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Abstract

Embedded feature selection can be performed by analyzing the variables
used in a Random Forest. Such a multivariate selection takes into account
the interactions between variables but is not straightforward to interpret in
a statistical sense. We propose a statistical procedure to measure variable
importance that tests if variables are significantly useful in combination with
others in a forest. We show experimentally that this new importance in-
dex correctly identifies relevant variables. The top of the variable ranking
is largely correlated with Breiman’s importance index based on a permuta-
tion test. Our measure has the additional benefit to produce p-values from
the forest voting process. Such p-values offer a very natural way to decide
which features are significantly relevant while controlling the false discovery
rate. Practical experiments are conducted on synthetic and real data includ-
ing low and high-dimensional datasets for binary or multi-class problems.
Results show that the proposed technique is effective and outperforms re-
cent alternatives by reducing the computational complexity of the selection
process by an order of magnitude while keeping similar performances.
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1. Introduction

Feature selection aims at finding a subset of most relevant variables for a
prediction task. To this end, univariate filters, such as a t-test, are commonly
used because they are fast to compute and their associated p-values are easy
to interpret. However such a univariate feature ranking does not take into
account the possible interactions between variables. In contrast, a feature
selection procedure embedded into the estimation of a multivariate predictive
model typically captures those interactions.

A representative example of such an embedded variable importance mea-
sure has been proposed by Breiman with its Random Forest (RF) [1] algo-
rithm. While this importance index is effective to rank variables, it is difficult
to decide how many such variables should eventually be kept. This question
could be addressed through an additional validation protocol at the expense
of an increased computational cost. In this work, we propose an alternative
that avoids such additional cost and offers a statistical interpretation of the
selected variables.

The proposed multivariate RF feature importance index uses out-of-bag
(OOB) samples to measure changes in the distribution of class votes when
permuting a particular variable. It produces p-values, corrected for multiple
testing, measuring to which extent variables are useful in combination with
other variables of the model. Such p-values offer a natural threshold for
deciding which variables are statistically relevant.

The remainder of this document is organized as follows. Section 2 sets
up the context and introduces our proposed variable importance measure
relying on a χ2 test. Section 3 describes the metrics, experimental proto-
col and datasets used to assess the performances of feature selection indices.
Comparative experiments with state-of-the-art methods are reported in Sec-
tion 4. Section 5 summarizes our contribution and discusses some possible
future work.

2. Material and methods

This section presents a novel feature selection index from tree ensembles,
typically a Random Forest. Section 2.1 introduces our notations and reviews
Breiman’s RF feature importance measure. Our proposed feature importance
index is presented in Section 2.2, along with related work.
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2.1. Context and notations

Let Xn×p be a data matrix consisting of n observations in a p-dimensional
space and y a vector of size n containing the corresponding class labels. A
RF model [1] is made of an ensemble of trees, each of which is grown from
a bootstrap sample of the n data points. For each tree, the selected samples
form the bag (denoted by B), the remaining samples form the out-of-bag
(OOB) denoted by B. Let B stand for the set of bags over the ensemble and
B be the set of corresponding OOBs. We have |B| = |B| = T , the number of
trees in the forest.

In order to compute feature importances, Breiman [1] proposes a per-
mutation test procedure based on classification error. For each variable xj,
there is one permutation test per tree in the forest. For an OOB sample Bk

corresponding to the k-th tree of the ensemble, one considers the original
values of the variable xj and a random permutation x̃j of its values on Bk.
The difference in prediction error using the permuted and original variable
is recorded and averaged over all the OOBs in the forest. The higher this
index, the more important the variable is assumed because it corresponds
to a stronger increase of the classification error when permuting it. The
importance measure Ja of the variable xj is precisely defined as:

Ja(xj) =
1

T

∑

Bk∈B

1

|Bk|


∑

i∈Bk

I(h
x̃j
k (i) 6= yi)− I(hk(i) 6= yi)


 (1)

where yi is the true class label of the OOB example i, I is an indicator
function, hk(i) is the class label of the example i as predicted by the tree

estimated on the bag Bk, h
x̃j
k (i) is the predicted class label from the same

tree while the values of the variable xj have been permuted on Bk. Such
a permutation does not change the tree but potentially changes the predic-
tion on the out-of-bag examples since its j-th dimension is modified after
the permutation. Since the predictors with the original variable hk and the
permuted variable h

x̃j
k are individual decision trees, the sum over the var-

ious trees where this variable is present represents the ensemble behavior,
respectively from the original variable values and its various permutations.
Whenever a specific variable does not appear in a tree, the prediction can-
not be affected by permuting its value, which means that the specific term
corresponding to this tree in equation (1) is null.
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2.2. A statistical feature importance index from RF

While Ja is able to capture individual variable importances conditioned
to the other variables used in the forest, it is not easily interpretable. In par-
ticular, it does not define a clear threshold to highlight statistically relevant
variables. In the following sections, we propose a statistical feature impor-
tance measure closely related to Ja, and compare it with existing approaches
providing a statistical interpretation to feature importance scores.

2.2.1. Definition

In the present work, we combine the idea of Breiman’s Ja to use a permu-
tation test with an analysis of the tree class vote distribution of the forest.
We propose to perform a statistical test that assesses whether permuting
a variable significantly influences that distribution. The hypothesis is that
removing an important variable signal by permuting it should change indi-
vidual tree predictions, hence the class vote distribution.

One can estimate this distribution using the OOB data to simulate unseen
examples. In a binary classification setting, for each data point in an OOB,
the prediction of the corresponding tree can fall into one of the four following
cases : correct prediction of class 1 (TP), correct prediction of class 0 (TN),
incorrect prediction of class 1 (FP) and incorrect prediction of class 0 (FN).
Summing the occurrences of those cases over all the OOBs gives an estimate
of the class vote distribution of the whole forest on unseen examples. The
same can be performed when permuting a particular feature xj to evaluate
the effect on the class vote distribution after perturbing this variable. The
various counts obtained can be arranged into a 4×2 contingency table defined
as follows for each variable xj and its permuted version x̃j:

xj x̃j
TN s(0, 0) sx̃j(0, 0)
FP s(0, 1) sx̃j(0, 1)
FN s(1, 0) sx̃j(1, 0)
TP s(1, 1) sx̃j(1, 1)

(2)

where
s(l1, l2) =

∑

Bk∈B

∑

i∈Bk

I(yi = l1 and hk(i) = l2) (3)

and sx̃j(l1, l2) is defined similarly with h
x̃j
k (i) instead of hk(i).
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A Pearson’s χ2 test is then used to assess whether the frequencies of
those events significantly differ from the original xj and its permuted version
x̃j. Rejecting the null hypothesis with a low p-value pχ2(xj) means that
permuting variable xj significantly influences the class vote distribution and,
therefore, that xj is important in the current predictive model. We note
that, even on small datasets, there is no need to consider a Fisher’s exact
test instead of Pearson’s χ2 since cell counts are generally sufficiently large:
the sum of all counts is twice the sum of all OOB sizes.

Since the importance of several features is typically assessed through this
test on the same data, p-values must be corrected for multiple testing. We use
the popular Benjamini-Hochberg correction [2] to control the false discovery
rate. Let pfdrχ2 (xj) be the value of pχ2(xj) after FDR correction, the new
importance measure is defined as

Jχ2(xj) = pfdrχ2 (xj) (4)

The proposed index can easily be generalized to multi-class problems, as
used in some of the experiments reported in Section 3. In such cases, the
contingency table (2) simply has c2 × 2 entries, where c is the number of
classes.

This statistical importance index is closely related to Breiman’s Ja. The
two terms inside the innermost sum of Equation (1) correspond to counts
of FP et FN for permuted and non permuted variable xj. This is encoded
by the second and third lines of the contingency table (2). There are some
important differences between both approaches however. Firstly, Ja aggre-
gates both type of errors in a single measure, which might loose important
information in case of unbalanced class priors. Secondly, the central term of
Ja (eq. (1)) is normalized by each OOB size while the contingency table of
Jχ2 (eq. (2)) considers global counts. This follows from the fact that Ja esti-
mates an average increase in classification error on the OOB samples while
Jχ2 measures a distribution shift on those samples. Finally, the very nature
of those importance indices differ. Ja is an average measure of differences
between prediction performances whereas Jχ2 (eq. (4)) is a corrected p-value
from a χ2 test. The higher Ja the more important is the corresponding vari-
able assumed. In contrast, the lower Jχ2 the stronger the evidence to reject
the null hypothesis that permuting this variable does not affect the voting
process of a RF. There is also a natural significance threshold for Jχ2 since
any corrected p-value lower than 5% is commonly accepted as significant [3].
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The time complexity of computing Jχ2 for p variables is exactly the same
as with Breiman’s Ja. If we assume, to simplify the analysis, that each
tree node splits its instances into two sets of equal sizes until having one
observation per leaf, then the depth of a tree is in O(log n) and the time
complexity of classifying one example by a single tree is O(log n). The global
time complexity of computing a ranking of p variables from an ensemble of
T trees is in O(T · p ·n · log n). Algorithm 1 describes the computation of Jχ2

and motivates its time complexity analysis.

init(res) // Set to 0 a p-dimensional vector; Θ(p)
for xj ∈ Variables do // Θ(p)

init(contTable) // Set to 0 the counts of a contingency table; Θ(1)
for Bk ∈ B do // Θ(T)

x̃j ← perm(xj, Bk) // Θ(n)
for i ∈ Bk do // O(n)

a← hk(i) // Θ(depth)

b← h
x̃j
k (i) // Θ(depth)

contTable← update(contTable, a, b, yi) // Θ(1)
end

end
res[xj]← χ2(contTable) // Θ(1)

end
return res

Algorithm 1: Algorithm for computing the importance of all variables
within a forest of T = |B| trees.

2.2.2. Related work

In [4], the authors compare several ways to obtain a statistically inter-
pretable index from a feature relevance score. Their goal is to convert feature
rankings to statistical measures such as the false discovery rate, the family
wise error rate or p-values. Their proposed methods typically make use of
an external permutation procedure to compute some null distribution from
which those metrics are estimated. The external permutation tests repeat-
edly compute feature rankings on dataset variations, e.g. for which some
features are randomly permuted.

Similarly to our approach, this work can be applied to convert Breiman’s
Ja index to a statistically interpretable measure and to produce p-values on
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which a prescribed threshold can be easily defined. Yet, the methods pro-
posed in [4] are somewhat more complex since they rely on an additional
resampling protocol. This external resampling encompasses the growing of
many forests on top of the internal bootstrap mechanism at the tree level,
used while growing each forest. This external resampling relies on additional
meta-parameters such as the number N of external resamplings and the num-
ber of instances to be sampled. Among the various methods presented in [4]
that resort on an external permutation procedure, two techniques specifically
produce p-values. They both rely on feature rankings produced according to
Breiman’s Ja index but differ in the way a null distribution is estimated.

The mr-Test [5] repetitively samples n
2

examples out of n without replace-
ment. It also assumes that a prescribed fraction (by default, p

2
out of p) of

variables are irrelevant. Out of N resamplings (N ≥ 100 is typically chosen,
see section 3), the null distribution is defined as the rank distribution of the
worst p

2
variables according to their average Ja values. For each remaining

variable, its average rank over the N resamplings is compared to the null
distribution, which defines its associated p-value.

The 1Probe ranks N times the features of the whole dataset (the n ob-
servations) after introducing an additional non-informative feature randomly
sampled from N (0, 1) at each iteration. The p-value of a feature is then esti-
mated as the proportion of iterations for which the non-informative variable
has a better rank according to Ja. For both methods, the final p-values are
corrected for multiple testing using the Benjamini-Hochberg procedure [2].

The mr-Test and 1Probe have a higher computational complexity than
the evaluation of the Jχ2 importance index. Indeed, they multiply the cost of
computing a ranking with Brieman’s original Ja by the number N of external
resamplings. We further analyze in section 4.4 the cost/performance trade-off
of those approaches.

3. Experiments

This section describes various metrics to assess the performance of feature
selection methods, our experimental protocol and the datasets on which we
run our experiments.

3.1. Performance Metrics

The Balanced Classification Rate (BCR) is used to assess the predictive
performances of a classifier estimated on the selected features. It is defined
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as the mean of the classification accuracy in each class. BCR is preferred to
the standard classification rate when dealing with unbalanced class priors. It
also generalizes to multi-class problems more easily than ROC analysis. For
a two-class problem, BCR is defined as the average between sensitivity and
specificity:

BCR =
1

2

(
TP

P
+
TN

N

)
(5)

Its multi-class generalization takes the following form:

BCR =
1

c

c∑

l=1

TCl
Cl

(6)

where c is the number of classes, TCl is the number of correct predictions of
class l and Cl is the total number of samples of class l. This metric has been
used, for instance, in the performance prediction challenge2 held at WCCI
2006 precisely to deal with possible class imbalance while considering the
calibration of specific models [6].

Stability of feature selection indices quantifies how selected sets of features
vary after small perturbations of the datasets. The Kuncheva index (KI) [7]
specifically measures to which extent K sets (typically obtained from various
resamplings) of s selected features share common elements.

KI({S1, ..., SK}) =
2

K(K − 1)

K−1∑

i=1

K∑

j=i+1

|Si ∩ Sj| − s2

p

s− s2

p

(7)

where p is the total number of features and s2

p
is a term correcting the random

chance, for 2 feature sets Si and Sj, to share common features. This index
ranges within (−1, 1]. The larger its value, the larger the number of com-
monly selected features. A value of 0 is the expected stability for a selection
performed uniformly at random.

3.2. Experimental protocol

In order to evaluate the predictive performances and the stability provided
by a feature selection technique, an external resampling protocol is used. The

2The evaluation metric in this challenge actually relied on BER, the balanced error
rate, which conveys the same information since BCR = 100%−BER.
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goal is twofold. Firstly, resampling allows to assess how a particular classifier
built on the selected features will predict the class of new data. Secondly,
it mimics small perturbations in datasets to assess the stability of feature
selection. The procedure consists in repeating N times the following steps:

randomly select a training set Tr made of 90% of the available data.
The remaining 10% form the test set Te.

– train a forest of T trees on Tr and rank the features it uses

– for each number of selected features s

∗ train a forest of 500 trees using only the first s features on Tr

∗ save the BCR computed on Te and the set of s features

The statistics recorded at each iteration are then aggregated to provide the
mean BCR and the KI values. The above protocol considers several feature
set sizes s. The results presented in section 4.1 reports, on several datasets,
how many out of s are actually significant features.

3.3. Datasets

Artificial datasets allow to control by design the signal present in different
features. Our first experiments are inspired from [4] and conducted on artifi-
cial datasets with a linear decision boundary. Labels y ∈ {−1, 1}n are given
by y = sign(Xw) where w ∈ Rp and X ∈ Rn×p. Each dimension from the
input data X is repetitively drawn from a N (0, 1) distribution. The number
p of variables is set to 110. The first 10 weights wi are randomly sampled
from a uniform distribution U(0.5, 1). The other 100 weights are set to 0
such that only the first 10 variables are relevant. We draw n = 500 instances
for a given run with a design matrix X ∈ R500×110. Finally, 10% of the y
labels are randomly flipped to add some noise to the classification task.

Experiments are also performed on real-life datasets, briefly described
in Table 1 in terms of class priors and number of input features. We con-
sider firstly four gene expression datasets from a microarray technology. The
number of features p in those datasets is typically much larger than the num-
ber n of training examples. In such a challenging setting, feature selection
is usually considered particularly important. The DLBCL [8] dataset aims
at predicting the outcome of diffuse large b-cell lymphoma. The prediction
task associated to the Lymphoma [9] dataset concerns the identification of
different subtypes of this pathology. Golub’s dataset [10] aims at identifying
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Name Class priors p
DLBCL [8] 58/19 7129
Lymphoma [9] 22/23 4026
Golub [10] 25/47 7129
Prostate [11] 52/50 6033
Breast tissue [12] 22/21/14/49 9
Glass [12] 70/76/17/13/9/29 9
Wine [12] 59/71/48 13
Vehicle [12] 218/212/217/199 18
Musk1 [12] 269/207 166
Arrhythmia [12] 245/185 262

Table 1: Summary of the real-life datasets: class priors report the n values in each class,
p represents the total number of features.

different types of cancer. Finally, the Prostate [11] dataset focuses on the
diagnostic of prostate cancer or healthy patients from their gene expression.
Since the number of features in those datasets is orders of magnitude higher
than the number of available samples, a non-specific filter (i.e. without con-
sidering the class labels) is applied first to remove 75% of the features with
the lowest variance on the training set.

In addition, we consider six lower dimensional datasets with, proportion-
ally, a larger number of training examples. Breast tissue [12] is a four classes
dataset made of impedance measurements to predict the type of observed
tissue. The Glass [12] dataset aims at classifying fragments of glass into
seven different types using proportions of chemical elements that compose
each fragment. The Wine [12] dataset consists of chemical measurements
aiming at predicting from which of three domains comes a particular wine.
The purpose of the Vehicle [12] dataset is to distinguish between four vehicle
types given some geometrical features extracted from their silhouettes. The
Musk1 [12] dataset describes two kinds of molecules (musk and non-musk)
in terms of shape and conformation of the molecules. Finally, the Arrhyth-
mia [12] dataset aims at predicting the presence of cardiac arrhythmia from
ECG measurements.
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4. Results and discussion

The following sections present experiments that highlight properties of
the Jχ2 importance measure. They show that Jχ2 actually provides an
importance index from which a natural selection threshold can be chosen
(Section 4.1). Our results also illustrate that Jχ2 is closely related to Ja
(Section 4.2), the original Brieman’s index, both in terms of variable rank-
ings and predictive performances after building a classifier on the selected
features. Further experiments described in Section 4.3 present predictive
performances obtained when restricting the classifier to be built only from
variables which are deemed statistically significant. Finally, Section 4.4 de-
tails the relative performance of the Jχ2 and the two competing approaches
mr-Test and 1Probe.

4.1. Selecting statistically relevant features with Jχ2

The expected benefit of Jχ2 is to a offer a principled way to select key
variables from a tree ensemble. One aims at restricting the selection to
those variables that are deemed significant for characterizing the class vote
distribution in such an ensemble. We assess here to which extent this criterion
matches the selection of relevant variables by design on an artificial dataset
(cf. Section 3.3).

A RF, built on the full dataset, is used to rank the variables according
to their importance index. Similarly to [4], a given variable is considered
significantly important, whenever its p-value falls below 0.05 after correcting
for multiple testing. Figure 1 reports importance indices obtained by forests
of various sizes and m values. This meta-parameter m corresponds to the
number of variables randomly sampled as possible candidates in each tree
node while growing the forest. The specific ensemble sizes are chosen accord-
ing to [13] in which the stability of such ensembles is studied. This work
shows in particular that a forest of 500 trees performs quite well in terms
of predictive performances on such high dimensional datasets while a much
larger ensemble of about 10,000 trees is required to reach a stable feature
selection. In the four plots of Figure 1, the 10 informative features appear
at the top of the rankings of Ja and Jχ2 .

The results reported in Figure 1 illustrate that the original (decreasing)
Breiman’s Ja index does not offer a clear threshold to decide which variables
are relevant. Our (increasing) Jχ2 index appears to distinguish more clearly
between relevant and irrelevant variables. It however requires a relatively
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Figure 1: Importance indices computed on an artificial dataset with 10 informative features
out of 110 features in total. Results are reported for various forest sizes (T ) and m
values (see text). For the sake of visibility, Ja has been rescaled between 0 and 1. The
horizontal line is set at 0.05. Jχ2(xj) below this line are deemed statistically relevant. All
10 informative features appear at the top of each ranking in the four plots.

12



large number of trees to gain confidence that a feature is indeed relevant.
When computed on small forests (left plots), Jχ2 may fail to identify variables
as significantly important. Nevertheless those variables are still correctly
ranked. Increasing the value of the m meta-parameter also tends to positively
impact the identification of those variables when the number of trees is low.
This beneficial effect appears less strongly as the number of trees increases.
In general, the larger the forests the better, in terms of the significance of
the test. Beyond significance, the effect size could also be assessed as briefly
discussed in section 5.

4.2. Concordance with Ja

As discussed in Section 2.2.1, Jχ2 and Ja share some similarities and the
same computational complexity to be evaluated. The left plot of Figure 2
compares the rankings of those two importance measures on one particular
resampling of the DLBCL dataset (cf. Section 3.3). It shows that feature
ranks in the top 500 are highly correlated. Spearman’s rank correlation
coefficient is 0.97 between both rankings.

The main differences are observed in the poorly ranked features, which are
those very unlikely to be considered significant. While Ja penalizes features
whose permuted versions would increase the prediction accuracy, Jχ2 would
favor such features since they affect the class vote distribution. In particular,
after rank 1,250 on the horizontal axis, features have a negative Ja value for
they lower the prediction performance of the forest. Yet, since they influence
the class vote distribution, they are considered more important by Jχ2 .

This behavior of Jχ2 could be considered undesirable but the actual effect
is negligible in practice because the large ranks of those variables indicate
that they are very unlikely to be eventually selected. This is further con-
firmed by the right plot of Figure 2 where the mean rank of each variable
is computed over 200 resamplings. We can see that this effect totally disap-
pears and is only due to random variations on those features. To sum up,
this particular behavior of Jχ2 has virtually no practical impact since only
top ranked features will typically be selected based on their low corrected
p-values.

We further show that Ja and Jχ2 are also similar in terms of stability
of the feature selection and predictive performances of the final classifier
built from the selected features. Figure 3 presents the measurements made
over 200-resamplings from the DLBCL dataset according to the number of
features kept to train a RF as final classifier. It shows that the two indices
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Figure 2: Left: Rankings produced by Ja and Jχ2 on one external resampling of the
DLBCL dataset. Right: Mean rankings produced by Ja and Jχ2 , averaged over 200
resamplings of the DLBCL dataset. Approximately 1,800 features are ranked after pre-
filtering 75 % of features with the lowest variances.

behave very similarly when plotting predictive performance with respect to
the number of selected features. Increasing the number of trees increases the
feature selection stability in both cases, with a convergence of the stability
curves observed from 5000 trees. Similar results have been reported for Ja
in [13].

4.3. Prediction from significant features

The previous results show that Jχ2 ranks top features roughly the same
way as Ja. Since Jχ2 is a corrected p-value, it is associated to a commonly
accepted threshold equal to 0.05 to decide whether a variable should eventu-
ally be kept. We recall that this selection process is no longer univariate (as
would be the case of a t-test) but is performed while considering each variable
jointly with the others in the forest. One can wonder whether restricting the
final classifier to be built strictly on the features which are deemed significant
still offers good predictive results.

We follow here the protocol of Section 3.2 and observe that the num-
ber of significant variables increases with the number of trees considered.
This is consistent with the results already presented in Section 4.1. Table 2
specifically reports the results obtained from genomic data. The number
of variables eventually considered significant largely varies across datasets.
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Figure 3: Average BCR and KI of Ja and Jχ2 over 200 resamplings of the DLBCL dataset
according to the number s of selected features, for various numbers T of trees.

Almost no features are considered statistically significant on the DLBCL
dataset (similar results are observed in [4]). For the three other datasets and
provided the number of trees is sufficiently large, the predictive performances
of a RF built on significant features only (according to Jχ2) are similar to
those of a RF built on the top 50 features according to Ja. While those
predictive performances are close (especially with 10,000 trees) the differ-
ences are statistically significant in most cases. Yet, it is worth stressing that
the final forest can be built on only a few key features with good predictive
results.

Table 3 reports similar results on the lower dimensional datasets, with
different ratios between the numbers of learning examples and input features,
including multi-class problems. As before, the average number of significant
features increases with the number of trees. On the Breast tissue, Glass, Wine
and Vehicle datasets, results show that nearly all features appear significant
even with only 500 trees. Overall these results are fully consistent with
those observed on the high dimensional genomic datasets but the number
of trees needed to highlight relevant features that lead to good predictive
performances tends to be lower.

4.4. Comparison of Jχ2 to 1Probe and mr-Test

In this section we compare Jχ2 to 1Probe and mr-Test, two methods
proposed in [4] and briefly reviewed in section 2.2.2. Section 4.4.1 compares
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dataset T avg(srel) min(srel) max(srel) BCR BCR50

DLBCL 5000 0.04 0.00 1.00 0.50 0.89
10,000 0.99 0.00 5.00 0.61 0.88

golub 5000 5.96 3.00 10.00 0.93 0.97
10,000 10.82 8.00 14.00 0.96 0.97

lymphoma 5000 0.66 0.00 6.00 0.54 0.94
10,000 4.85 2.00 9.00 0.93 0.94

prostate 5000 4.95 2.00 8.00 0.93 0.94
10,000 7.92 6.00 11.00 0.93 0.94

Table 2: Various statistics obtained over 200-resamplings when keeping only significant
features. T is the number of trees used to build the forest. avg(srel) (resp. max, min) is
the average (resp. maximum, minimum) number of significant features according to Jχ2 .
BCR is the average predictive performance of a RF built from significant features only.
BCR50 is the average BCR obtained when using the 50 best ranked features according to
Ja.

the number of trees needed to highlight important variables from synthetic
datasets. Section 4.4.2 compares the predictive performances and signatures
obtained using only significant variables.

4.4.1. Discovery rates evaluated on synthetic datasets

The performances of 1Probe and mr-Test on synthetic datasets are as-
sessed in [4] using T = 1000 trees and N = 1000 external resamplings.
The total number of trees considered is therefore 1, 000, 000 in contrast to
Jχ2 which show comparable results with only 10, 000 trees (and no external
resampling).

We aim here at comparing the 3 approaches with a similar computa-
tional budget and perform the same experiment on synthetic datasets as in
Section 4.1 with T = 10, 000 for Jχ2 and N × T = 100× 100 for 1Probe and
mr-Test. This setting appears to be inadequate for the latter approaches.
The number of trees T in the forest for each resampling is too low to rank
variables correctly. The two methods hardly find any of the important vari-
ables.

Better results are reported on Figure 4 where the 10 informative features
appear at the top of the ranking of each of the three methods. The number of
trees is increased to T = 1000 (a total of 100, 000 trees over all resamplings).
Jχ2 (with 10 times fewer trees in total) and 1Probe are both able to highlight
significant variables at the top of the ranking. In contrast, mr-Test does not
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dataset T avg(srel) min(srel) max(srel) BCR BCR∗

Breast tissue 50 6.64 3.00 8.00 0.86 0.86
100 7.75 5.00 8.00 0.85 0.86
250 7.99 7.00 8.00 0.85 0.86
500 8.00 8.00 8.00 0.85 0.86

1000 8.00 8.00 8.00 0.85 0.86
2500 8.01 8.00 9.00 0.85 0.86
5000 8.21 8.00 9.00 0.85 0.86

10,000 8.90 8.00 9.00 0.86 0.86
Glass 50 4.74 1.00 7.00 0.67 0.74

100 6.66 3.00 8.00 0.73 0.74
250 7.96 5.00 8.00 0.74 0.74
500 8.00 8.00 8.00 0.74 0.74

1000 8.01 8.00 9.00 0.74 0.74
2500 8.49 8.00 9.00 0.74 0.74
5000 8.94 8.00 9.00 0.74 0.74

10,000 9.00 9.00 9.00 0.74 0.74
Wine 50 7.12 6.00 9.00 0.98 0.98

100 7.85 7.00 10.00 0.98 0.98
250 9.86 8.00 12.00 0.98 0.98
500 11.04 10.00 12.00 0.98 0.98

1000 11.49 11.00 13.00 0.98 0.98
2500 12.76 11.00 13.00 0.98 0.98
5000 12.99 12.00 13.00 0.98 0.98

10,000 13.00 13.00 13.00 0.98 0.98
Vehicle 50 15.89 14.00 18.00 0.75 0.75

100 17.32 16.00 18.00 0.75 0.75
250 18.00 18.00 18.00 0.75 0.75
500 18.00 18.00 18.00 0.75 0.75

1000 18.00 18.00 18.00 0.74 0.74
2500 18.00 18.00 18.00 0.74 0.74
5000 18.00 18.00 18.00 0.74 0.74

10,000 18.00 18.00 18.00 0.74 0.74
Musk1 50 0.02 0.00 1.00 0.50 0.89

100 0.25 0.00 2.00 0.53 0.89
250 1.91 0.00 5.00 0.67 0.89
500 4.89 3.00 9.00 0.73 0.89

1000 12.15 7.00 18.00 0.81 0.89
2500 31.62 21.00 38.00 0.87 0.89
5000 63.23 52.00 77.00 0.90 0.89

10,000 102.08 89.00 118.00 0.90 0.89
Arrhythmia 50 0.00 0.00 0.00 0.50 0.84

100 0.10 0.00 1.00 0.50 0.85
250 1.09 0.00 2.00 0.60 0.85
500 2.29 1.00 5.00 0.68 0.85

1000 6.17 2.00 11.00 0.78 0.85
2500 15.42 10.00 21.00 0.82 0.85
5000 24.19 18.00 31.00 0.84 0.85

10,000 36.13 29.00 42.00 0.85 0.85

Table 3: Various statistics obtained over 200-resamplings when keeping only significant
features. T is the number of trees used to build the forest. avg(srel) (resp. max, min) is
the average (resp. maximum, minimum) number of significant features according to Jχ2 .
BCR is the average predictive performance of a RF built from significant features only.
BCR∗ is the average BCR obtained when using the 50 best ranked features according to
Ja or all the available features if the number of variables is less than 50.
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Figure 4: Importance indices computed on an artificial dataset with 10 informative features
out of 110 features in total. The horizontal line is set to 0.05. p-values below this line are
deemed statistically relevant. The 10 informative features are ranked at the top of those
rankings.

consider them significant even though they are well ranked.
After repeating the above experiment on 10 runs for generating synthetic

datasets, it appears that the number of true discoveries (i.e. p-value ≤ 0.05
and actually informative feature) is on average 6.8 for Jχ2 , 7.2 for 1Probe and
3.4 for mr-Test. A Friedman test [14] shows a significant difference between
the performances of the three approaches (p-value of 6× 10−3).

The Nemenyi post-hoc test [14], illustrated by a critical difference diagram
on Figure 5, shows that the difference in performances of 1Probe and Jχ2 is
not significant while the mr-Test performs significantly worse. All methods
have a very high precision with an average of 0.1 false discoveries (i.e. p-value
≤ 0.05 and not informative feature) for Jχ2 , 0.3 for 1Probe and 0 for mr-Test.
None of those differences are statistically significant according to a Friedman
test.

In summary, the ability of Jχ2 and 1Probe to discover informative vari-
ables and discard non-informative variables is essentially the same but 1Probe
requires an order of magnitude more trees. In contrast, mr-Test is too con-
servative as it typically misses informative variables which are wrongly con-
sidered not significant.
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Figure 5: Nemenyi critical difference diagram. Importance indices are sorted according to
their mean rank while counting the number of true discoveries. The critical difference is
represented by the ‘CD’ black line.

4.4.2. Prediction from significant features

Similar experiments as those described in Section 4.3 are conducted on
the datasets presented in Section 3.3. We report here comparative predictive
performances between the 3 methods when estimating a final RF only on the
features that are considered significant.

Table 4 reports the results obtained with 100 resamplings to evaluate
those performances on the genomic datasets. Table 6 and Table 7 report
results on the lower dimensional datasets. Whenever a specific approach
does not select any feature as being significant in a particular resampling,
the BCR is fixed to 0.5 since no classifier can be built from zero features and
one has to resort on random guessing. The null distribution is also difficult
to define with mr-Test when none of the p

2
worst features actually appears

in the tree ensembles. In such cases, occurring in particular with few trees,
a default BCR=0.5 is also considered.

As observed in [4], increasing the number of trees promotes the selection of
larger subsets of features. On genomic datasets, considering 100×1000 trees
with 1Probe provides very good predictive performances. mr-Test appears a
lot more conservative and tends to select very few or no features. Whenever at
least a few genes are considered significant with mr-Test (only for the Golub
and Prostate datasets), good predictive performances are observed. The
number of Jχ2 ’s significant features also increases with the number of trees
(cf. section 4.1), providing the best predictive performances with 100, 000
trees. The average number of selected features of Jχ2 typically falls between
the results of mr-Test and 1Probe. A finer analysis of the gene signatures
is presented in Table 5. It shows that nearly all features estimated to be
significant by Jχ2 with 100, 000 trees belong to the feature sets selected with
1Probe. In summary, Jχ2 with 10,000 trees already offers good predictive
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dataset method T or NxT avg(srel) min(srel) max(srel) BCR
DLBCL Jχ2 10,000 0.88 0 4 0.60

1Probe 100x100 0.02 0 1 0.50
mrTest 100x100 0 0 0 0.50
Jχ2 100,000 27.53 22 37 0.89
1Probe 100x1000 45.38 33 60 0.88
mrTest 100x1000 0.03 0 2 0.50

golub Jχ2 10,000 10.80 8 13 0.96
1Probe 100x100 0.42 0 2 0.64
mrTest 100x100 0 0 0 0.50
Jχ2 100,000 40.83 35 50 0.97
1Probe 100x1000 67.00 53 78 0.97
mrTest 100x1000 9.87 3 15 0.95

lymphoma Jχ2 10,000 4.83 2 8 0.93
1Probe 100x100 0.18 0 2 0.54
mrTest 100x100 0 0 0 0.50
Jχ2 100,000 27.72 22 34 0.94
1Probe 100x1000 36.45 24 51 0.94
mrTest 100x1000 0.13 0 5 0.50

prostate Jχ2 10,000 7.89 6 11 0.94
1Probe 100x100 2.98 1 6 0.92
mrTest 100x100 0 0 0 0.50
Jχ2 100,000 41.52 34 53 0.94
1Probe 100x1000 50.20 21 71 0.94
mrTest 100x1000 7.70 5 11 0.93

Table 4: Various statistics obtained over 100-resamplings when keeping only significant
features. T is the number of trees used to build the forest. For 1Probe and mr-Test, N
indicates the number of external resamplings to compute the null distribution. avg(srel)
(resp. max, min) is the average (resp. maximum, minimum) number of significant features.
BCR is the average predictive performance of a RF built only from features which are
estimated significant.

20



dataset methods Jχ2 Jχ2 1Probe mrTest
10,000 100,000 100x1000 100x1000

DLBCL Jχ210,000 1.00 1.00 1.00 0.02
Jχ2100,000 0.03 1.00 0.98 0.00
1Probe100x1000 0.02 0.60 1.00 0.00
mrTest100x1000 1.00 1.00 1.00 1.00

golub Jχ210,000 1.00 1.00 1.00 0.87
Jχ2100,000 0.27 1.00 0.99 0.24
1Probe100x1000 0.16 0.61 1.00 0.15
mrTest100x1000 0.95 1.00 1.00 1.00

lymphoma Jχ210,000 1.00 1.00 1.00 0.02
Jχ2100,000 0.18 1.00 0.98 0.01
1Probe100x1000 0.13 0.75 1.00 0.00
mrTest100x1000 1.00 1.00 1.00 1.00

prostate Jχ210,000 1.00 1.00 1.00 0.89
Jχ2100,000 0.19 1.00 0.93 0.19
1Probe100x1000 0.16 0.78 1.00 0.16
mrTest100x1000 0.92 1.00 1.00 1.00

Table 5: Average proportion of common genes between various feature sets. The entry at
row i and column j in this matrix represents the average proportion, over 100-resamplings,
of significant features selected by the index i that also belong to the feature set selected
by method j for the same sampling.

performances on genomic datasets except on DLBCL where more trees are
required. 1Probe typically requires an order of magnitude more trees to offer
competitive results while mr-Test is often too conservative and selects too
few important features.

Experiments on lower dimensional datasets are performed with a smaller
number of trees. Table 6 shows that Jχ2 and 1Probe perform similarly in
terms of predictive performances on the Breast tissue, Glass, Wine and Ve-
hicle datasets. However, 1Probe has to grow 5000 trees to be able to select
as many features as Jχ2 with only 1000 trees. On the Musk1 and Arrhyth-
mia datasets, which contain many more features, 1Probe needs 100x100 (=
10,000) trees to find out relevant features that lead to predictive perfor-
mances similar to those of Jχ2 with 2,500 trees, as shown in Table 7. For a
fixed number of trees, Jχ2 appears to highlight more important features than
1Probe. In addition, results presented in Table 8 show that the majority of
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the features selected by 1Probe with 100x100 trees are also selected by Jχ2

with 2,500 trees and that they are all selected by Jχ2 with 10,000 trees.
The mr-Test approach fails to select a sufficient amount of features to

perform a good prediction on all datasets but Wine. Its assumption that p
2

variables are irrelevant seems clearly violated on the Breast tissue, Glass and
Vehicle datasets, as attested by the number of variables selected by the two
other methods on the same datasets.

To sum up, significant variables selected by Jχ2 or 1Probe also lead to
good predictive performances on all datasets. However, 1Probe requires a
much larger number of trees to reach those performances. The underlying
assumption behind mr-Test is hardly met in practice, which probably ex-
plains its poor performances.

5. Conclusion and perspectives

We propose in this work a novel feature importance index from random
forests. This index Jχ2 produces a feature ranking similar to Breiman’s im-
portance index, especially for top ranked features. It has the additional
benefit of being a (corrected) p-value from a χ2 test. Such approach defines
a natural threshold to decide which features are estimated statistically im-
portant. Unlike a standard t-test, the proposed index is also multivariate as
it evaluates the importance of each variable conditioned to the other variables
present in the tree ensemble.

Experiments were conducted both on synthetic and real datasets, includ-
ing low and high-dimensional datasets for binary or multi-class problems.
They show that Jχ2 allows us to highlight informative features and discard
non-informative ones. Computing Jχ2 has the same computational complex-
ity as Breiman’s index, which is a linear function of the number of trees and
the total number of features to be evaluated. Jχ2 is also shown to outperform
two recently proposed alternatives, known as 1Probe and mr-Test [4].

The selected features with Jχ2 offer similar predictive performances when
included in a final classifier as compared to a selection by 1Probe. However,
the total number of trees required to reach such performances is typically
one order of magnitude smaller with Jχ2 , especially on high dimensional
data. This computational benefit comes from the fact that Jχ2 is estimated
on the out-of-bag samples which have been defined while growing the for-
est. In contrast, the existing alternatives include the cost of an additional
resampling procedure. The second alternative, mr-Test, is also shown to be
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dataset method T or NxT avg(srel) min(srel) max(srel) BCR
Breast tissue Jχ2 1000 8.00 8.00 8.00 0.85

1Probe 100x10 6.09 1.00 8.00 0.84
mrTest 100x10 0.00 0.00 0.00 0.50
Jχ2 2500 8.01 8.00 9.00 0.85
1Probe 100x25 7.99 7.00 8.00 0.85
mrTest 100x25 0.04 0.00 2.00 0.50
Jχ2 5000 8.21 8.00 9.00 0.85
1Probe 100x50 8.00 8.00 8.00 0.85
mrTest 100x50 0.43 0.00 2.00 0.59

Glass Jχ2 1000 8.01 8.00 9.00 0.74
1Probe 100x10 7.38 4.00 8.00 0.74
mrTest 100x10 0.00 0.00 0.00 0.50
Jχ2 2500 8.49 8.00 9.00 0.74
1Probe 100x25 8.00 8.00 8.00 0.74
mrTest 100x25 1.10 0.00 4.00 0.48
Jχ2 5000 8.94 8.00 9.00 0.74
1Probe 100x50 8.14 8.00 9.00 0.74
mrTest 100x50 2.88 0.00 5.00 0.53

Wine Jχ2 1000 11.49 11.00 13.00 0.98
1Probe 100x10 6.04 4.00 8.00 0.98
mrTest 100x10 4.42 0.00 6.00 0.96
Jχ2 2500 12.76 11.00 13.00 0.98
1Probe 100x25 9.88 7.00 12.00 0.98
mrTest 100x25 5.88 5.00 7.00 0.98
Jχ2 5000 12.99 12.00 13.00 0.98
1Probe 100x50 11.31 10.00 13.00 0.98
mrTest 100x50 6.05 6.00 7.00 0.98

Vehicle Jχ2 1000 18.00 18.00 18.00 0.74
1Probe 100x10 14.21 0.00 18.00 0.74
mrTest 100x10 0.34 0.00 1.00 0.47
Jχ2 2500 18.00 18.00 18.00 0.74
1Probe 100x25 17.72 16.00 18.00 0.75
mrTest 100x25 1.00 1.00 1.00 0.40
Jχ2 5000 18.00 18.00 18.00 0.74
1Probe 100x50 18.00 18.00 18.00 0.74
mrTest 100x50 1.24 1.00 4.00 0.44

Table 6: Various statistics obtained over 200-resamplings when keeping only significant
features. T is the number of trees used to build the forest. For 1Probe and mr-Test, N
indicates the number of external resamplings to compute the null distribution. avg(srel)
(resp. max, min) is the average (resp. maximum, minimum) number of significant features.
BCR is the average predictive performance of a RF built only from features which are
estimated significant.
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dataset method T or NxT avg(srel) min(srel) max(srel) BCR

Musk1 Jχ2 1000 12.15 7.00 18.00 0.81
1Probe 100x10 0.01 0.00 1.00 0.50
mrTest 100x10 0.00 0.00 0.00 0.50
Jχ2 2500 31.62 21.00 38.00 0.87
1Probe 100x25 0.92 0.00 3.00 0.61
mrTest 100x25 0.00 0.00 0.00 0.50
Jχ2 5000 63.23 52.00 77.00 0.90
1Probe 100x50 6.51 0.00 15.00 0.76
mrTest 100x50 0.00 0.00 0.00 0.50
Jχ2 10000 102.08 89.00 118.00 0.90
1Probe 100x100 49.01 7.00 121.00 0.88
mrTest 100x100 0.69 0.00 2.00 0.60

Arrhythmia Jχ2 1000 6.17 2.00 11.00 0.78
1Probe 100x10 0.26 0.00 1.00 0.52
mrTest 100x10 0.00 0.00 0.00 0.50
Jχ2 2500 15.42 10.00 21.00 0.82
1Probe 100x25 1.80 1.00 4.00 0.65
mrTest 100x25 0.00 0.00 0.00 0.50
Jχ2 5000 24.19 18.00 31.00 0.84
1Probe 100x50 4.92 2.00 11.00 0.74
mrTest 100x50 0.17 0.00 2.00 0.51
Jχ2 10000 36.13 29.00 42.00 0.85
1Probe 100x100 13.44 6.00 21.00 0.82
mrTest 100x100 2.18 0.00 5.00 0.66

Table 7: Various statistics obtained over 200-resamplings when keeping only significant
features. T is the number of trees used to build the forest. For 1Probe and mr-Test, N
indicates the number of external resamplings to compute the null distribution. avg(srel)
(resp. max, min) is the average (resp. maximum, minimum) number of significant features.
BCR is the average predictive performance of a RF built only from features which are
estimated significant.
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dataset methods Jχ2 Jχ2 1Probe mrTest
2500 10,000 100x100 100x100

Musk1 Jχ22500 1.00 1.00 0.89 0.02
Jχ210,000 0.31 1.00 0.48 0.01
1Probe100x100 0.62 0.99 1.00 0.02
mrTest100x100 1.00 1.00 1.00 1.00

Arrhythmia Jχ22500 1.00 1.00 0.69 0.15
Jχ210,000 0.43 1.00 0.37 0.06
1Probe100x100 0.82 1.00 1.00 0.18
mrTest100x100 1.00 1.00 1.00 1.00

Table 8: Average proportion of common variables between various feature sets. The
entry at row i and column j in this matrix represents the average proportion, over 200-
resamplings, of significant features selected by the index i that also belong to the feature
set selected by method j for the same sampling.

too conservative, or even inadequate, and consequently may miss important
features which are not estimated to be significant.

We consider here tree ensembles in the specific form of Random Forests.
This was originally motivated by the link to be drawn between Jχ2 and the
original Breiman’s index. Yet, Jχ2 can in principle be computed from any
tree ensemble techniques leaving aside some out-of-bag samples while growing
the ensemble. Those include at least bagging of trees, extremely randomized
trees [15] and c-Forests [16]. The impact of considering Jχ2 jointly with these
techniques is considered as future work.

On high dimensional data, increasing the number of trees (typically up
to 10,000) is shown to be beneficial to correctly discover the informative
variables and to discard irrelevant ones. This result is consistent with the
study of feature selection stability from RF proposed in [13]. In general,
enlarging the ensemble size naturally leads to increase the number of features
that are deemed statistically significant. Beyond significance itself, it would
also be interesting to study the effect size evaluated by such a statistical
procedure. The Cramer’s V measure [17] looks interesting in this regard.

Finally, this work show that measuring the distribution shift of class votes
before and after permuting a feature in a tree ensemble conveys some useful
information. The specific test to characterize such distribution shift is a bit
less central. The Jχ2 test is convenient and appears to be effective in practice,
yet one could certainly design other procedures.
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For instance, a Kolmogorov-Smirnov (KS) test offers a particular non-
parametric alternative. The test statistic here relies on the distribution of the
out-of-bag classification accuracies (or balanced classification rates averaging
specificity and sensitivity) across the various trees in the ensemble. The
effect on such distributions after permuting a specific variable is assessed.
Our preliminary results along those lines show that the KS procedure offers
very similar results to those of Jχ2 , but at a higher computational cost.

In the same spirit, one could easily design further variants to focus on
some specific function of the class confusion matrix and, for instance, to pro-
mote the selection of features that play a more critical role in the sensitivity
of the classifier while putting less emphasis on the specificity as well.
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