Classification in Graphs using Discriminative Random Walks

Semi-supervised learning, large graphs, betweenness measure, passage times

Jérome Callut
Kevin Francoisse
Marco Saerens

UCL Machine Learning Group (MLG)
Louvain School of Management, TAG,

JEROME.CALLUTQUCLOUVAIN.BE
KEVIN.FRANCOISSEQUCLOUVAIN.BE
MARCO.SAERENSQUCLOUVAIN.BE

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Pierre Dupont
UCL Machine Learning Group (MLG)

PIERRE.DUPONT@QUCLOUVAIN.BE

Department of Computing Science and Engineering, INGI,
Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Abstract

This paper describes a novel technique, called
D-walks, to tackle semi-supervised classifica-
tion problems in large graphs. We introduce
here a betweenness measure based on pas-
sage times during random walks of bounded
lengths in the input graph. The class of un-
labeled nodes is predicted by maximizing the
betweenness with labeled nodes. This ap-
proach can deal with directed or undirected
graphs with a linear time complexity with
respect to the number of edges, the maxi-
mum walk length considered and the number
of classes. Preliminary experiments on the
CORA database show that D-walks outper-
forms NetKit (Macskassy & Provost, 2007)
as well as Zhou et al’s algorithm (Zhou et al.,
2005), both in classification rate and comput-
ing time.

1. Introduction

Mining and learning problems involving structured
data such as graphs, trees or sequences have received
much attention recently. This paper is concerned
with semi-supervised classification of nodes in a graph.
Given an input graph with some nodes being labeled,
the problem is to predict the missing node labels. This
problem has numerous applications such as classifi-

6th International Workshop on Mining and Learning with
Graphs (MLG), Helsinki, Finland, July 4-5, 2008.

cation of individuals in social networks, linked docu-
ments (e.g. patents or scientific papers) categorization
or protein function prediction, to name a few. Even
when the data are not naturally structured as a graph,
it can be convenient to build a neighborhood graph of
similar examples from an affinity matrix.

Several approaches have been proposed to tackle semi-
supervised classification problems in graphs. Kernel
methods (Zhou et al., 2005; Tsuda & Noble, 2004)
embed the nodes of the input graph into an Euclidean
feature space where decision boundaries can be esti-
mated. In general, these techniques cannot easily scale
up to large problems due to their high time complexity.
Nevertheless, they obtain good results on problems of
moderate size. NetKit (Macskassy & Provost, 2007)
is an alternative approach which has been recently
proposed. This general network learning framework
builds a model based on three components: a local
classifier to generate class-priors, a relational classifier
which takes advantage of the relations in the network
to guess the class membership and a collective infer-
encing component further refines the class predictions.
The main advantage of this framework is that each of
the three components can be instantiated with various
existing methods making it easily adaptable to many
situations. This flexibility comes however with a time-
consuming tuning process to optimize performance.
Compared to the above mentioned kernel methods, it
provides good performance while having a lower time
complexity.

The approach proposed in this paper, called D-walks,
relies on random walks performed on the input graph
seen as a Markov chain. More precisely, a betweenness

Discriminative Random Walks

measure, based on passage times during random walks
of bounded length, is derived for each class (or label
category). Unlabeled nodes are assigned to the cat-
egory for which the betweenness is the highest. The
D-walks approach has the following properties: (i) it
has a linear time complexity with respect to the num-
ber of edges, the maximum walk length considered and
the number of classes; such a low complexity allows to
deal with very large graphs, (ii) it can handle directed
or undirected graphs, (iii) it can deal with multi-class
problems and (iv) it has a unique hyper-parameter
that can be tuned efficiently.

This paper is organized as follows: section 2 introduces
the D-walks approach for semi-supervised classifica-
tion in graphs and section 3 shows some experimental
results obtained with the proposed technique applied
to real-life data.

2. Discriminative random walks

We are given an input graph G = (N, €), where N is
the set of nodes and £ is the set of edges. In the sequel,
n = |N| denotes the number of nodes and m = |£| the
number of edges in the graph. Let also A denote the
n X n adjacency matrix of G. Since the graph G may
be directed and weighted, the matrix A is not neces-
sarily symmetric nor binary. The graph G is assumed
partially labeled. The nodes in the labeled set L C N
are assigned to a category from a discrete set). The
unlabeled set is defined as U = N\ L. The label of
a node g € £ is written y, and £, denotes the set of
nodes in class y, with n, = |£,].

Random walks in a graph can be modeled by a
discrete-time Markov chain {X; € N}ien (MC) de-
scribing the sequence of nodes visited during the walk.
The random variable X represents the state of the MC
reached at the discrete time index ¢. Since each state
of the Markov chain corresponds to a distinct node of
the graph, the state set of the MC is simply the set of
nodes A. The terms nodes and states are thus used
interchangeably in this paper. The transition proba-
bility to state ¢’ at time ¢ + 1, given that the current
state is ¢ at time t, is defined as:

PXei1 =q | Xi = q) = pgy & = —.

Zq’EN Qqq’

Thus, from any state ¢, the (homogeneous) probability
to jump to state ¢’ is proportional to the weight ag,
of the edge from q to ¢’. These transition probabilities
are conveniently stored in a n x n row-stochastic
transition matrix P = {pgq tq.q7en-

(1)

We consider discriminative random walks (D-walks,

for short) in order to define a betweenness measure
used for classifying unlabeled nodes. A D-walk is a
random walk starting in a labeled node and ending
when any node having the same label (possibly the
starting node itself) is reached for the first time.

Definition 1 (D-walk) Given a MC defined on the
state set N, a class y € Y and a discrete length | >
1, a D-walk is a sequence of state qqo,...,q such that

Yoo =Yg =Y and yq, #y for all 0 <t <.

The notation D} refers to the set of all D-walks of
length [, starting and ending in a node of class y. We
also consider DY referring to all limited D-walks up to
a given length L. The betweenness function Br(q,y)
measures how much a node ¢ € U is located “between”
nodes of class y € Y. The betweenness Br(q,y) is
formally defined as the expected number of times node
q is reached during DY | -walks.

Definition 2 (D-walk betweenness) Given an un-
labeled node ¢ € U and a class y € Y, the D-walk
betweenness function U x Y — RT is defined as fol-
lows: Br(q,y) = E [pt(q) | D%,], where pt(q) is the
passage times function N' — R counting the number
of times a node q has been visited.

This betweenness measure is related to the one pro-
posed by Newman in (Newman, 2005). Our measure
is however relative to a specific class y rather than to
the whole graph. It also considers random walks up
to a given length instead of unbounded walks. Bound-
ing the walk length has two major benefits: (i) bet-
ter results are generally obtained with respect to un-
bounded walks!, as enforcing a certain degree of lo-
cality improves discrimination between classes (ii) the
betweenness measure can be computed very efficiently.

The betweenness computation relies on forward and
backward variables, similar to those used in the Baum-
Welch algorithm for HMM parameter estimation (Ra-
biner & Juang, 1993). Given a state ¢ € A and a
time t € N° the forward variable a¥(q,t) computes
the probability to reach state ¢ after ¢ steps without
passing through? nodes in class y, while starting ini-
tially from any state in class y. The forward variables
a’s are computed using the recurrence (2).

!The optimal walk length estimated with cross-
validation (see section 3) is generally falling between 6 and
30, depending on the considered graph.

2In contrast with leaving from a node g, passing through
g means to jump from some node ¢’ to ¢ and then to leave
from gq.

Discriminative Random Walks

(t=1) «a¥%gq,1) Zq/eﬁy n—lypq/q

(t > 2) ay(Qvt) ZQ/EN\»Cy ay(qlvt - 1)pq’q

(2)

Given a state ¢ € N and a time ¢ € N°, the backward
variable (Y(q,t) computes the probability that state
q is attained by the process t steps before reaching
any node labeled y for the first time. The backward
variables (3’s are computed using the recurrence (3).

(t=1) pYq,1) = Zq/ecypqq’

(t>2) pY(q,t) Zq’EN\Ey BY(q t — l)pqq/
(3)

The time complexity of the forward and backward re-

currences is ©(mL), where m is the number of edges

and L is the maximal walk length considered.

The betweenness measure follows from the computa-
tion of the forward and backward variables:

Y T a¥(g)8 (gL — t)
BL(q7 y) - 211421 Zq’e[,y ay(q’, l) (4)

By rearranging adequately the sums in the numerator
of equation (4), the time complexity of the between-
ness computation for all unlabeled nodes is O(nL).
The time complexity for computing the betweenness
with respect to all classes is thus ©(|Y|mL) as, for
each class, the computation time is dominated by the
cost of the recurrence computations.

Finally, an unlabeled node ¢ € U is assigned to the
class with the highest betweenness:

9y = argmax Br(q,y) (5)
yey

3. Experiments

We report here preliminary experiments performed on
the Cora dataset (Macskassy & Provost, 2007) con-
taining 3582 nodes classified under 7 categories. As
this graph is fully labeled, node labels were randomly
removed and used as test set. More precisely, we have
considered 9 labeling rates®: {0.1,0.2,...,0.9} and for
each rate, 10 independent runs were performed. Com-
parative performances obtained with NetKit (Mac-
skassy & Provost, 2007) and with the approach of
Zhou et al. (Zhou et al., 2005) are also provided. The

3The labeling rate is the proportion of labeled nodes in
the graph.

hyper-parameters of each approach have been tuned
using ten-fold cross-validation. For the D-walks ap-
proach, the unique hyper-parameter to tune is L (op-
timal L values typically fall between 6 and 30 on this
dataset, showing the interest of bounding the walk
length) whereas Zhou et al. approach also needs one
smoothing parameter to be tuned. The three compo-
nents of NetKit have been instantiated with the de-
fault choice present in the framework: a weighted-vote
for the relational classifier and a relaxation labeling
for the collective inference component. Figure 1 shows
the correct classification rate on test data obtained by
each approach for increasing labeling rates. The D-
walk approach clearly outperforms its competitors on
these data. The D-walks approach is also the fastest
method. It requires typically 1.5 seconds of CPU* for
every graph classification including the auto-tuning of
its hyper-parameter L. NetKit takes about 4.5 sec-
onds per graph classification and our implementation
of Zhou et al. approach typically takes several minutes.
A larger graph of 7,590 nodes and 18,696,340 edges
has been successfully classified in about 11 minutes
with the D-walks approach whereas neither NetKit
nor Zhou et al. methods can be applied to such a
large graph due to memory and time constraints on a
standard PC*.

Classification rate on the CORA dataset

o
o
=]
w0
OD. -
& o
5]
@
c o
o © -
g ° -
L2 '
= ~ } K
& } , T ! -
S A - s o m . ; - ,
O o I S - - -
ST
i
L
R — D-Walk
°© - NetKit
- Zhouetal.
T T T T
0.2 0.4 0.6 0.8

Labeling rate

Figure 1. Classification rate of D-walk and two competing
methods on the Cora dataset. Error bars report standard
deviations over 10 independent runs.

References

Macskassy, S. A., & Provost, F. (2007). Classification
in networked data: A toolkit and a univariate case

“Intel Core 2 Duo 2.2Ghz with 2Gb of virtual memory.

Discriminative Random Walks

study. J. Mach. Learn. Res., 8, 935—983.

Newman, M. (2005). A measure of betweenness cen-
trality based on random walks. Social networks, 27,
39-54.

Rabiner, L., & Juang, B.-H. (1993). Fundamentals of
speech recognition. Prentice-Hall.

Tsuda, K., & Noble, W. S. (2004). Learning kernels
from biological networks by maximizing entropy.
Bioinformatics, 20, 326-333.

Zhou, D., Huang, J., & Scholkopf, B. (2005). Learn-
ing from labeled and unlabeled data on a directed
graph. ICML °05: Proceedings of the 22nd inter-
national conference on Machine learning (pp. 1036—
1043). New York, NY, USA: ACM.

