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ABSTRACT
This paper describes the STAMINA competition1, which is
designed to drive the evaluation and improvement of soft-
ware model-inference approaches. To this end, the target
models have certain characteristics that tend to appear in
software-models; they have large alphabets, and states are
not evenly connected by transitions (as has been the case
in previous similar competitions). The paper describes the
set-up of the competition that extends previous similar com-
petitions in the field of regular grammar inference. However,
this competition focusses on target models that are charac-
teristic of software systems, and features a suitably adapted
protocol for the generation of training and testing samples.
Besides providing details of the competition itself, it also
discusses how outcomes from the competition will be used
to gain broader insights into the relative accuracy and effi-
ciency of competing techniques.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
elicitation methods

General Terms
Design, Documentation, Experimentation

1http://stamina.chefbe.net/

1. INTRODUCTION
In practical software development, models that specify the
intended behaviour of the system are often omitted because
of the time and cost involved in their generation and main-
tenance. This has led to the development of a multitude of
different model-inference techniques, which aim to address
this problem by inferring models automatically [4, 7, 19, 1,
15, 16, 8, 9, 27]. These tend to operate by taking samples
of known software behaviour (either from scenarios supplied
by the developer, or traces of actual program executions)
and aim to return a model that is sufficiently general to ac-
curately encapsulate the complete behaviour of the system
in question.

Inference techniques are difficult to compare to each other.
In the absence of any suitable benchmarks, their published
evaluations revolve around differing sets of software models.
The selected models are however rarely diverse enough to
enable a reliable, systematic comparison of the techniques;
they may be only of a specific size, or have a particular num-
ber of labels etc. The measurements that are used for evalu-
ation often vary from technique to technique [28, 26]. Some
measurements concentrate on accuracy, whereas others con-
centrate on efficiency, and both factors are often measured
in different terms. Replicating experiments is challenging
because implementations are not always available, and can
be time-consuming to re-implement if the inference process
in question is complex.

This paper describes a competition framework that has re-
cently been deployed with the aim of addressing the above
problems. STAMINA is a competition for the comparison
of state machine inference approaches. The intention is that
it will provide a current snapshot of the best performing in-
ference techniques, and spur the development of techniques
that improve on the state of the art. It also serves as a
means for collecting data that can be used for a more de-
tailed analysis, to provide insights into the circumstances



under which particular approaches excel or fail. Although
the formal competition will only run for a relatively short
amount of time, the infrastructure will be openly available
for the longer term, as a benchmark for the evaluation of
new techniques.

The rest of the paper is structured as follows. Section 2
lays out the background, providing details of the models (la-
beled transition systems), and the passive model-inference
paradigm. Section 3 provides an overview of the competition
framework. Section 4 provides details on the base materials
for the competition – it shows how the target models are
synthesised, along with how the training and test sets are
generated. Section 5 discusses how the data that is submit-
ted can be used as the basis for a comprehensive empirical
comparison of the competing techniques. Section 6 discusses
related work, and section 7 looks at future work and provides
some conclusions.

2. BACKGROUND
A brief introduction is provided to the essential notations
of DFA’s and their languages. This is followed by an intro-
duction to the passive model inference setting. The section
finishes by describing the challenge of reliably evaluating
and comparing different passive model inference techniques
to each other.

2.1 Definitions and Notation
The STAMINA competition revolves around the inference
of Deterministic Finite Automata (DFA’s). The accuracy of
the inferred DFA’s is established with respect to the simi-
larity of its language to that of the target model. The def-
initions of a DFA and the language of a DFA are presented
below.

Definition 1. A Deterministic Finite Automaton is a quin-
tuple (Q,Σ,∆, F, q0), where Q is a finite set of states, Σ is
a finite alphabet, ∆ : Q × Σ → Q is a partial function and
q0 ∈ Q. F is a subset of Q and represents the set of final
(accepting) states where the system may terminate. A DFA
can be visualised as a directed graph, where states are the
nodes, and transitions are the edges between them, labelled
by their respective alphabet elements.

It is worth noting that software systems are often modelled
with a closely related formalism: The Labelled Transition
System (LTS). This is effectively a DFA where F = Q.
These can be used to model a subset of the languages that
can be modelled by DFA’s, where every prefix of an accept-
ing sequence is also accepted (this is known as the set of
prefix-closed languages).

When referring to different DFA’s X and Y, the use of the
subscript (e.g. QX) is used to refer to an LTS element for
that specific machine.

To define the language of a DFA, we draw on the induc-
tive definition for an extended transition function δ̂ used
by Hopcroft et al. [11]. For a state p and a string w, the

extended transition function δ̂ returns the state q that is
reached when starting in state p and processing sequence w.

For the base case δ̂(q, ε) = q. For the inductive case, let w
be of the form xa, where a is the last element, and x is the
prefix. Then δ̂(q, w) = δ(δ̂(q, x), a).

Definition 2. Given the extended transition function, the
language of a DFA A can be defined as follows:
L(A) = {w|δ̂(q0, w) ∈ F}. The complement of a language L
(i.e. the set of sequences that do not belong to L) is denoted
L(A)C .

2.2 The Model Inference Setting
Model inference techniques can be broadly divided into two
categories: active techniques (which assume the presence
of some oracle to provide feedback) and passive techniques.
The purpose of this competition is to compare techniques in
the latter category.

In this inference setting, the assumption is that the tech-
nique starts with a sample of the behaviour of the target soft-
ware system, and that the behaviour can be characterised
by some (hidden) DFA A. The sample is in the form of a
set of sequences in Σ∗. In the software-engineering domain
these may be program traces, or scenarios that have been
supplied by the developer. The sample is supplied in two
sets of sequences; one set S+ is known to belong to L(A),
and the other set S− is known to belong to L(A)C .

When combined, the contents of S+ and S− will not neces-
sarily be sufficiently diverse to guarantee that an accurate
model will be inferred. The notion of a “complete” sample
varies from technique to technique. The de facto notion of
a complete sample was established by Oncina et al. in their
work on the Regular Positive Negative Inference (RPNI) al-
gorithm [18]. They showed that, to ensure an accurate re-
sult, the sets S+ ∪ S− would have to be structurally com-
plete and characteristic of the target model [10]. In other
words, they would need to contain a sufficiently diverse set
of samples to (a) cover every state transition and (b) contain
enough information in S− to distinguish every pair of non-
equivalent states. The problem is that characteristic samples
tend to be vast, whereas in a practical software-engineering
setting, it tends to be the case that we have only a small sub-
set of program execution traces or scenarios. The challenge
is to generate a model that is reasonably accurate, even if
the given set of samples is sparse (non-characteristic).

Numerous techniques have been developed to infer state ma-
chines in this setting. These include Markov model and Neu-
ral net-based approaches [7], variants of an inference known
as k-tails [4, 7, 19, 1, 15, 16], and variants of the RPNI [8, 9,
27]. Many of the algorithms that are used to infer software
DFA’s originated in a closely related sub-field of Machine
Learning, known as regular grammar inference. A regular
grammar can be represented as a DFA, and algorithms such
as k − tails [3] and RPNI [18] were originally developed in
this context.

2.3 The Evaluation and Comparison of Infer-
ence Techniques

Empirically evaluating the performance of model inference
techniques is challenging. Their performance can be affected
by a number of factors. The size and complexity of the



target machine are of obvious significance. The number of
states and transitions, and the size of Σ are indicators of
this complexity, as is the depth (the longest “shortest walk”
from the initial state q0 to any other state). Besides the
target model characteristics, the sparsity of the training set
is another key factor; the more complete the training set is,
the easier it is to infer the states and transitions in the final
model. This explains the difficulty in reliably assessing the
performance of a technique. All of these variables need to
be controlled, to ensure that the experiment is not unfairly
biased (either for the better or worse).

Within the domain of software-engineering, model inference
techniques are usually evaluated on a case-study basis (e.g.
Lo et al. use a CVS system [15], Walkinshaw et al. use a
drawing tool [27], and Damas et al. use a water pump con-
troller [8]). A real software system is selected as the target
for the inference technique, and is used as the basis for elic-
iting a set of traces / scenarios. This serves the purpose of
establishing the feasibility of the technique, but fails to pro-
vide any reliable basis for comparison with other techniques.

In the Grammar Inference domain, this problem has been
addressed by organising competitions. Competitions offer a
means to compare different techniques with respect to the
same set of target models, with the same set of samples.
Most competitions follow the example set by the successful
Abbadingo-One competition [13]. The organisers generate a
set of quasi-random target models, but the competitors are
only given a training set, and a “test set”. Once the com-
petitors have inferred a model with the training set, they
classify each string in the test set as either belonging or
not belonging to their hypothesis model. This results in a
binary string, which they submit to the competition web
server. If their classifications are at least 99% correct, they
are deemed to have successfully inferred the model. Different
categories are established that correspond to different levels
of difficulty; the techniques to correctly infer the most dif-
ficult models are selected as winners. The Abbadingo-One
competition produced the Blue-Fringe algorithm by Price,
which is deemed to be the current benchmark for grammar
inference algorithms.

Unfortunately, competitions such as Abbadingo-One are un-
suitable for the evaluation of software model-inference tech-
niques. The problem primarily lies in the way the target
machines are generated. The alphabets used to generate
the random machines are only binary (Σ = {a, b}), meaning
that each state can have at most two outgoing edges. For
a state machine target size of n, a random directed graph
(representing the transition structure of the machine) is gen-
erated on 5

4
n nodes. The edges between states are inserted

at random, and then a sub-machine that is reachable from
the initial state is selected. This results in a set of machines
with roughly the same depth and size.

These machines are however not at all representative of typ-
ical software models. DFA’s that model software systems
involve state transitions that may be triggered by any of a
large number of events (mouse-clicks, function names, IO
events, etc.). The size of the alphabet, and the number of
outgoing transitions from a given state can be very large,
and vary significantly from state to state. The previously

described random graph generation algorithm produces a
homogeneous network, where any pair of states are equally
likely to be connected. In practice, software DFA’s do not
obey this law; certain states represent “hub” states, e.g. the
root of a menu system, or a defacto error-handling state,
whereas other states may be intermediate parts of a longer
sequence of specific operations.

Generating random training and testing samples for past
competitions has been straightforward. The approach for
competitions such as Abbadingo has been to simply generate
random binary sequences up to a prescribed length, and
to subsequently use the target model to classify them as
“accept” or “reject”. However, doing so with machines that
have a larger alphabet is no longer viable; an overwhelming
majority of random sequences in Σ∗ is likely to be classified
as “reject”, and of the few sequences that are accepted, it is
unlikely that they would provide any useful coverage of the
target machine. In this situation, if 99% of sequences were
correctly classified (mostly as negatives), it would say very
little about the actual accuracy of the inferred model [28].

3. THE STAMINA FRAMEWORK
The STAMINA competition is based on the inference of a
set of 100 random DFA’s, each of which is roughly 50 states
in size. For each machine, competitors are only given a
training set, which is a sample of sequences, where each
sequence is classified according to whether it is accepted or
not by the target machine. Having used the sample to infer
a hypothesis model, competitors can also download a test
set (an unclassified sample that is different to the training
set), and they have to classify the test set on their hypothesis
model. The solution is submitted as a binary string, where
a ‘1’ represents a test that is accepted by the hypothesis,
and a ‘0’ represents a test that is not accepted.

The challenges vary in difficulty, depending on the size of the
alphabet of the target DFA, as well as the sparsity of the
provided training sample. The various levels of difficulties
are depicted in the column and row labels of table 1 (each cell
represents five of the target models, the generation of which
is discussed later). The size of the alphabet is either 2, 5, 10,
20 or 50. The sparsity of the sample ranges from 100% to
50%, 25% and 12.5%. The full set of sequences at 100% has
been empirically selected to ensure that the base-line Blue-
Fringe technique produces a reasonably accurate result for
the simplest problems (|Σ| = 2, sparsity = 100%) without
solving the cell2. Thus, any solution that manages to solve
the cell will have to out-perform the baseline technique.

3.1 Measuring the Accuracy of a single Hy-
pothesis Model

Solutions are submitted as a binary string, representing a
sequence of tests that are accepted or rejected by the hy-
pothesis machine. To establish the accuracy, it is compared
to a reference string representing the correct classifications
of the test set on the target model. The overlap between the
two binary strings is measured with the Balanced Classifi-
cation Rate (BCR). The Harmonic BCR measure is chosen

2Although the average BCR score for cell |Σ| = 2, 100% is
0.99, the Blue-Fringe did not achieve this for every target
model, and so did not successfully solve the cell.



Sparsity
|Σ| 100% 50% 25% 12.5%
2 0.99 (1) 0.95 (1) 0.67 (3) 0.66 (3)
5 0.97 (1) 0.78 (2) 0.59 (4) 0.52 (4)
10 0.93 (1) 0.64 (3) 0.51 (4) 0.5 (4)
20 0.91 (1) 0.63 (3) 0.54 (4) 0.51 (4)
50 0.81 (2) 0.64 (3) 0.57 (4) 0.5 (4)

Table 1: Table with mean BCR results for the five
challenges in each cell, as computed by the baseline
Blue-Fringe technique. Scores are associated with a
difficulty grade from 1 (easiest) to 4 (hardest)

Difficulty level Score
1 0.9 ≤ score ≤ 1
2 0.7 ≤ score < 0.9
3 0.6 ≤ score < 0.7
4 0 ≤ score < 0.6

Table 2: Calibrating the mean BCR scores for a
given cell, based on the scores of the benchmark
Blue-Fringe algorithm shown in table 1

because it places an equal emphasis on the accuracy of an in-
ferred model in terms of its acceptance of positive sequences,
as well as its rejection of sequences that should be rejected.
It also does not require the test set to be balanced in terms
of its positive / negative sequences.

Harmonic BCR combines two factors. Sensitivity is the
proportion of positive matches that are predicted to be pos-
itive. So in terms of the sets true positives (TP ) and false

positives (FP ), Sensitivity = |TP |
|TP∪FN| . Specificity is the

proportion of true negatives that are predicted to be neg-

ative, so Specificity = |TN|
|TN∪FP | . Harmonic BCR3 is the

harmonic mean of the two:

BCR =
2 ∗ Sensitivity ∗ Specificity
Sensitivity + Specificity

3.2 Scoring the Overall Performance of a Tech-
nique

The overall performance of a technique is measured in terms
of the ‘cells’ in table 1 that are solved. Each cell represents
a different difficulty-level, and is solved by accurately infer-
ring five randomly generated target models (random model
and sample generation are discussed in the next section). A
model is deemed to have been accurately inferred if the BCR
score is greater than or equal to 0.99. If the score is any less
than this, the competitor does not get to find out the score,
in order to prevent the use of feed-back to home-in on the
correct result.

Since cells vary in difficulty, the scores that are awarded to
a competitor for solving a cell must vary accordingly. The
scores are calibrated by running the best-known passive in-
ference algorithm on the training samples, and establishing

3Conventionally, BCR is simply computed as the arithmetic
mean of sensitivity and specificity, but the harmonic mean
is preferred here because it favours balance between the two.

the accuracy of its outputs. The cell-values in table 1 show
the average score of the Blue-Fringe algorithm [13] on the
five models. These are categorised into four levels from easy
(1) to hard (4), which are the points attributed to a tech-
nique for each cell solved according to the scheme in table
2. The winning technique will be the first one to solve a cell
in the hardest category.

3.3 Running the Competition
The competition is run as a web-server, which is imple-
mented in Ruby on Rails. All of the 100 problems are openly
available to download. Competitors can log-in to submit
their solutions. The page incorporates a dynamic league-
table, that shows a real-time list of the winning techniques.

There are three incentives to encourage participation. (1) To
ease participation, the source code for the current baseline
solution has been made openly-available (discussed below).
(2) As an incentive, a financial reward of £700 (∼$1080)
is offered to the winners. (3) As a further incentive, the
authors of the best techniques will also be invited to describe
these in a special issue of the Journal of Empirical Software
Engineering.

Developing an implementation for a state machine infer-
ence technique is a time-consuming process. This is one
of the main hindrances to potential participants. To ease
this, a well-documented version of the current baseline tech-
nique (the Blue-Fringe EDSM algorithm [13]) has been made
openly available on the website. This is the implementation
that has been used to calibrate the scores shown in table 2,
and represents the best-known solution to the passive infer-
ence problem.

4. SYNTHESIS OF TARGET MODELS,
TRAINING AND TESTING SAMPLES

This section describes the algorithms that were used to syn-
thesise quasi-random DFA’s that are more representative of
typical software models. As mentioned above, this means
that the traditional approaches for generating training and
testing samples are no longer applicable, so an alternative
algorithm is described.

4.1 Target Machines
The task of generating a random DFA is not trivial. Conven-
tional algorithms (e.g. as used in previous grammar infer-
ence competitions [13]) generate transition structures that
are homogeneous; there is a uniform probability that any
pair of states is connected by a transition. In reality this is
not the case – in software systems certain states play a more
central role than others. Consequently, for this competition
we have developed a new random state machine generation
algorithm that attempts to produce random machines that
are more realistic. To gain an insight into the key charac-
teristic of software state machines, a study was carried out
for existing state machine models. The study is discussed in
section 4.1.1. This is followed by a description of the random
DFA algorithm itself.

4.1.1 Observed Software model characteristics
A random DFA generation algorithm was developed with the
aim of producing DFA’s that are representative of software



models. To gain an overview of what constitutes a “typical”
software model, a sample of 20 systems (mostly from RTPs
and research publications) was analysed (the state transi-
tion structures have been made available 4, and give an idea
of the nature of software models considered in this work).
Although the sample is too small to form any authoritative
conclusions, findings can be interpreted as being indicative.
The DFA’s were analysed in terms of their states, transitions
and alphabet size, as well as their distributions of in-/out-
degrees and depth. The main results, which informed out
design of the random DFA generation algorithm, are briefly
listed below.

1. Alphabet size. There was no relationship between
the size of an alphabet and structural features, such as
the number of states / transitions, or the depth of the
DFA.

2. Relationship between depth and states. There
was a strong relationship between the depth and num-
ber of states, which is roughly modelled by the follow-
ing relationship (as established by linear regression):
depth = (0.36 ∗ states) + 1.3.

3. Degree distributions. No straightforward distribu-
tion was found in terms of the number of in-/out-
degrees per state. However, by using a more global
measure, a trend was identified. Most states would
have 1-2 in-going and out-going edges, however there
would usually be 1-2 states that had either a high“hub”
score or a high “authority” score. “Hub” and “author-
ity” scores are computed by Kleinberg’s HITS algo-
rithm [12]. These are best explained in their intended
context, where vertices represent web-pages. The in-
tuition is that a web page has a high “authority” score
if it is the target of many links (has a high in-degree),
and it is linked to by pages that contain links to other
pages with high authority scores. A page has a high
“hub” score if it links to lots of authoritative pages.
As implied by this definition, the computation of the
two scores is a recursive process, with one affecting the
outcome of the other. In the DFA context, state with
a high “hub” score can be interpreted as a root state,
which is the starting point for a range of different se-
quences of events, and a state with a high “authority”
score can be interpreted as the ultimate target of lots
of different state trajectories through the DFA.

4.1.2 Random DFA Algorithm
Generating a“realistic”random state machine is not as straight-
forward as it may seem. There are certain constraints that
must hold; every state must be reachable from some ini-
tial state, it must be deterministic and minimal. On top of
that, it must be possible to generate a population of those
machines that obey the three characteristics listed above.

Observation (3) from above notes that state machines tend
to only have a small number of hubs and authorities. Graphs
of the World Wide Web (known as “complex networks”),
which spurred algorithms such as HITS, have also been shown
to have only a small proportion of Hubs and Authorities with

4http://www.dcs.shef.ac.uk/ nw/stamina/

high scores. Although the state machines we have studied
differ in both scale and nature from conventional complex
networks, this observation implies that algorithms for the
generation of random complex networks make a reasonable
starting point for the generation of random state machines.

Numerous algorithms have been developed to synthesise ran-
dom complex networks. The forest-fire algorithm by Leskovec
et al. [14] has been shown to produce directed graphs that
are especially suited for representing complex networks in a
variety of domains. It is based on an iterative algorithm,
where a new node is added at each iteration, and new edges
are added to existing nodes by partially traversing the exist-
ing edges that link them together. The rest of this section
provides a brief overview of the forest fire algorithm, and
shows how it has be adapted to produce state machines.

This description closely follows that of Leskovec et al., who
can be referred to for further details. The algorithm has
three parameters: a forward-burning probability f , a backward-
burning ratio b, and the number of vertices n. Consider a
node v to be added to the graph at a time t where 0 < t ≤ n.
Node v forms an edge to nodes in the graph at time t as fol-
lows:

1. Choose a random ambassador node w 6= v and form
an edge v → w.

2. Generate two random numbers x and y that are geo-
metrically distributed with means f/(1−f) and fb/(1−
fb). Node v selects x in-edges and y out-edges of w to
nodes that are not yet visited. If there are not enough
nodes available, it selects as many as it can.

3. v forms out-edges to the end-points of the selected
edges from and to w and applies step (2) recursively for
each of those nodes. As the process continues, nodes
cannot be revisited.

The above algorithm cannot be used as-is to synthesise state-
machines. As new nodes are added, they are unreachable
from any of the other nodes in the machine. By default, an
edge cannot be added from one node to itself, ruling out self-
looping states, which are common in software models. The
original algorithm does not account for the notion of ter-
minal states. Furthermore, a strategy is required to ensure
that the state transitions in the final machine are suitably
labelled (i.e. that the machine is deterministic and mini-
mal). This needs to account for the fact that there could be
multiple transitions between the same pair of states.

The following adaptations have been made to ensure that
the final graph is state-machine like.

• Alphabet: To add the transition labels, an additional
parameter a is used, which is the upper limit on the
size of a vector of numbers representing different ele-
ments of the alphabet. Every time an edge is added,
it is labelled with a random element from that vec-
tor. The possible choices are curtailed to ensure that
a selected element will not cause the machine to be



non-deterministic. If there are no available alphabet
elements left, the edge is not added.

• State reachability: To ensure that each state is
reachable, every time a state is added, instead of con-
necting an edge from the new state to an ambassador
state, the reverse edge is added (from the ambassador
to the new state).

• Accepting states: Every time a state is added it
is randomly labelled (with a probability of 0.5) as an
accepting (final) state or not.

• Self-loops: In step 2 of the conventional algorithm,
it is impossible to add edges from a state to itself. We
have added a parameter s to make it possible to specify
the probability for this to occur.

To identify suitable parameter values for the algorithm, ran-
dom DFA’s were synthesised for a range of parameters f , b
and the self-looping probability s. The alphabet-size pa-
rameter a only affects the structure of the machine for small
alphabet sizes (i.e. a = 2), constraining states to an out-
degree of 2. However, since this is a special case it is not fac-
tored in to the calibration of the main parameters. For every
configuration, certain measurements were plotted, including
the number of transitions, states, depths, and hub/authority
distributions. These were compared to the equivalent plots
from the real sample of machines. Ultimately, the judgement
of which configuration to choose is to a large extent quali-
tative. Several configurations produced reasonable looking
DFA’s, but the configuration f = 0.31, b = 0.385 and s = 0.2
resulted in measurements that were deemed to be most suit-
able in terms of the plots, as well as a manual inspection of
the DFA’s themselves.

4.2 Training and Testing Samples
As stated in the background, the algorithms that are used
to generate random samples for previous competitions are
no longer suitable for DFA’s with large alphabets, because
they tend to generate too many negative sequences. The
sampling procedure used in this competition computes di-
rect walks over the target machine as opposed to randomly
combining elements of the alphabet. The procedure can be
summarized as follows:

1. Using a random walk algorithm (see details below)
a first sample is generated from the target automa-
ton. The sample contains exactly 20000 sequences but
may contain duplicates. The random walk algorithm
is tuned to provide an even balance of sequences that
do and do not end in a terminal state.

2. The sequences are equally partitioned in two disjoint
sets (retaining the terminating / non-terminating bal-
ance). One is designated as the training pool, and the
other as the test pool. Any duplicate sequences are
removed from the test pool.

3. The final testing sample is computed by randomly se-
lecting a maximum of 1500 sequences from the testing
pool.

4. The training sample generation depends on how sparse
the sample is supposed to be. As was explained in
section 2, the difficulty of an inference problem is de-
termined not only by the characteristics of the target
machine, but also by the completeness of the given
sample. In our competition, we incorporate four lev-
els of sparsity: 100% is a notionally complete sample,
and 50%, 25%, 12.5% are subsets. If we denote the
required sample sparsity for the problem at hand as p,
the learning sample is created by randomly selecting
0.9 ∗ p percent of training pool generated in (2).

The different parameters above (20000 strings initially gen-
erated, 1500 strings maximum in the test set and the 0.9
multiplication factor for the learning sample) have all been
calibrated against the performance of the current baseline
inference approach (see section 3.3). They were chosen to
ensure that the baseline performs well on the simplest chal-
lenges (at 100% with an alphabet of 2), but does not manage
to achieve a score high enough to solve it (the scoring is dis-
cussed in detail in section 3).

4.2.1 Random walk algorithm
A dedicated random walk algorithm has been implemented
to generate positive and negative sequences of the initial
sample described above. It generates positive sequences by
walking the automaton from the initial state, randomly se-
lecting outgoing state transitions with a uniform distribu-
tion. When a non-terminal state v is reached, the generation
ends with a probability of 1.0/(1 + 2 ∗ outdegree(v)). The
length distribution of the sequences generated that way is
approximately 5 +depth(automaton), ensuring a high prob-
ability of generating structural complete samples (this is in-
spired by the Abbadingo competition [13]).

Negative sequences are generated by editing positive strings
obtained as above. Three kinds of edits are used: substi-
tuting / inserting / deleting a symbol. In all cases, the
edit-location is chosen from an uniform distribution on the
sequence length. The number of edits is chosen with a Pois-
son distribution centred on 3, and the edit kind with a uni-
form distribution. The sequence is simply discarded if the
edited version still ends in an accepting state.

5. EMPIRICAL ANALYSIS
There are two objectives for this competition: (1) to iden-
tify the best inference technique, and (2) to obtain more
detailed insights into the circumstances under which dif-
ferent techniques excel or flounder. Establishing the best
inference technique is reasonably straightforward, and the
means by which this is achieved have been outlined in sec-
tion 3. However, from an academic standpoint, the second
task is more interesting. The competition server will store
the test results that are returned for every technique. This
section describes how these can be analysed, to provide in-
sights into how techniques compare to each other, and why
one might excel against another.

Figure 1 illustrates the structure of the data that are avail-
able for analysis. Each entry consists of up to 100 solutions
(binary strings of test results for the 100 possible problems),
depending on how many cells have been attempted. Every
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Figure 1: Relationships between data available for
analysis

solution is associated with its respective problem. The diffi-
culty of the problem – the sparsity of the training set and the
size of the alphabet – can be identified via its number (ev-
ery cell in the table is linked to five problem numbers). The
training and test sets are the only elements of the problem
that are visible to the competitor. Besides that, two further
elements will figure in the analyses. The test solution string
is the binary string that contains the correct solutions for
the test set, and the DFA is the actual transition system of
the target.

These data collectively permit a more in-depth analysis of
the strengths and weaknesses of individual techniques. They
also enable different competing techniques to be compared
with each other. For example, if two techniques perform
similarly in the context of the competition, it becomes pos-
sible to see whether they are performing similarly on individ-
ual problems, or whether they might have complementary
strengths and weaknesses.

5.1 Measuring Classification Accuracy
The main goal will be to analyse the performance of a tech-
nique with respect to its classification of tests. This analysis
can be carried out in two respects: (1) the accuracy of a
technique with respect to the target model (comparing so-

lutionString to testSolutionString), or (2) establishing
the similarity of two competing techniques (comparing in-
stances of solutionString from different entries).

Whereas the competition uses the Balanced Classification
Rate, there are numerous other measures for the comparison
of binary strings. All measures are computed in terms of the
basic elements of the confusion matrix: the set of true pos-
itives (TP ), true negatives (TN), false positives (FP ) and
false negatives (FN). The metrics that can be computed in-
clude summary measures that can be used to interpret the
general performance of a technique, such as Accuracy, BCR,
and the F-measure. They also include more detailed mea-
sures that focus a particular aspect such as Precision, Recall
and Specificity. The details of how these are computed are
presented in Sokolova and Lapalme’s overview [20].

When analysing the performance of a single entry, these
measures can provide insights into why a technique was suc-
cessful. The various accuracy measures described above,

when coupled with the difficulty of the challenge (sparsity
and alphabet size), can be used as the basis for a compre-
hensive performance profile for the technique. It is possible
to find out more detailed characteristics of the performance.
For example, a technique might tend to produce DFA’s that
are too general (low Specificity and high Sensitivity) for
problems with small alphabets; this would become imme-
diately apparent with the above measurements.

If two competing techniques are of interest, the measures
could be used to compare their individual solutions. Any
of the summary measures can be used to establish whether
they are broadly similar. In cases where there is disparity,
measures such as Precision and Recall can provide insights
into where they differ, and whether one might be comple-
mentary to the other.

5.2 Mapping Classification Results to the Tar-
get DFA

The analyses discussed above only account for the overlaps
between binary strings, such as the overlap between classi-
fication of test sequences and their expected solutions. This
provides insights into the extent to which the languages of
the target and inferred DFA’s overlap (see section 2 for the
definition of the language of an DFA). However, they pro-
vide no insight into the extent to which structural elements
of the DFA are inferred – i.e. whether or not an approach
has especially successful or unsuccessful at inferring partic-
ular states or transitions.

It is possible to gain an impression of which elements have
been inferred by the combined analysis of solutionString,
testSet and targetDFA. By combining solutionString and
testSet, we know which tests are accepted and rejected by
the inferred DFA. These accepted / rejected test cases can
be traced in the targetDFA; states and transitions that do
not conflict with any of the test results from the inferred
DFA can be deemed to be properly inferred. Any conflicts
indicate a mistake in the inferred model.

Knowledge of which parts of the machine have been (mis-
)inferred complements the language-based measures discussed
above. Correctly or incorrectly inferred states and transi-
tions can be used to explain results such as poor precision
or recall. Different inference techniques can be compared to
each other, with respect to their ability at inferring partic-
ular areas of the target DFA.

6. RELATED WORK
As mentioned in section 2, competitions have been used to
spur the development of novel techniques in numerous re-
search areas, mostly centred around the broad field of artifi-
cial intelligence and machine learning. One popular example
from the field of bioinformatics is the Critical Assessment of
Techniques for Protein Structure Prediction (CASP) com-
petition series [25], a biennial competition series that has be-
come one of the main drivers for the development of protein
structure prediction techniques. In the field of automated
reasoning, the CADE ATP System Competition (CASC)
[24] has been a successful series of competitions to compare
the performances of automated theorem provers. Because of
the close relationship between state machine inference and



grammar inference, the rest of this section focusses on those
competitions.

6.1 Regular Grammar Inference Competitions
The authors are aware of four competitions to infer regular
grammars or deterministic DFA’s. Three of these are con-
cerned with passive model inference, and one is concerned
with active inference techniques.

The Abbadingo-One competition [13] took place in 1998,
and gave rise to the EDSM / Blue-Fringe algorithm, which
is used as the baseline technique in our competition. This
was followed by the Gowachin noisy DFA inference competi-
tion in 2004, which was followed up by the similar GECCO
2004 noisy DFA inference competition [17]. Their processes
are broadly as described in section 2. The Gowachin and
the GECCO competition however involve a step that adds
noise to the training data. As stated in the background,
STAMINA differs from these competitions in three ways:
(1) the target models have larger alphabets, (2) the testing
and training samples are derived directly from the target
model, and (3) results are evaluated with the BCR met-
ric as opposed to simply counting the proportion of correct
classifications.

The ZULU competition [6]5 is an ongoing competition for
the inference of DFA’s in the presence of an oracle. The com-
petition is geared towards the development of improved ver-
sion of Angluin’s L∗ algorithm [2], which is developed for the
setting where, besides an initial training sample, the learner
can ask membership and equivalence queries from an oracle
(though the competition does not account for equivalence
queries). Besides the availability of an oracle, our competi-
tion differs from ZULU in the manner the target models are
generated (it uses the same algorithm as the other regular
inference competitions).

6.2 Non-Regular Grammar Inference Compe-
titions

The Omphalos competition was run in 2004 (see work by
Starkie et al. [21, 22]) to spur the development and compar-
ison of techniques to infer context-free grammars. This form
of grammar presents a more challenging basis for model-
inference, and generally accepted to be intractable. Un-
like regular grammars, context-free grammars are not rep-
resented by DFA’s, but by production rules. Generating a
competition for the inference of such grammars is particu-
larly challenging. Unlike regular grammars, it is difficult to
compare CF-grammars to each other in terms of their com-
plexity and difficulty. Furthermore, it is difficult to gauge
when a training or testing sample is notionally “complete”.

The Tenjinno competition was run in 2006 [23], and was
concerned with the inference of transducers. A transducer
is a formalism that can (under certain circumstances) be
interpreted as an non-deterministic finite automaton, but
instead of labelling each transition with an element from
Σ, it is labelled with a translation from → to. So a walk

5http://labh-curien.univ-st-etienne.fr/zulu/

through the machine represents the translation of one se-
quence < from0, . . . , fromi > to a corresponding sequence
< to0, . . . , toi >. As with the Omphalos competition, the
increased complexity of the transducer model required new
approaches to training and evaluating hypotheses.

7. CONCLUSIONS AND FUTURE WORK
The competition server has been set up, and is accepting
submissions 6. It is scheduled to end at the beginning of
2011. There are several important benefits to be gained.
Ultimately, a winning entry will further the state-of-the-art,
providing a more suitable basis for the passive inference of
software models. However, even if there is no dominant tech-
nique, we will still obtain insights into the relative strengths
and weaknesses of competing techniques. It is envisaged that
this more detailed knowledge will point to new potential av-
enues of research for the development of improved inference
approaches.

The aim is to establish this competition as a regular event.
There are several elements that could be changed for future
competitions. The current evaluation of techniques is based
on a language-perspective. However, if competitors were to
submit the actual inferred DFA’s instead of test solutions,
it would be possible to produce a much more in-depth eval-
uation (e.g. by comparing the structure of the inferred DFA
to the target [5]). Another potential change would be to
introduce an oracle that is capable of answering queries (in
a similar vein to the ZULU competition).
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