1

Biochemical networks are the networks describing the entities and interactions
between entities in the cells. Some network models focus on some aspects of the
cell [9.2] while others [I2,[IL[13] try to represent as much data as possible in a

A Mozart Implementation of CP(BioNet)

Grégoire Dooms, Yves Deville, and Pierre Dupont

Computing Science and Engineering Department,
Université catholique de Louvain,
B-1348 Louvain-la-Neuve - Belgium
{dooms, yde, pdupont}@info.ucl.ac.be

Abstract. The analysis of biochemical networks consists in studying the
interactions between biological entities cooperating in complex cellular
processes. To facilitate the expression of analyses and their computa-
tion, we introduced CP(BioNet), a constraint programming framework
for the analysis of biochemical networks. An Oz-Mozart prototype of
CP(BioNet) is described. This prototype consists of the implementa-
tion of a new kind of domain variables, graph domain variables, and
the implementation of constraint propagators for constraints over graph-
domain variables. These new variables and constraints are implemented
in Oz and they can then be used like other domain variables in the Oz-
Mozart platform. An implementation of a path constraint propagator is
described in depth and constrained path finding tests are analysed to as-
sess the tractability of our approach. Finally, an alternative Oz-Mozart
data-structure for the graph-domain variables is presented and compared
to the first one.

Keywords: Mozart, Oz, Constraint Programming, Graph Domain Vari-
ables, Constrained Path Finding, Path Constraint.

Introduction

unified way.

Analyzing biochemical networks is an important issue to improve the under-
standing of the working of a cell. The analysis of such networks typically consists

in answering (parameterized) queries such as:

Several projects (aMaze [1], KEGG [14], BioCyc [12], Um-BBD [6], Emp [7],
PathDB [I5], CSNDB [16]) provide a set of predefined queries as those listed

find the process(es) transforming A into B in less than X steps,
find the genes whose expression is affected by entity A,

find the compounds deriving from a given entity A in less than X steps,
find the pathways including the list L of entity, ligand, reaction, etc..

P. Van Roy (Ed.): MOZ 2004, LNAI 3389, pp. E37H250 2005.
© Springer-Verlag Berlin Heidelberg 2005



238 G. Dooms, Y. Deville, and P. Dupont

above. Such queries cover several analyses thanks to the choice of their parame-
ters (denoted in capitals in our examples). Available queries are however usually
limited to simple ones which can be answered by the database management
system or by simple ad-hoc routines.

More advanced queries are interesting from a biological viewpoint but they
may require a significant design and programming effort while covering less
generic analyses. Combining and/or extending analyses, as well as designing
new analyses require lot of programming effort that cannot be reused for other
analyses.

In [45], we proposed a constraint programming approach to biochemical
network analysis. The goal is to be able to cover a broad range of analyses
(including very computationally complex ones) by using a declarative query
language and still be able to perform these analyses in reasonable time.

A first evaluation [4l5] of the CP(BioNet) framework consisted in imple-
menting a prototype and testing it against a complex problem: constrained path
finding. The implementation was done using Oz-Mozart. The results of this eval-
uation are:

e Different and complex analyses of biochemical networks can be done using
CP(BioNet).

e Oz-Mozart is adequate to prototype a new computation domain with new
variables and propagators.

During the implementation of CP(BioNet), we found Oz-Mozart possesses in-
teresting qualities with respect to other constraint systems. First, it is free and
open-source. Second, Oz-Mozart supports functional and procedural program-
ming which can sometimes be more natural than rule-based programming for
programming new domains and propagators. It supports several types of domain
variables: finite domain variables (as a special case, boolean variables) and finite
set variables. Finally, it’s object-orientation and its higher-order approach of con-
straint propagation makes it easily extendable. Our new graph domain variable
can then be seen as a new primitive domain variable for the programmer.

This paper focuses on the implementation of the prototype of CP(BioNet)
over the Oz-Mozart system. This includes the implementation of a new kind of
domain variables, graph domain variables (from now on denoted gd-variables)
and of a few propagators for constraints over these gd-variables. All the imple-
mentation is done in the Oz language, no C++ extension is involved.

Section 2] describes the approach used in CP(BioNet) to express a biochem-
ical analysis as a subgraph finding problem then as a constraint program over
gd-variables. Section [3] describes the Oz data structure used for our first proto-
type of CP(BioNet), then some words will be said about another more efficient
data-structure. Section [ describes the implementation of a few propagators.
Constraints available in the Mozart system were used whenever possible but
a stateful propagator was necessary for the path constraint. Finally section
concludes with current and future work on this prototype.



A Mozart Implementation of CP(BioNet) 239

2 CP(BioNet)

This section will briefly describe our biochemical networks modeling and our
approach to their analysis. Then it will describe CP(BioNet), a new con-
straint programming computing domain for the analysis of biochemical networks.
CP(BioNet) introduces graph domain variables and constraints over these vari-
ables.

2.1 Biochemical Networks Model

Biochemical networks are networks representing the working of the cell. We
adopt the aMAZE [I1[13] model of these networks. This model integrates many
aspects of the functioning of the cell in an integrated model. It consists of an
object oriented model with relations to represent as many biological concepts as
possible.

For the analysis of these networks, we model them as graphs whose nodes
have attributes. The set of attributes attached to each node is determined ac-
cording to the family of analyses under consideration. The simplest attributes
are the three main classes present in the object-oriented aMAZE model: entities,
transforms and controls (see Fig. [I]). Entities are the physical small objects in
the cell: molecules, proteins, compounds, genes, mRNA, etc.. Transforms link
a set of entities to another set of entities: reactions, gene transcription, mRNA
translation, protein assembly, etc.. Controls link an entity to either a transform
or another control: catalysis, inhibition, regulation of gene expression, etc..

The described prototype uses undirected graphs but all the algorithms and
data-structures have been extended and applied to directed graphs. We use undi-
rected graphs in this paper for the sake of consistency and simplicity. Different
types of arrow glyphs can be seen in Fig.[Il This is the classical representation of
biochemical networks in the biological community. But as the type of an arrow
is completely determined by the types of its end nodes, we use non-labelled arcs.

2.2  Analysis of Biochemical Networks

The size of biochemical networks became gigantic since a few years and these
networks are no longer printable as a whole (even on huge posters) nor possible

Compound Enzyme
Inhibition
Catalysis
Protein Protein

O 1 ) O
L / L
Reaction Protein Assembly Complex

Fig.1. A small biochemical network in the object-oriented model containing bio-
entities, transforms and controls



240 G. Dooms, Y. Deville, and P. Dupont

to store in a single head. They were then stored in computers using models
such as the aMAZE model. This computer storage of biochemical data raised
needs for specific data-mining tools. These tools are what the term ”biochemical
network analysis” stands for.

Biochemical networks analysis consists in answering user queries about, for
instance, the organization and potential interactions between the components
of the cell. We chose to model these queries as subgraph finding problems. The
answer to a query is a graph extracted from the biochemical network under
analysis. We think that kind of model covers a broad range of current and future
queries about biochemical networks.

Queries like ”Find the process transforming A into B in less than X steps”,
”Find all the paths expressed by a set of genes” or ”Show how gene G is affected
by entity E” are typical examples. They are translated into, respectively, ”Find
a path from A to B of length less than X, going only through entities and trans-
forms”, "Find the biggest subgraph containing no other gene than those given
and respecting common biochemistry semantics rules (e.g. discard a reaction if
its catalyst or one of its substrate is missing)”, or "Find all the paths from any
regulation node attached to the expression of gene G to node E”.

2.3 CP(BioNet): Constraint Programming Model

To model and solve these subgraph extraction problems, we designed
CP(BioNet). CP(BioNet) consists of graph domain variables and constraints
over these variables.

Graph domain variables are variables which initial domain is the set of all
subgraphs of a reference graph. This reference graph is the maximum element of
their initial domain. In the present work, it is assumed that all gd-variables have
the same initial domain, that is the same reference graph. Problems including
the comparison of different graphs are not covered by this work.

The constraints over gd-variables currently defined and implemented are:

e The unary constraint NodeInGraph(G,n) on the gd-variable G states that
the node n (of the reference graph of G) must be present in graph G.

e The unary constraint ArcInGraph(G,a) on the gd-variable G states that
the arc a (of the reference graph of G) must be present in graph G.

e The unary constraint EveryArc(G) on the gd-variable G states that if two
nodes are in GG and an arc joining these nodes belongs to the reference graph
of G, then this arc must also belong to G.

e The binary constraint SubGraph(P,G) on the gd-variables P and G states
that P must be a subgraph of G (nodes and arcs of P must be in G too). P
and G have the same reference graph.

e A constraint Path(P, ng,n., mazxlength) states that the gd-variable P must
be a path from node ns to node n. (both in the reference graph of P) of
length at most mazlength.

e A constraint EzistsPath(G,ns,n., mazxlength) on the gd-variable G, de-
rived from the Path constraint but weaker, states that there must exist a



A Mozart Implementation of CP(BioNet) 241

path from ng to n, in G (and possibly other nodes and arcs). This is se-
mantically equivalent to the introduction of a new gd-variable P and using
the SubGraph(P,G) and Path(P,ng,n., mazxlength) constraints. However,
such an expression would be far too inefficient.

e The unary constraint Connected(G) states that a gd-variable G must be
a connected graph. This is semantically equivalent to stating that the
EzxistsPath constraint must be satisfied for any pair of nodes in G.

In NodeInGraph and ArcInGraph, the parameters n and a must be determined.
NodeInGraph and ArcInGraph are reified constraints, they can be used as
boolean variables in conjunction with first order logic operators to build more
complex constraints (i.e. with a disjunction). For Path and ExistsPath, ns and
n. must be determined and if mazlength is a domain variable, the highest value
of its domain is used.

3 The Data Structure Used for Graph Domain Variables

A gd-variable G can be implemented using boolean domain variables. A boolean
variable per node in the reference graph states whether this node is present
in the domain of the gd-variable. This vector of boolean variables is denoted
nodes(G). The presence of arcs in the domain of gd-variables is currently encoded
with an adjacency matrix of boolean variables (see Fig. ). If N denotes the
number of nodes in the reference graph, every gd-variable is represented with
N? + N boolean variables (actually roughly half this number as the matrix is
symmetric). This matrix is denoted adjMat(G). Every graph domain variable
has an associated constraint on its boolean domain variables to ensure that if
an arc is present then both of its endpoint nodes must be present as well. Such
a constraint can be implemented by a set of boolean constraints of the form

adjMat(G);; = nodes(G); A nodes(G);

The gd-variable itself is implemented as a class. We chose to use a class
for design matters (not because we need to encapsulate a state). A new gd-
variable is created by instantiation of the class and by telling it its domain using
an init method. Two init methods are available: one states the upper bound
of the domain of the variable (the reference graph), the other one states that
the variable is already determined and takes its reference graph and value as
parameters. The constraints are available as methods of the gd-variable instance.
The instance variables of the class are:

1. the domain graph
2. the adjacency matrix
3. the vector of node membership boolean variables

The adjacency matrix is implemented using a Tuple of Tuples of boolean
variables (0#1). The node membership boolean variables are stored in a Tuple.
That matrix is forced to be symmetrical by unifying symmetrical variables in the



242 G. Dooms, Y. Deville, and P. Dupont

29—91 Arcs Domain
: 0O 1 2 3 4 l—: :—[
ololofloflo]o 1.
30 ................. 04 0 T o g ;
Nodes 2o 1]o]o1fo0 — fa—
0 1 2 3 4 3]0 o0]o1|o o1 i—‘ ~—i

| 0 | 1 | 1 |o-1|0-1| 4| oo1]o]o1]|o ]:[

Fig. 2. Adjacency matrix implementation of a graph domain variable. The current
domain of a variable, in the middle of the search process, is represented in this graph
and coded in tables of boolean domain variables. A node or an arc is filled (nodes 1
and 2 and the arc joining them) when it is present in all graphs in the domain of the
gd-variable. A light gray node or arc (node 0 and arc (0,4)) is never included in a graph
of the domain. A dashed arc or unfilled node (all other nodes and arcs), may be present
or absent in the graphs of the domain. All the graphs of the current domain of this
gd-variable are displayed on the right

matrix. The built-in constraints for forcing that matrix and tuple of nodes to rep-
resent a graph are implemented using N2/2 implication constraints (FD.impl).

In a second implementation, the adjacency matrix is replaced by an adjacency
list: a Tuple of Records having a boolean variable only where the reference graph
has an arc. This lead to an average twofold speedup relative to the test results
showed in [4,/5] (these results are plotted in Section[l). A finite set implementa-
tion is currently being investigated.

4 Implementation of the Constraint Propagators

In this section, the adjacency matrix of the gd-variable G is denoted adj M at(G),
the vector of node membership boolean variables of G is denoted nodes(G). To
refer to a specific boolean variable, the matrix is subscripted twice and the vector
once.

Most of the constraints listed above are very straightforward to implement us-
ing available constraints over boolean variables (or more generally finite domain
variables):

— NodelInGraph and ArcInGraph are both reified. They just return the
boolean variable under consideration.
— FEwveryArc simply posts an implication constraint for each arc ij in the ref-
erence graph:
nodes(G); A nodes(G); = adjMat(G);;

— SubGraph(S,G) posts again a set of implications. For each node i in the
reference graph:
nodes(S); = nodes(G);



A Mozart Implementation of CP(BioNet) 243

Path(P,0,4,3)

6

Fig. 3. The Path constraint. The graph domain variable must be a path from 0 to 4
and include at most 3 arcs (at most 2 additional nodes). Nodes 0 and 4 are outlined
in the reference graph

For each arc ij in the reference graph:
ad]Mat(S)” = ad]Mat(G)”

The Path, ExistsPath and Connected constraints were partly implemented
using a stateful propagator of our own. This section will focus on the Path con-
straint as the ExistsPath constraint is just slightly weaker and the Connected
constraint propagator is part of the Path propagator.

4.1 The Path Propagator Implementation

The propagator of the constraint Path(P,ng, n., maxlength) is implemented in
three parts. The first part uses integer domain propagators provided by the
Oz-Mozart system. The second part is implemented using standard graph algo-
rithms. The third part uses more advanced graph algorithms to further reduce
the domain of the gd-variable.

1. P is constrained to contain only nodes of degree one or two. The start node
ns and end nodes n. have a degree of one, the other nodes have a degree of
two. By stating this simple constraint, P is forced to contain a path from n
to n. and possibly some cycles on nodes not in the path (in Fig. Bl a graph
P consisting in a path from 0 to 4 and the cycle 5,6,7 is satisfying this first
constraint). This first part of the propagator is implemented using the sum
constraint on the rows of the adjacency matrix of the graph domain variable
forcing the rows to contain exactly = (1 or 2) boolean variables with the
value true (true is 1 while false is 0 in the sum):

Vn € {ns,n.} : Zadeat(P)nyj =1
J

¥n € nodes(P)\ {ns,nc} : Y _ adjMat(P),, ; =2
J

These FD.sum constraints are posted when the path constraint is called on
the gd-variable instance.

The cycles in other connected components are avoided by the second part
of the propagator. It is also possible to constrain the number of nodes in the



244

G. Dooms, Y. Deville, and P. Dupont

9 1 3 .7 9 0 123 ..
8
4,5,6
2 4 5

Fig. 4. BridgeTree on the right representing the 2-edge connected components and the

bridges of the graph on the left. The bridge (2,4) and the 2-edge connected component
4,5,6 cannot be part of the path from 0 to 9 while both other bridges must be in that
path

path using the maxlength information. A path of maximal length maxlength
can contain at most mazlength + 1 nodes:

Z nodes(P); < mazlength + 1

P is constrained to be a single connected component. This implies that
P will only be the path from ng to n. as the cycles are in other connected
components. A graph data structure ConnGraph is built. It is the supremum
(with respect to graph inclusion) of all the graphs in the current domain of
P. A node or an arc of the reference graph is not in ConnGraph if and only
if its boolean variable in P is set to false. If this boolean variable is true or
unknown (i.e. {true,false}) then the node/arc is in ConnGraph.

This ConnGraph is implemented with a class. This class holds the
ConnGraph data structure (a Dictionary of Dictionaries of integers) and
methods to operate on it. A ConnGraph instance is associated to a gd-
variable and stores the maximum element of its domain. We use threads
watching each boolean variable of the gd-variable to keep this instance up
to date with the domain of the gd-variable. The job of each thread is to wait
until a boolean variable is determined and if its value is false, update the
ConnGraph accordingly.

Each time the boolean variable associated with an arc in the adjacency
matrix is set to false, all the already included nodes of P (among those are
ns and ne) could be checked to see if they are still in the same connected
component. Two cases can arise:

— the constraint fails if they are not in the same connected component;
— otherwise, all nodes and arcs in other components can be eliminated
from the domain of P.

A standard breadth-first depth-limited (maxlength) search in ConnGraph
performs the connected component checking. During this search, all nodes
in the same component as ny are collected within a mazlength radius (if
mazxlength is an integer domain variable, the highest value of its domain is
taken). As a by-product, the graph can be checked to see if it contains cycles.
If there are no cycles, the connected component of ConnGraph starting from



A Mozart Implementation of CP(BioNet) 245

ng is a tree. In that case, the graph P can be forced to be the only available
path from ng to n. in ConnGraph. This is implemented with a depth-first
search from ng to n. in ConnGraph.

As we do not use an incremental algorithm [I1] for the connected com-
ponent checking, we avoid redoing this check for every arc deletion. Instead,
this connected component checking is performed only when the computa-
tion space is stable (all other propagators have done their job). The stability
check is not explicit: this stateful part of the propagator is automatically run
by the generic distributor available in Mozart. The propagation procedure
to be run by the distributor is returned by the path constraint method, the
script passes this procedure to the distributor.

3. Parts [Il and 2] guarantee to find a solution whenever there is one. An ad-
ditional routine improves the propagation by detecting as soon as possible
that some arcs must or must not belong to the graph P.

A bridge in a connected component of a graph is an arc the removal of
which breaks the connected component into two unconnected components.
A connected component is said to be 2-edge connected if it does not con-
tain any bridge. A 2-edge connected component algorithm is used to find
all bridges in ConnGraph [10,,3]. It uses BridgeTree, an additional data
structure representing a tree. The nodes of this tree correspond to the 2-edge
components of ConnGraph and its arcs are the bridges of ConnGraph. Two
nodes of BridgeTree are labeled nl and n2, corresponding respectively to
the 2-edge connected component of ConnGraph containing ns and n. (see
Fig. [@).

In this BridgeTree, all arcs on the path from nl to n2 must be in P and all
other arcs (and the 2-edge connected components on the other end) cannot
be present in P. This information is propagated by adding or removing these
arcs and nodes from the domain of P.

The BridgeTree is just a theoretic definition. It is not built by the im-
plementation. The selection of positive and negative bridges is implemented
using the previously cited algorithm [10,[8,3] which computes a DFS span-
ning tree of ConnGraph (stored as an adjacency list over the nodes of
ConnGraph: Tuple of Dictionaries). The ”Low” values (lowest node reach-
able from each node) are then computed in this tree which enables to find all
bridges. A depth first search in the tree allows to find a path from ng to n.
and all bridges on this path are the bridges to be included in the gd-variable
while all others can be taken out of the domain.

A similar reasoning can be made about cut-nodes (nodes the removal of
which breaks the connected component) and the same algorithm can take
care of these nodes.

5 Experiments

Some experiments were conducted to assess the tractability of this framework
for biochemical analyses. Constrained path finding tests were done using real



246 G. Dooms, Y. Deville, and P. Dupont

biological data. This section will first describe the data used for these tests.
Then the constrained path finding tests are described along with their results.
One other test will show the impact of the data structure used for the gd-variable:
an adjacency matrix and an adjacency list implementation are compared.

5.1 Data

Graphs of increasing size (50, 100, 200, and 500 nodes) have been extracted
from a metabolic network consisting of 4492 chemical entities and 5281 reac-
tions. This data comes from the KEGG project and concerns two organisms:
Escherichia Coli and Saccharomyces Cerevisiae. Extraction of smaller graphs
from this network was performed while preserving approximately the degree dis-
tribution in the original graph. More precisely, an extracted graph must be a
single connected component. The average degree of its nodes is around 4 and
the maximum degree is 18 percent of its number of nodes.

5.2 Tests and Results

Five tests were performed on the extracted graphs. They are path finding prob-
lems expressed in CP(BioNet) using the Path constraint. The maxlength pa-
rameter was set to the number of nodes in the graph (no constraint on the length
of the extracted path).

1. Path finding between two random nodes in the graph (always a solution since
the graph is connected).

2. Path finding between two random nodes in the graph, with the additional
constraint of containing two randomly preselected intermediate nodes.

3. Path finding between two random unconnected nodes in a double graph (two
separate connected components were created by cloning the extracted graph;
no solution).

4. Path finding between two random nodes in the graph, with the additional
constraint of containing from one up to five randomly preselected interme-
diate node(s).

5. Selection of a random path p of k nodes in the graph. Path finding between
the first and last nodes of p, with the additional constraint of containing from
one up to k — 2 intermediate nodes randomly preselected from p (always a
solution).

The running time of every query was measured. For the first three tests,
1,000 queries were performed on each extracted graph. The fourth and fifth
queries were performed on extracted graphs with 200 nodes. The fourth query
was performed 1,000 times for every number of intermediate nodes. The fifth
query was performed 1,000 times for every number of intermediate nodes and
for values of k being 7, 10 and 15.

Figure B shows the average and standard deviation of the running time for
these tests. Results from tests 2 and 4 are split in two groups: a curve for those
where a solution was found and another for those for which no solution was
found.



running time [s]

running time [s]

Test 5 path 7 long: run. time for growing number of constraints

running time [s]

Test 1: run. time for growing graph size
100

50 100 150 200 250 300 350 400 450 500
graph size

Test 3: run. time for growing graph size

1
50 100 150 200 250 300 350 400 450 500
graph size

1

{ ,,,,,,,,,,,,,,,, { ,,,,,,,,,

0.1

1 2 3 4 5
Number of intermediate nodes

A Mozart Implementation of CP(BioNet)

running time [s]

running time [s]

running time [s]

Test 5 path 15 long: run. time for growing number of constraints

running time [s]

5.3

10

0.1

0.01

123 456 7 8 910111213
Number of intermediate nodes

100

247

Test 2: run. time for growing graph size;

succeeding and failing runs

0.01

50 100 150 200 250 300 350 400 450 500

graph size

Test 4: run. time for growing number of constraints

1

succeeding and failing runs

0.1 ¢

2 3 4 5
Number of intermediate nodes

Test 5 path 10 long: run. time for growing number of constraints

o

0.1

2 3 4 5 6 7 8
Number of intermediate nodes

Fig. 5. Running time of the five tests. Logarithmic Y axis

Analysis

Tests 1 and 3 concern single path finding in a graph. This problem is not relevant
alone for analyzing biochemical networks and dedicated algorithms are obviously



248 G. Dooms, Y. Deville, and P. Dupont

Test 5 path 10 long: run. time for growing number of constraints Test 5 path 10 long: run. time for growing number of constraints
(non-filtered)
% 10 5 10
£ £
> =
£ Ed
£ B R S S SRS S S < L S B "
= 2
0.1 0.1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of intermediate nodes Number of intermediate nodes

Fig. 6. Comparison of the results of test 5 path length of 10 when results are filtered
(on the left) or not (on the right). The only difference lies in 2 runs (among the 8000
presented) for five intermediate nodes: one lasted 765 s and the other 18 s. The standard
deviation is more affected by these rare results than the mean

Adj List VS Adj Matrix

10

@

()

£

[ L R E— B

£ T N

g

£ P Froe 1
———_—— :

0.1 y ; : :

1 2 8 N °

Number of intermediate nodes

Fig. 7. Comparison of the adjacency matrix and adjacency list implementations of
the graph-domain variable data-structure. The test is a test of random constrained
path finding (test 4). The curves from top to bottom are ”successful” queries with the
matrix, with the list, then "failed” queries with matrix and with list

more efficient. These tests were done to analyze the path propagator on its own.
For test 3, the reported size in the plots is the size of one component of the
graph (the graph having twice that size). The plots for these tests show a sub-
exponential curve and very low standard deviations. These tests illustrate the
tractability of this propagator over increasing sizes of graphs.

Tests 2, 4, and 5 concern the constrained path finding problem. Two pa-
rameters were taken into account for this analysis: the size of the graph and
the number of mandatory intermediate nodes. Test 2 shows the evolution of the
running time of a query with 2 intermediate nodes versus the size of the graph.
The plot shows two curves: one, for successful queries (the CSP solver found a
path) and another, below, for failed queries (the CSP found no solution to this
query). The results show that the curves are similar to the ones of the path
propagator alone. The major difference is a larger standard deviation.



A Mozart Implementation of CP(BioNet) 249

Tests 4 and 5 show the evolution of the running time on the graph of size
200 versus the number of mandatory intermediate nodes. Test 5 was performed
to be able to show results of successful runs for high values of the number of
intermediate nodes. When these nodes are chosen randomly in the graph (test 4),
the odds of having a successful run are very low. The plots show that the average
running time of these tests is nearly constant while the standard deviation has
a slight tendency to grow.

A small fraction of the runs (from 0.08% up to 1%, depending on the tests)
of the constrained path finding tests had running times several orders of mag-
nitude worse than average. This somehow illustrates the NP-Hardness of these
problems. Plots with and without these results are compared in Fig. Bl An ad-
ditional test comparing an adjacency matrix (Tuple of Tuple) and an adjacency
list (Tuple of Records) implementation of the gd-variable shows a near twofold
speedup when using lists (see Fig. [7).

Our results show that the path constraint is tractable when used alone, al-
though specialized algorithms are more efficient. When used along with other
constraints (specifying a NP-Hard problem), the results show that the average
running time is approximately the same (apart from rare diverging results) as
the running time of the path constraint alone, independently of the number of
additional constraints. Additional constraints on the type and attributes of the
nodes of the biochemical network can thus be designed and used in our con-
strained path finding framework. This framework can then exploit the richness
of the model of biochemical networks.

6 Conclusion

This paper showed how we used Oz-Mozart to implement a prototype of
CP(BioNet), a new computing domain in constraint programming. A new type of
variables, graph domain variables, was designed and implemented using the Oz
language. New constraints were designed and implemented as well. Much time
was saved by reusing domain variables and constraints available in the Mozart
system modules (boolean variables, propositional logic constraints, sum of finite
domain variables constraint). Another advantage of the Mozart system is the
possibility to implement this prototype in C/C++ if necessary.

CP(BioNet) allows the bio-informatician user to specify complex and diverse
analyses using a declarative language and should provide him/her with an answer
in reasonable time. Constrained path finding tests were conducted to assess the
tractability of this framework in the average case. We also showed that this
framework is expressive enough to state complex analyses. We now intend to use
it on real problems from bio-informaticians.

We intend to design and implement a specific distributor and an optimization
search engine (using branch and bound). Current constraints will be improved
(definition, mode of usage, propagator, etc.) and new constraints are also under
investigation.



250

G. Dooms, Y. Deville, and P. Dupont

References

10.

11.

12.

13.

14.

15.
16.

The aMAZE data-base project. http://www.amaze.ulb.ac.be/|

G.D. Bader, I. Donaldson, C. Wolting, B.F. Ouellette, T. Pawson, and C.W. Hogue.
Bind the biomolecular interaction network database. Nucleic Acids Research,
29(1):242-5, 2001.

Joélle Cohen. Théorie des graphes et algorithmes. Course notes.
http://wuw.univ-paris12.fr/lacl/cohen/poly_gr.ps.

G. Dooms, Y. Deville, and P. Dupont. Constrained path finding in biochemical
networks. In Proceedings of JOBIM 2004, pages JO—40, 2004.

G. Dooms, Y. Deville, and P. Dupont. Recherche de chemins contraints dans
les réseaux biochimiques. In F. Mesnard, editor, Programmation en logique avec
contraintes, actes des JFPLC 2004, pages 109—128. Hermes Science, 2004.

L.B.M. Ellis, B. Kyeng Hou, W. Kang, and L.P. Wackett. The university of mi-
nesota biocatalysis/biodegradation database : post-genomic data mining. Nucleic
Acids Research, 31(1):262-265, 2002.

EMP project. Informations about EMP can be found at
http://www.empproject.com/.

. Michel Gondran and Michel Minoux. Graphes et algorithmes. Eyrolles, 1995. 3eme

éd.

S. Goto, T. Nishioka, and M. Kanehisa. LIGAND: Chemical database for enzyme
reactions. Bioinformatics, 14:591-599, 1998.

Jonathan Gross and Jay Yellen. Graph Theory and its Applications. CRC Press,
1999.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. Journal ACM, 48(4):723-760, 2001.

P.D. Karp, M. Riley, M. Saier, I.T. Paulsen, J. Collado-Vides, S.M. Paley,
A. Pelligrini-Toole, C. Bonavides, and S. Gama-Castro. The EcoCyc database.
Nucleic Acids Research, 30(1):56-8, 2002.

Chrisian Lemer, Erick Antezana, Fabian Couche, Frédéric Fays, Xavier Santolaria,
Rekin’s Janky, Yves Deville, Jean Richelle, and Shoshana J. Wodak. The aMAZE
lightbench: a web interface to a relational database of cellular processes. Nucleic
Acids Research, 32:D443-D448, 2004.

K. Minoru, G. Susumu, K. Shuichi, and N. Akihiro. The KEGG databases at
GenomeNet. Nucleic Acids Research, 30(1):42-46, 2002.

Faye Schilkey. PathDB : a pathway database. http://www.ncgr.org/pathdb.
Takako Takai-Igarashi and Tsuguchika Kaminuma. A pathway finding system for
the cell signaling networks database. Silico Biology, 1:129-146, 1999.


http://www.amaze.ulb.ac.be/
http://www.univ-paris12.fr/lacl/cohen/poly_gr.ps
http://www.empproject.com/

	Introduction
	CP(BioNet)
	Biochemical Networks Model
	Analysis of Biochemical Networks
	CP(BioNet): Constraint Programming Model

	The Data Structure Used for Graph Domain Variables
	Implementation of the Constraint Propagators
	The Path Propagator Implementation

	Experiments
	Data
	Tests and Results
	Analysis

	Conclusion

