merge(A,gi, g;)
return A

2.2 Learning Typed Automata from Automatically Labeled Data

Several algorithms have been proposed to infer PFA from examples using fre-
quencies [CO94,RST95,TDAIH00|. All these algorithms are based on a similar
scheme, which is presented in algorithm 1. Our inference algorithm for typed
automata from labeled data is also derived from this scheme that we explicit
below.

Given a set of labeled positive examples I, , the algorithm first builds the
typed probabilistic prefiz tree acceptor (PPTA). A set of labeled examples is a
set a examples with a label (a sort) for every prefix of every examples. The
typed PPTA is an automaton accepting all examples of I, in which the states
corresponding to common prefixes are merged and such that a training count
is attached to each state and each transition. This count denotes the number
of times this state, or transition, is used while parsing the sample. An estimate
7 (vesp. F') of the function 7 (resp. F) can be computed from these counts.
C(q) denotes the number of times the state ¢ is used while parsing I, C(q, a)
denotes the number of times the transition (g, a) is used while parsing I, and
C(gq) denotes the number of times ¢ is used as final state in I;. For each state
q € @, we have:

C(Qv a) ﬁw(q) — Cf (Q)
Clq)

The typing function of the typed PPTA is defined by the labels of the strings in
I,. When a string with label [ is used to reach a state g of the typed PPTA, the
label [ is the type of the state g: o(q) = I. Note that the fact that the typing
function is admissible implies that a typed PPTA can always be built from a
given labeling.

In the framework of language modeling, text corpora manually or automati-
cally annotated with Part-of-Speech (P0s) tags are available. An example of an
annotated corpus of English sentences is:

Va € X,7(q,a) =

I/PRP fly/VBP from/IN Dallas/NNP to/TO Philadelphia/NNP ./.
I/PRP want/VBP a/DT flight /NN from/IN Baltimore/NNP ./.
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a flight from Atlanta @ to Baltimore @
O ®© W

with breakfast
want /\ a

fly

flight

U Baltimore
from Dalas °
Philadelphia
@

Fig. 1. A typed probabilistic prefix tree acceptor.

I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NNP to/TO Bal-
timore/NNP ./.
I/PRP want/VBP a/DT flight/NN with/IN breakfast/NN ./.

The typed PPTA constructed from these labeled examples is presented in Figure
1.

The second step of the algorithm consists in visiting the states of the PpTA
(function choose states(A)), and testing whether the states are compatible and
can be merged. The compatibility criterion (defined in algorithm 1) by function
is_ compatible(g;, g;, &) depends on a precision parameter a. If the states are
compatible, they are merged (function merge(4,q;,q;)). Usually, several con-
secutive merging operations are made in order to maintain the deterministic
structure of the automaton. The algorithm halts when no more merging is pos-
sible. In the case of algorithm ALERGIA [CO94], the compatibility of two states
is based on different tests: the compatibility of their outgoing probabilities on
the same letter, the compatibility of their probability to be final and the recur-
sive compatibility of their successors. Statistically, these tests are derived from
Hoeffding bounds [Hoe63].

By using only admissible typing functions, the introduction of type con-
straints in the learning algorithm is straightforward. We must only, each time
a merging operation is considered, check if the states have the same type. This
constraint can easily be checked in constant time: it is sufficient to test the
equality of the types of ¢; and g; in function is_ compatible(q;, q;, o). With this
constraint, we ensure that the type of all the strings in the inferred language is
consistent with the tagger which provided the tagged learning set.

3 Experiments

3.1 The ATiS Language Modeling Task

We have tested our approaches on a language modeling task. A language model is
used any application dealing with text : speech recognition, machine translation,
handwriting recognition. This model is used to assign a probability to sequences
of words. A good language model must be able to predict accurately the next
word in a sequence.
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We have used the Air Travel Information System (ATIS) corpus to learn
and test our models. This corpus consists in information requests performed in
American English. The sentences have been collected in Wizard-of-Oz condi-
tions in which a human secretly replace the speech recognition systems in an
automated dialog system. We use the ATIS-2 sub corpus which is composed of a
training set containing 13,044 utterances (130,773 tokens) and two test sets con-
taining respectively 974 utterances (10,636 tokens) and 1001 utterance (11,703
tokens). We use the first test set as a validation set to tune the parameters of
the algorithms and the second one as an independent test set. The task vocab-
ulary is composed of 1,296 different words. This corpus has been widely used in
the speech recognition community and specifically for probabilistic automaton
induction tasks (see e.g. [DC98,TDdIH00,LVCO02]).

All the automata are inferred on the train set and evaluated on the ATIS
test set. The usual quality measure in language modeling tasks is the average
(per word) log-likelihood (LL) of the words in the sequences of the test set S. A
directly related measure is known as the test set perplexity:

Pp =2 = 27ﬁ Lomwgwi_yes 1082 Plwor-wi1)

The smaller the perplexity the better the automaton can predict the next word.
It is generally agreed that perplexity is a good quality criterion for language
models. In order to guarantee that every word can be predicted with a non
null probability, the inferred automaton must be smoothed. We interpolate the
automaton with a unigram model. The unigram defines the probability P;(w)
of each word w in the training set, independently of its context. The probability
of a word w assigned by the smoothed automaton is then (with the notations of
equation 1)

P(wo -+ -wi—1) = lH B-r(ei,wi) + (1= B)Pr(wi) | *[B- F(er) + (1= B)Pi(#)]

where P; (#) is the unigram probability of the end symbol. Since this smoothing
technique is very rudimentary, it best reflects the quality of the induced Pra
alone. As some words of the application vocabulary may not occur in the training
set?, the unigram probability itself is smoothed by absolute discounting [NEK94].
Let C'(w) denote the count of word w in the training set containing a total of N
tokens. The smoothed unigram probability is defined as follows:

Cw)—d .
P1(’U)):{ DN ,1fC(w)>0

N otherwise

where d is a discounting parameter (set here to 0.5), D is the total discounted
probability mass and Ny is the number of unseen words in the training sample:

d
D= Z ¥ Ny = Z 1.
{w| C(w)>0} {w| C(w)=0}

% This is the case for 131 out of 1,296 words.
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ATIS Corpus
train set l
Data labeling POS Tagger Statﬁgglritcrllﬁermg
method ¢
(Datalabeled with POS | g
Typed automata
Inference Standard Alergia ~ inference
methods

Smoothing L Interpolation with unigram J
method l
ATIS Corpus
dev/test set

Fig. 2. Experimental protocol : a comparison of two typing functions.

The influence of the various learning parameters was first evaluated on the
validation set. Final results are reported on an independent test set. Note that
a better methodology would rely on n-fold cross-validation. We did not follow
this methodology in the present case because comparative results exist mainly
on the same splitting between validation and test sets (e.g. see [DC98]). It has
been observed experimentally that the test set is closer to the training set than
the validation set is.

3.2 Comparison of two Typing Functions for Automata Inference

In this section, we compare the use of two kind of additional knowledge for
typed automata inference : P0oS tags and statistical clustering. The baseline is
a standard inference algorithm (ALERGIA). The experimental protocol is shown
on Figure 2.

The Pos information was obtained by tagging the training set using the Brill
tagger [Bri92]. As a first approach, each word was tagged with its most likely
tag, disregarding the context rules. It has been shown on a French corpus, that
this tagging method can yield up to 90% of correct tags [VG98]. The resulting
tagged training set contains 32 different Pos types.

The statistical information leading to the class tagging was obtained by the
clustering algorithm presented in [DC98|. For a given number of clusters, the
clustering algorithm iteratively constructs the classes so that the average mutual
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Table 1. Best perplexity results on the ATis test set with interpolation to unigram for
standard and typed automata

Typed automata
Pos tags|Statistical clusters
Perplexity| 66 57 42

ALERGIA

information between the classes is maximized. Values for the number of clusters
ranging from 10 to 1000 have been tested.

Table 1 shows the perplexity results on the ATIS test set for the best standard
automata infered with ALERGIA and the best typed automata. The perplexity
of the typed automata is better and the best perplexity is obtained with a typed
automaton using statistical clusters typing.

We now look into more details the influence of the different learning param-
eters and other quality criteria.

Three learning parameters were tuned on the ATIS development set :

— the precision parameter a which controls the compatibility criterion and
therefore the number of compatible merging operations,

— the number k of distinct types,

— the interpolation parameter .

Note that k can only be tuned when the types correspond to statistically
induced classes. In this case, the optimal number of classes had been found to be
90. In the case of Pos tagging, the number of distinct types is defined a priori
by the tagger and cannot be tuned. The parameters o and k& control the degree
of generalization allowed during the typed automaton induction. Hence these
parameters control the number of parameters of the inferred model (number of
states and transitions of the PFA). The parameter 3 controls the weight of the
induced PFA in the combined smoothed automaton.

Figure 3 shows the percentage of sentences from the validation set fully parsed
by the inferred typed automaton for the two kind of additional knowledge with
respect to the number of parameters of the typed automaton (number of states
and number of transitions). In this case, no smoothing is used. The typed PpTA
parses only 7% of the validation set whereas the universal automaton which
accepts all the sentences built with words of the training set, parses 94% of the
sentences in the validation set (6% of the sentences are not fully parsed since they
contains out-of-vocabulary words). For a fixed number of parameters, the use of
typed automata increase the number of sentences that can be parsed compared
to standard automata infered with ALERGIA.

Figure 4 presents the perplexity obtained by the inferred typed automata
with respect to the number of sentences parsed. The best results are situated
in the bottom right corner of figure 4 as they correspond to high coverage and
small perplexity. The smoothed unigram parses 100% of the sentences but yields
a perplexity of 145. For a given number of parsed sentences, both the P0s-based
and cluster-based typed automata yield a smaller perplexity and the typed au-
tomaton inferred with statistical classes yields the smallest perplexity. It should
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Fig. 3. Percentage of sentences correctly parsed in the validation set versus the number
of parameters of the automaton
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Fig. 4. Perplexity of the sentences correctly parsed in the validation set
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Fig. 5. Perplexity on the ATis validation set: inferred typed automaton with unigram
interpolation.

be stressed that, as no smoothing is performed in this case, the perplexity is
only partial as it is computed over those strings that can be parsed.

Figure 5 shows the perplexity obtained by the inferred typed automaton
interpolated with the smoothed unigram. The best perplexity reduction (39%
as compared with standard Alergia) is obtained when using typed inference
with 90 statistically defined classes with inference parameter o = 1.10~% and
interpolation parameter § = 0.8.

3.3 Comparison with Class-Based Inference

In this section we compare our approach with a method previously used to
improve automata inference.

Dupont & Chase [DC98] proposed to use statistical clustering of words to
improve grammatical inference on large vocabularies. The first step of their ap-
proach consists in building classes of words from the learning samples. Once
the classes are defined, each word is associated to a class and the probability of
each word w in its class g(w), denoted by P(w|g(w)), can easily be computed.
The learning samples are then relabeled in terms of classes and an automaton is
inferred on the class labels using a classical inference algorithm such as ALER-
GIA. Finally the automaton is expanded by replacing each class by all the words
it contains. More formally, once an automaton is inferred on the classes, each
transition (¢, G) from a state ¢ with label G is replaced by as many transitions
as there are words w such that g(w) = G. The probability estimates 7(g,w) of
these transitions are given by 7(g, w) = 7(q,G) - P(w|G).
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Table 2. Two approaches to use two different kinds of information.

typed automata inference on
inference classes + expansion
Pos tags| Pos-typed Pos-class
automata automata
Statistical| cluster-typed cluster-class
clusters automata automata

Table 3. Best perplexity results on the ATIs test set with interpolation to unigram for
the four inference methods.

typed automata inference on
inference classes -+ expansion
Pos tags 57 112
Statistical 49 59
clusters

We propose to use the same scheme but with Part-of-Speech classes instead
of statistical clusters. The class automaton is infered with ALERGIA on PoOs tags
and expanded to words afterward. This yields to compare four approaches that
are summarized in Table 2.

The perplexity results of these four approaches is shown on Table 3. Our
approach, based on typed automata yields better results than the approach
based on class inference, both when using P0s tags or statistical clusters.

3.4 Improved Smoothing Methods

The smoothing technique used in the evaluations described in section 3.2 et 3.3 is
rudimentary. We argued that interpolation with a smoothed unigram guarantees
to bound the perplexity while best reflecting the predictive power of the inferred
PFA alone. However, if the objective is to minimize test set perplexity, more
sophisticated smoothing techniques are required.

The best language model on the ATIS task is a trigram model with Kneser-
Ney back-off smoothing [KN95]. This smoothed trigram model combines a tri-
gram model and two back-off distributions, respectively based on a bigram and
a unigram model. The ATIS test set perplexity of this combined model is 14.

Current results for the best typed automata inferred with 90 statistically
defined classes and smoothed with a simple back-off to unigram (a simplified
version of the smoothing scheme described in [LVC02]) gives a perplexity of
20. The trigram model smoothed with the same method (back-off to unigram)
gives a perplexity of 17. Further improvements of the smoothing techniques for
automata should therefore decrease the perplexity.

A language model can alternatively be viewed as a compressed version of
the learning data. In this case, the actual size of the model is very important.
It should be noted that the number of parameters needed by the best typed
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automata combined with a smoothed unigram is 1.1 * 105. The trigram model
with Kneser-Ney smoothing to both bigram and unigram needs 6 * 10° param-
eters. The smoothed typed automata needs less parameters to obtain a similar
perplexity on this task.

4 Discussion

It has been shown in [DC98] that the use of statistical class information improves
the quality of probabilistic automata used as language models. The present work
illustrates that this is even more true when statistically induced classes are com-
bined with typed PFA inference.

The results obtained when using P0Ss tag information are less convincing,
even though it has been shown that grammatical information can help language
models [Cha01]. Let us stress however that we did not use here the full informa-
tion provided by the Pos tagger as each word was tagged according to its most
likely tag, disregarding the contextual rules. This approximation was required to
construct a typed PpPTA, which is a deterministic PFA as explained in section 2.2.
In order to fully take into account Pos information, several extensions of the
present approach are possible. First, inference algorithms could be developed to
infer (possibly) non-deterministic structures, as proposed by [ELDD02]. Second,
an extension typing functions allowing several types per states and inducing
multi-typed automata could be developed.

Finally, the framework of typed automata is general and could easily be
adapted to other grammatical inference algorithms (MDI [TDdIH00] or MALER-
GIA [KDO02]) which have been shown to have better performances than ALERGIA.

5 Conclusion

We have proposed a way to use additional knowledge in grammatical inference
with typed automata. When manually or automatically labeled data is available,
the labels can be used as types and the inference algorithm we have proposed
guarantees that the inferred automaton is compatible with the labeled data. We
have compared the use of two kinds of labeling for probabilistic typed automata
inference. Part-of-speech labeling provided by a Po0s tagger and statistical clus-
tering of words have been compared as labeling for natural language data. The
use of statistical word classes information allows us to infer better automata. Our
approach provides models which are competitive with state-of-the-art n-grams
with similar smoothing techniques while being more compact and needing less
parameters.
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