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Abstract. In this work, we present different algorithmic approaches to
the inference of metabolic pathways from metabolic networks. Metabolic
pathway inference can be applied to uncover the biological function of
sets of co-expressed, enzyme-coding genes.

We compare the kWalks algorithm based on random walks and an alter-
native approach relying on k-shortest paths. We study the influence of
various parameters on the pathway inference accuracy, which we measure
on a set of 71 reference metabolic pathways. The results illustrate that
kWalks is significantly faster and has a higher sensitivity but the posi-
tive predictive value is better for the pair-wise k-shortest path algorithm.
This finding motivated the design of a hybrid approach, which reaches
an average accuracy of 72% for the given set of reference pathways.
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1 Introduction

The products of co-expressed genes are often involved in a common biological
function. In particular, the metabolic response to nutrients is generally regu-
lated at multiple levels, including transcriptional. One approach to understand
the function of co-expressed enzymes is to uncover the biological pathways in
which they participate. This is usually achieved by mapping reactions associated
to enzyme-coding genes on pre-defined metabolic pathways, i.e. [5, 11]. However,
this approach does not deal well with transverse pathways (a set of reactions
mapping to several pathways) and it fails if reactions belong to a pathway not
vet included in the pre-defined set of reference pathways. Another strategy has
been to infer metabolic pathways by finding the shortest paths between two reac-
tions (e.g. those catalyzed by two co-expressed enzymes). One problem with this
approach is the presence of compounds involved in a large number of reactions
(co-factors and side-compounds like H,O, ATP, NADPH), which tend to be used
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as shortcuts to connect any pair of nodes. Thus, a naive path finding approach
results in biochemically invalid pathways, which contain co-factors or side com-
pounds as intermediates. In our previous work, we tested different strategies to
overcome this problem. First, we excluded a selected subset of highly connected
compounds from the network [12,13]. However, the choice of the compounds
to be excluded is an issue, since some among the highly connected compounds
participate in pathways as valid intermediate (e.g. purine nucleotide biosyn-
thesis). We therefore introduced weighted networks [3,4], in order to penalize
highly connected compounds without excluding them from the graph. This ap-
proach yielded satisfactory results for the two-end linear path finding. In the
present work, we extend the approach to multiple-end pathway inference: taking
as input a set of seed reactions, we extract a subgraph that connects ”at best”
those seed nodes, according to some relevance criteria. The resulting pathway
can correspond to an already known pathway, but it can also be a variant or a
combination of known pathways, or even a novel pathway.

Pathway inference is as a more flexible alternative to pathway mapping. For
instance, it can be used to infer pathways from operons, co-expressed genes or
gene fusion events. It may also be applied in metabolic reconstruction in order
to suggest possible pathways from genomic data for organisms with unknown
metabolism.

We thoroughly evaluated the pathway inference performance of three algorithms:
the pair-wise k-shortest paths algorithm, the kWalks algorithm [1, 6] and a hybrid
algorithm that combines the former two.

2 Materials and Methods

2.1 Metabolic graph

In order to infer metabolic pathways, we need to represent metabolic data as a
graph. We selected MetaCyc [10], the well-curated tier of BioCyc [2], as our data
source, and constructed a bipartite, directed graph from all small molecule entries
and their associated reactions contained in the OWL file of MetaCyc (Release
11.0). The resulting graph consists of 4,891 compound nodes and 5,358 reaction
nodes. As discussed in [3], the direction of a reaction depends on physiological
conditions in an organism (substrate and product concentrations, temperature).
Since our graph is composed of data obtained from several hundred organisms,
we considered that each reaction can be traversed either in forward or in reverse
direction. Consequently, each reaction was represented as a pair of nodes, for
the forward and the reverse directions, respectively. To prevent the k-shortest
paths algorithm to cross the same reaction twice, forward and reverse direction
are mutually exclusive. After this duplication of reaction nodes, we obtain a
directed graph with 15,607 nodes and 43,938 edges. From now on, we will refer
to this graph as the MetaCyc graph.
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2.2 Reference pathways

We obtained a selected set of 71 known S. cerevisiae pathways from BioCyc
(Release 11.0). All pathways in this reference set consist of at least 5 nodes
and are included in the largest connected component of the MetaCyc graph. On
average, the pathways are composed of 13 nodes and in addition, more than half
of them are branched and/or cyclic.

2.3 Algorithms

All algorithms tested here take as input the nodes of interest (termed seed nodes
or seeds) as well as a weighted input graph, and return a subgraph that connects
the seeds.

Pair-wise k-shortest paths This approach relies on repetitively calling a
k-shortest paths algorithm. K-shortest paths algorithms enumerate all simple
paths (paths containing each node only once) between a start and an end node
in the order of their length. In a weighted graph, paths are listed in the order of
their weight.

In the first step of pair-wise k-shortest paths, a k-shortest paths algorithm [7] is
called successively on each pair of seed nodes. A k-shortest instead of a shortest
paths algorithm is employed to ensure that all lightest paths between a seed
node pair are collected. The resulting path sets are stored in a path matrix.
The minimal weight between each node pair is stored in a distance matrix. For
the undirected MetaCyc graph, these matrices are symmetric. For the directed
MetaCyc graph, the reverse paths between two seeds can be obtained by revers-
ing the order of path nodes and their reaction directions.

In the second step of the algorithm, the subgraph is constructed from the path
sets, starting with the lightest path set. Step-wise, more path sets are merged
with the subgraph in increasing order of their weight. The process stops if either
all seeds belong to one connected component of the subgraph or all path sets
have been merged with the subgraph. The resulting subgraph represents the in-
ferred pathway.

This algorithm is time-consuming, since the number of calls to the k-shortest
paths algorithm increases quadratically with the seed node number.

kWalks The key idea of kWalks is that some edges in the input graph are
more relevant than others to connect the seed nodes. The relevance of an edge
is measured as the expected number of times it is visited along random walks
connecting seed nodes. These expected passage times can be obtained using
basic Markov chain theory [8]. A transition probability matrix P is derived from
the adjacency matrix of the graph using simple edge weight normalization. For
each seed node z, the submatrix *P is defined by considering only the lines
and columns of P corresponding to x and all non-seed nodes. The fundamental
matrix *N = (I— ®P)~! contains useful information for computing the desired
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expectation. The entry *N,; gives the number of times node ¢ has been visited
during walks starting in node = and ending when any seed node (except x) is
reached. The expected number of passage time *E(i,7j) on an edge i — j is
obtained by multiplying */N,; by the probability P;; of transiting from node i
to node j. Finally, the relevance of an edge ¢ — j is given by averaging *E(i, j)
over all seed nodes z. This technique is time-consuming since it relies on matrix
inversions, which are generally performed with a cubic time complexity in the
number of nodes in the graph.

An alternative approach considers random walks of a bounded length, i.e. only
walks up to a prescribed length are allowed. The passage time expectations
during such walks can be computed in linear time with respect to the number of
graph edges and the maximum walk length using forward-backward recurrences
[1,6]. Moreover, bounding the walk length controls the level of locality while
connecting seed nodes, which can be useful for pathway recovery.

Once the edge relevance has been obtained, a subgraph can be extracted by
adding edges in the order of their relevance with respect to seed nodes, until
either all seed nodes are connected or all edges have been added.

The output of kWalks is a list of edge relevance values. We can replace the
original edge weights by these relevances and iterate kWalks by re-launching it
on the input graph with updated weights.

In contrast to pair-wise k-shortest paths, the pathways inferred by kWalks may
contain branches ending in non-seed nodes. We remove these branches in a post-
processing step.

Hybrid approach The hybrid approach combines kWalks with the pair-wise
k-shortest paths algorithm. First, kWalks is launched to extract a fixed percent-
age of the input graph. The final pathway is then extracted from the kWalks
subgraph using the pair-wise k-shortest paths algorithm.

2.4 Parameter combinations

The performance of kWalks, pair-wise k-shortest paths and the hybrid approach
was evaluated with a number of different parameter values.

Iteration number For the kWalks and hybrid algorithm, we ran 1, 3 or 6
iterations of the kWalk algorithm.

Graph weight We weight the metabolic graph to avoid highly connected com-
pounds. As in our previous work [3,4], we assign to each compound node its
degree as weight (compound degree weight) or use an un-weighted graph for
comparison (unit weight). In addition, we test a weighting scheme where com-
pound node weights are taken to the power of two (inflated compound degree
weight). Since the pair-wise k-shortest paths and kWalks assume weights on
edges rather than nodes, the initial degree-based node weights are transformed
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into edge weights by taking the mean of the weights of the nodes adjacent to an
edge.

Re-use of kWalks edge relevances In the hybrid approach, we may either
use the weights from the input graph or the edge relevances computed by kWalks
to weight the extracted subgraph. In addition, when iterating kWalks, we may
modify the edge relevances by inflating them (taking them to the power of a
positive integer) to increase the difference between relevances. We tested all
combinations resulting from these options.

Directionality In order to support reaction reversibility, we represent each
reaction by two nodes, one for the direct and one for the reverse direction. In
addition, we also constructed an undirected version of the MetaCyc graph, where
each reaction is represented by only one node, which is connected to compound
nodes by undirected edges.

Fixed subgraph extraction In the hybrid approach, after the last kWalks
iteration we extract a subgraph of fixed size from the input graph. The size of
this subgraph has been varied from 0.1% to 10% of the edges ranked by relevance.
The subgraph obtained by fixed size extraction may consist of more than one
component.

The subgraph size optimization has been performed in the directed, compound-
weighted MetaCyc graph without iterating kWalks or inflating edge relevances.
The input graph weights rather than the edge relevances were fed into the second
step of the hybrid algorithm.

2.5 Evaluation procedure

For each pathway, several inferences are tested, with increasing seed node num-
ber, in order to test the impact of the seed number on the accuracy of the result.
For each of the 71 reference pathways, we first select the terminal reactions as
seeds, we infer a pathway that interconnects them, and we compare the nodes
of the inferred pathways with those of the annotated pathway. Then, we pro-
gressively increase the number of seed reactions by adding randomly selected
nodes of the reference pathway, and re-do the inference and evaluation, until all
reactions of the pathway are selected as seeds.

We define as one experiment the set of all the pathway inferences performed for
a given parameter value combination (e.g. pair-wise k-shortest paths on directed
graph with compound node weights). We did 82 such experiments to find the
optimal parameter value combination for each algorithm.

Scores The accuracy of an inferred pathway is calculated based on the corre-
spondence between its non-seed nodes and those of the reference pathway. We
define as true positive (TP) a non-seed node that is present in the reference as
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well as the inferred pathway. A false negative (FN) is a non-seed node present
in the reference but missing in the inferred pathway and a false positive (FP) is
a non-seed node absent in the reference but found in the inferred pathway. The
sensitivity (Sn) is defined as the ratio of inferred true instances versus all true
instances, whereas the positive predictive value (PPV) gives the ratio of inferred
true instances versus all inferred instances.

TP

Sn = (TP + FN) e
TP

PPV = (TP + FP) @

We can combine sensitivity and positive predictive value to calculate the
accuracy as their geometric mean.

Accy =V Snx PPV (3)

3 Results

3.1 Study case aromatic amino acid biosynthesis

To illustrate the idea of pathway inference, we will discuss the aromatic amino
acid biosynthesis pathway. Figure 1A shows the pathway as annotated in BioCyc.
This pathway is active in E. coli and produces aromatic amino acids (tyrosine,
tryptophan and phenylalanine) from erythrose-4-phosphate. The first part of this
pathway is linear and ends in chorismate. From chorismate onwards, the pathway
splits into three branches, one leading to tryptophan and the other bifurcating
to phenylalanine and tyrosine respectively. The entire pathway, excluding the
terminal compounds, is made up of 34 compound and reaction nodes.

The aromatic amino acid pathway is tightly regulated on the transcriptional
level. In presence of one of the end products (that is an aromatic amino acid), the
corresponding synthesis branch is down-regulated. The linear part of the path-
way is also subject to regulation (on the enzymes catalyzing the first, fifth and
sixth reaction) integrating feed-back loops from the three end-products. From
the set of transcriptionally regulated reactions, we selected DAHPSYN-RXN,
SHIKIMATE-KINASE-RXN, PRAISOM-RXN, PHEAMINOTRANS-RXN,
TYRAMINOTRANS-RXN and RXNO0-2382 (BioCyc identifiers) as seed nodes.
In our previous 2-end path finding approach [3,4] we were restricted to only
two seed nodes. To simulate this situation, we applied the pair-wise k-shortest
paths algorithm on the start (DAHPSYN-RXN) and one of the end reactions
(RXN0-2382). The resulting pathway, shown in Figure 1B, connects the two
seed reactions via a shortcut, bypassing a major part of the reference pathway.
The resulting linear path fits the branched reference pathway with a low ac-
curacy (14%). However, if we repeat the inference with the full seed node set,
we recover the reference pathway with an accuracy of 97% (Figure 1C). Thus,
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without surprise, we observe that multi-seed subgraph extraction is more appro-
priate to infer branched pathways than 2-end path finding. In the next section,
we evaluate various algorithms and parametric choices for the multi-seed sub-
graph extraction.
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Fig. 1. Aromatic amino acid biosynthesis pathway as annotated in BioCyc (A), inferred
with two seed reactions (B) and inferred with 6 seed reactions (C). For both inferences,
the pair-wise k-shortest paths algorithm has been run on the compound-weighted,
directed MetaCyc graph. Seed reactions have a blue border, false positive nodes an
orange border and true positive nodes a green border. Compound nodes are represented
as ellipses and labeled with their names, whereas reaction nodes are drawn as rectangles
and labeled with their BioCyc identifiers.

3.2 Parameter combinations

The performance of the pair-wise k-shortest paths algorithm, kWalks and the
hybrid approach has been evaluated for 82 parameter value combinations ac-



8 Inference of pathways from metabolic networks

Table 1. The ten pathway inference experiments (parametric combinations) resulting
in the highest geometric accuracy in our evaluation. For each experiment, its param-
eter values, its runtime and its geometric accuracy (averaged over all inferences) are
displayed.

Algorithm Iteration Weighting Inflation Directed Edge Geometric Runtime

number scheme after graph relevances accuracy in seconds
iteration used as
weight

Hybrid 6 Compound False True False 0.6822 636
degree weight

Pair-wise 0 Compound False True False 0.6803 445

k-shortest degree weight

paths

kWalks 3 Compound True True False 0.6796 130
degree weight

kWalks 6 Inflated compound False True False 0.679 309
degree weight

Hybrid 3 Compound False True False 0.6786 393
degree weight

kWalks 6 Compound True True False 0.6778 323
degree weight

kWalks 6 Compound False True False 0.6773 312
degree weight

Hybrid 0 Compound False True False 0.6757 183
degree weight

Hybrid 6 Compound True True False 0.6738 744
degree weight

Hybrid 3 Compound True True False 0.6724 431

degree weight

cording to the Sn, PPV and Acc, criteria described above.

Table 1 lists the top ten experiments, with geometric accuracies averaged over
all inferences done for each experiment. Interestingly, all three algorithms are
present in Table 1. In agreement with our previous analysis [3,4], directed,
compound-weighted graphs yield highest pathway inference accuracies. The per-
formance of the hybrid approach increases if the original graph weights rather
than the edge relevances obtained by kWalks are fed into the pair-wise k-shortest
paths algorithm. Inflating edge relevances after kWalks iterations does not have
a significant impact on pathway inference accuracy.

It is worth noting that kWalks without iteration is not among the top ten exper-
iments. Figure 2A shows a summary of all inferences done for kWalks without
iteration in the directed, un-weighted MetaCyc graph. For comparison, Figure 2B
displays the geometric accuracies obtained for kWalks with three iterations un-
der the same conditions. Closer inspection of the geometric accuracy heat maps
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reveals that iterating kWalks improves geometric accuracies for the tryptophan
biosynthesis, isoleucine biosynthesis I and UDP-N-acetylgalactosamine biosyn-
thesis pathways. The average geometric accuracy of kWalks increases from 62%
for one iteration to 64% for three iterations. This illustrates that calling kWalks
iteratively improves pathway inference accuracy. Not surprisingly, Table 1 lists
only kWalks experiments in which this algorithm has been iterated three or six
times.

A B C

kWalks run without iteration kWalks run with three iterations Hybrid algorithm with optimized fixed
subgraph extraction percentage

geometric
accuracy range

Fig. 2. The geometric accuracies obtained for each pathway as a heat map. The x-
axis indicates the number of non-seed reaction nodes (those that the algorithm needs
to infer). Each row corresponds to one reference pathway. The geometric accuracy is
reflected by a gray scale from white (Accy = 0) to black (Accg = 1). A. Heat map
obtained for kWalks in the un-weighted, directed MetaCyc graph without inflation or
iteration. B. Heat map obtained under the same conditions, but with kWalks iterated
three times. C. Summary of the inferences done for the hybrid approach in the directed,
compound-weighted MetaCyc graph. The size of the subgraph extracted by kWalks was
set to 0.5%, which was the optimal value found by our evaluation.

3.3 Hybrid algorithm optimization

In the evaluation shown in Table 1, we set the fixed subgraph size for the hy-
brid approach to 5%. However, subsequent variation of the subgraph size in a
percentage range from 0.1% to 10% showed that 0.5% is the optimal percentage
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for subgraph extraction in the hybrid approach. When the subgraph extraction
percentage is set to 0.5%, the average geometric accuracy of the hybrid approach
reaches 72%, which is the highest percentage obtained for any experiment. Figure
2C shows the geometric accuracy of each inference in a heat map.

4 Discussion

4.1 Parameters

Graph directionality The directed MetaCyc graph yields higher geometric ac-
curacies than the undirected one. In the undirected MetaCyc graph, it is possible
to traverse the graph from substrate to substrate or from product to product,
which is prevented in the directed graph.

Compound weighting In our previous studies [3, 4], we showed that the weight
is the most determinant parameter for inferring relevant pathways by 2-end
path finding. As expected, node weighting also exerts a strong impact on the
performances of multi-seed pathway inference, but this impact depends on the
algorithm used. The pair-wise k-shortest paths performed best in the compound-
weighted MetaCyc graph. But surprisingly, kWalks without iteration resulted in
higher accuracies when applied to the un-weighted rather than to the weighted
MetaCyc graph. Interestingly, kWalks automatically induces weights that favor
relevant compounds. Actually, the kWalks relevance score can be interpreted as a
context-specific betweenness index, and we can thus understand that it penalizes
highly connected compounds, thereby explaining the good results obtained by
relevance weighting. In the hybrid approach, the resulting average geometric
accuracy for the un-weighted graph is higher when we pass the kWalks induced
weights (edge relevances) rather than the original weights to the second step of
the algorithm. However, if we run the hybrid approach on the weighted graph, the
kWalks induced weights decrease the accuracy compared to the original weights.
Inflation of kWalks induced weights does not improve results significantly.

For most parameters, we determined optimal values and their combination (with
respect to the reference pathways) by an exhaustive search. However, compound
weights were chosen heuristically and may be optimized in future by a machine
learning approach.

4.2 Algorithms

Although the pair-wise k-shortest paths algorithm is slow (7 minutes per path-
way inference in average), its average geometric accuracy figures among the top
ten. In contrast, kWalks without iteration runs in seconds, but yields unsatisfac-
tory accuracies. Upon closer inspection, it became apparent that kWalks results
in high sensitivities and low positive predictive values. The positive predictive
value of the kWalks algorithm can be increased by invoking it iteratively or
by combining it with pair-wise k-shortest paths in the hybrid algorithm. Both
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strategies are paid with a longer runtime.

The highest average geometric accuracy was obtained with the optimized hybrid
approach. This shows that pair-wise k-shortest paths and kWalks are comple-
mentary. The focus of kWalks is to capture the part of the input graph most
relevant for connecting the seeds, reducing the number of false negatives at the
cost of increasing the number of false positives. Pair-wise k-shortest paths can
then discard false positives introduced by kWalks.

4.3 Similar approach to subgraph extraction

Recently, Koren and co-workers [9] designed a proximity measure that avoids
dead-end nodes and takes node degree and multiple paths between seeds into
account. Based on this measure, they describe a subgraph extraction approach
that relies on finding the k shortest paths between seed nodes. The resulting
paths are combined in such a way that proximity between seeds is maximized
while minimizing the subgraph size.

This extraction procedure aims at capturing the paths that contribute to the
proximity of nodes. It is worth noting that two nodes with many paths between
them are considered closer than two nodes connected by a few paths. Therefore,
this algorithm will likely return more alternative paths between seeds than our
algorithms do. This is very interesting when one wants to explore the metabolic
neighborhood of a set of seed nodes, but less desirable when a metabolic pathway
should be predicted.

5 Conclusion

We have presented three different algorithmic approaches to infer metabolic
pathways from metabolic graphs: kWalks, pair-wise k-shortest paths, and a hy-
brid that combines both.

The former two algorithms have complementary strengths and weaknesses. Our
evaluation on 71 yeast pathways has shown that their combination in the hybrid
approach yields the highest geometric accuracies.

In future, we will apply these algorithms to microarray data to infer metabolic
pathways from co-expressed enzyme-coding genes.
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