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Abstract. We propose a novel approach to learn the structure of Par-
tially Observable Markov Models (POMMs) and to estimate jointly their
parameters. POMMs are graphical models equivalent to Hidden Markov
Models (HMMs). The model structure is built to support the First Pas-
sage Times (FPT) dynamics observed in the training sample. We argue
that the FPT in POMMSs are closely related to the model structure.
Starting from a standard Markov chain, states are iteratively added to
the model. A novel algorithm POMMPHit is proposed to estimate the
POMM transition probabilities to fit the sample FPT dynamics. The
transitions with the lowest expected passage times are trimmed off from
the model. Practical evaluations on artificially generated data and on
DNA sequence modeling show the benefits over Bayesian model induc-
tion or EM estimation of ergodic models with transition trimming.

1 Introduction

This paper is concerned with the induction of Hidden Markov Models (HMMs).
These models are widely used in many pattern recognition areas, including
speech recognition [9], biological sequence modeling [2], and information ex-
traction [3], to name a few. The estimation of such models is twofolds: (i) the
model structure, i.e. the number of states and the presence of transitions be-
tween these states, has to be defined and (ii) the probabilistic parameters of
the model have to be estimated. The structural design is a discrete optimization
problem while the parameter estimation is continuous by nature. In most cases,
the model structure, also referred to as topology, is defined according to some
prior knowledge of the application domain. However, automated techniques for
designing the HMM topology are interesting as the structures are sometimes
hard to define a priori or need to be tuned after some task adaptation. The
work described here presents a new approach towards this objective.

Classical approaches to structural induction includes the Bayesian merging
technique due to Stolcke [T0] and the maximum likelihood state-splitting method
of Ostendorf and Singer [§]. The former approach however has not been shown
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to clearly outperform alternative approaches while the latter is specific to the
subclass of left-to-right HMMs modeling speech signals. A more recent work [0]
proposes a maximum a priori (MAP) technique using entropic model priors. This
technique mainly focus on learning the correct number of states of the model but
not its underlying transition graph. Another approach [I1] attempts to design
the model structure in order to fit the length distribution of the sequences. This
problem can be considered as a particular case of the problem considered here
since length distributions are the First Passage Times (FPT) between start and
end sequence markers. Furthermore, in [I1], sequence lengths are modeled with
a mixture of negative binomial distributions which form a particular subclass of
the general phase-type (PH) distributions considered here.

This paper presents a novel approach to the structural induction of Partially
Observable Markov Models (POMMSs). These models are equivalent to HMMs in
the sense that they can generate the same class of distributions [1]. The model
structure is built to support the First Passage Times (FPT) dynamics observed
in the training sample. The FPT relative to a pair of symbols (a,b) is the num-
ber of steps taken to observe the next occurrence of b after having observed a.
The distribution of the FPT in POMMs are shown to be of phase type (PH).
POMMSTRUCT aims at fitting these PH distributions from the FPT observed
in the sample. We motivate the use of the FPT in POMMSTRUCT by showing
that they are informative about the model structure to be learned. Starting from
a standard Markov chain (MC), POMMSTRUCT iteratively adds states to the
model. The probabilistic parameters are estimated using a novel method based
on the EM algorithm, called POMMPHIT. The latter computes the POMM
parameters that maximize the likelihood of the observed FPT. POMMPHIT
differs from the standard Baum-Welch procedure since the likelihood function
to be maximized is concerned with times between events (i.e. emission of sym-
bols) rather than with the complete generative process. Additionally, a procedure
based on the FPT is proposed to trim unnecessary transitions in the model. In
contrast with a previous work [I], POMMSTRUCT does not only focus on the
mean of the FPT but on the complete distribution of these dynamical features.
Consequently, a new parameter estimation technique is proposed here. In addi-
tion, a transition trimming procedure as well as a feature selection method to
select the most relevant pairs (a,b) are also proposed.

Section ] reviews the FPT in sequences, POMMSs, PH distributions and the
Jensen-Shannon divergence used for feature selection. Section Bl focus on the
FPT dynamics in POMMSs. Section [ presents the induction algorithm POMM-
STRUCT. Finally, section Bl shows experimental results obtained with the pro-
posed technique applied on artificial data and DNA sequences.

2 Background

The induction algorithm POMMSTRUCT presented in section M relies on the
First Passage Times (FPT) between symbols in sequences. These features are
reviewed in section 2.l Section 22 presents Partially Observable Markov Models
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(POMMSs) which are the models considered in POMMSTRUCT. The use of
POMMs is convenient in this work as the definition of the FPT distributions in
these models readily matches the standard parametrization of phase-type (PH)
distributions (see section B]). Discrete PH distributions are reviewed in section
Finally, the Jensen-Shannon (JS) divergence used to select the most relevant
pairs of symbols is reviewed in subsection 241

2.1 First Passage Times in Sequences

Definition 1. Given a sequence s defined on an alphabet X and two symbols
a,b € X. For each occurrence of a in s, the first passage time to b is the finite
number of steps taken before observing the next occurrence of b. FPT4(a,b)
denotes the first passage times to b for all occurrences of a in s. It is represented
by a set of pairs {(z1,w1),...,(z1,w;)} where z; denotes a passage time and w;
1s the frequency of z; in s.

For instance, let us consider the sequence s = aababba defined over the alphabet
Y = {a,b}. The FPT from a to b in s are FPT,(a,b) = {(2,1),(1,2)}. The
empirical FPT distribution relative to a pair (a,b) is obtained by computing the
relative frequency of each distinct passage time from a to b. In contrast with
N-gram features (i.e. contiguous substring of length ), the FPT does not only
focus on the local dynamics in sequences as there is no a priori fixed maximum
time (i.e. number of steps) between two events. For this reason, such features are
well-suited to model long-term dependencies [I]. In section Bl we motivate the
use of the FPT in the induction algorithm by showing that they are informative
about the model topology to be learned.

2.2 Partially Observable Markov Models (POMDMSs)

Definition 2 (POMM). A Partially Observable Markov Model (POMM) is
a HMM H = (¥,Q, A, B,.) where X is an alphabet, Q is a set of states, A :
Q x Q — [0,1] is a mapping defining the probability of each transition, B : Q x
X —[0,1] is a mapping defining the emission probability of each symbol on each
state, and 1 : Q — [0,1] is a mapping defining the initial probability of each state.
Moreover, the emission probabilities satisfy: Vq € Q,3a € X such that B(q,a) = 1.

In other words, each state of a POMM only emits a single symbol. This model is
called partially observable since, in general, several distinct states can emit the
same symbol. As for a HMM, the observation of a sequence emitted by a POMM
does not identify uniquely the states from which each symbol was emitted. How-
ever, the observations define state subsets or blocks from which each symbol may
have been emitted. Consequently one can define a partition £ = {Ka, Kb, ..., Kz}
of the state set @ such that k, = {¢ € Q| B(q,a) = 1}. Each block of the partition
k gathers the states emitting the same symbol. Whenever each block contains only
a single state, the POMM is fully observable and equivalent to an order 1 MC. A
POMM is depicted in the left part of Figure[ll The state label 1a indicates that it
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is the first state of the block x, and the emission distributions are defined accord-
ing to state labels. There is a probability one to start in state 1d. Any probability
distribution over X* generated by a HMM with |Q| states over an alphabet X' can
be represented by a POMM with O(|Q|.|X|) states [I].

2.3 Phase-Type Distributions

A discrete finite Markov chain (MC) is a stochastic process {X; | t € N} where
the random variable X takes its value at any discrete time ¢ in a finite set () and
such that: P[Xt =4q ‘ Xt—laXt—Qa ‘e ,Xo] = P[Xt =dq | Xt—17 [N 7Xt—p}- This
condition states that the probability of the next outcome only depends on the
last p values of the process (Markov property). A MC can be represented by a
3-tuple T' = (Q, A, ¢) where @ is a finite set of states, 4 is a |Q] x |Q| transition
probability matrix and ¢ is a |@Q|—dimensional vector representing the initial
probability distribution. A MC is absorbing if the process has a probability one
to get trapped into a state ¢q. Such a state is called absorbing. The state set
can be partitioned into the absorbing set Qa = {q € Q| Agq = 1} and its
complementary set, the transient set Qr. The time to absorption is the number
of steps the process takes to reach an absorbing state.

Definition 3 (Discrete Phase-type (PH) Distribution). A probability dis-
tribution o(.) on N° is a distribution of phase-type (PH) if and only if it is the
distribution of the time to absorption in an absorbing MC.

The probability distribution of ¢(.) is classically computed using matrix opera-
tions [5]. However, this computation is performed here via forward and backward
variables, similar to those used in the Baum-Welch algorithm [9], which are use-
ful in the POMMPHIT algorithm (see section [2)). Strictly speaking, computing
©(.) only requires one of these two kinds of variables but both of them are needed
in POMMPHIT. Given a set S C @ of starting states, a state ¢ € @ and a
time ¢ € N, the forward variable a®(q,t) computes the probability that the pro-
cess started in S reaches state ¢ after having moved over transient states during
t steps: a°(q,t) = P[X; = ¢, {Xs}i_} € Qr | Xo € S]. Given aset £ C Q4 of
absorbing states, a state ¢ € Q and a time ¢ € N, the backward variable 3 (q, t)
computes the probability that state q is reached by the process t steps before get-
ting absorbed in €: 5¢(q,t) = P[Xo = ¢, {Xx}i_} € Q7 | Xt € £]. The forward
variables can be computed using the following recurrence for ¢ € @ and t € N:

Sifge s

00,0 = { Sty = 3 oS t- DAy, (1)

q'€Qr

0 otherwise

where ¢ denotes an initial distribution over S. The following recurrence com-
putes the backward variables for ¢ € @ and t € N:

1ifgeé ﬁg( £ = 0 ifge &
0 otherwise &h = e BE(q'st —1)A,y otherwise
(2)

5(g,0) = {
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Using these variables, the probability distribution of ¢ is computed as follows
for all t € NU:

pt)= 3 a%(qt)= 3 @1 (q0) (3)

q€Q A qEQT

where ¢97 is the initial distribution of the MC for transient states. Each transient
state of the absorbing MC is called a phase. This technique is powerful since
it decomposes complex distributions such as the hyper-geometric or the Coxian
distribution as a combination of phases. These distributions can be defined using
specific absorbing MC structures. A distribution with an initial vector and a
transition matrix with no structural constraints is called here a general PH
distribution.

2.4 Jensen-Shannon Divergence

The Jensen-Shannon divergence is a function which measures the distance be-
tween two distributions [7]. Let P denote the space of all probability distri-
butions defined over a discrete set of events (2. The JS divergence is a function
P x P — R defined by Dg(Py, P,) = H(M)— }H(P)— }H(P,) where Py, P, €
P are two distributions, M = J(Pi+P,) and H(P) = =Y ., Ple] log Ple] is the
Shannon entropy. The JS divergence is non-negative and is bounded by 1 [7]. Tt
can be thought of as a symmetrized and smoothed variant of the KL divergence
as it is relative to the mean of the distributions.

3 First Passage Times in POMMs

In this section, the distributions of the FPT in POMMSs are studied. We show
that the FPT distributions between blocks are of phase-type by constructing
their representing absorbing MC. POMMSTRUCT aims at fitting these PH dis-
tributions from the FPT observed in a training sample. We motivate the use
of these distributions by showing that they are informative about the model
structure to be learned.

First, let us formally define the FPT for a pair of symbols (a,b) in a POMM.

Definition 4 (First Passage Times in POMMSs). Given a POMM H =
(X,Q, A, B, 1), the first passage time (FPT) is a function fpt : ¥ x ¥ — N° such
that fpt(a,b) is the number of steps before reaching the block ky for the first time,
leaving initially from the block ka: fpt(a,b) = inf, {t € N°| X, € kp and Xo € Ka}.

The FPT from block k, to block ky, are drawn from a phase-type distribution
obtained by (i) defining an initial distributior] ¢"* over k, such that Ly is the
expectedq proportion of time the process reaches state ¢ relatively to the states in
ko and (ii) transforming the states in xp, to be absorbing. It is assumed here that

1 "% is not the initial distribution of the POMM but it is the initial distribution for
the FPT starting in k.
2 This expectation can be computed using standard MC techniques (see [@]).



96 J. Callut and P. Dupont
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Fig. 1. Left: an irreducible POMM H. Center: the distribution of the FPT from block
Ka to block kp in H. Right: the FPT distribution from a to b in an order 1 MC estimated
from 1000 sequences of length 100 generated from H.

a # b. Otherwise, a similar absorbing MC can be constructed but the states
in Kk, have to be duplicated such that the original states are used as starting
states and the duplicated ones are transformed to be absorbing. The probability
distribution of fpt(a, b) is computed as follows for all ¢+ € N°:

Plfpt(a,b) =t] < Y o™ (q,t) = > 15*B™(q,1) (4)

qERD qE€kKa

An irreducible POMM H and its associated PH distribution from block k, to
block ky, are depicted respectively in the left and center parts of Figure Il The
obtained PH distribution has several modes (i.e. maxima), the most noticeable
being at times 2 and 4. These modes reveal the presence of paths of lengt}E 2
and 4 from k, to kp having a large probability. For instance, the paths 1a,1c,1b
and 2a,1d,1a,1c, 1b have a respective probability equal to 0.45 and 0.21 (other
paths of length 4 yield a total probability equal to 0.25 for this length). Other
informations related to the model structure such as long-term dependencies can
also be deduced from the FPT distributions [I]. These structural informations,
available in the learning sequences, are exploited in the induction algorithm
POMMSTRUCT presented in section Fl It starts by estimating a standard MC
from the training sequences. The right part of Figure[Il shows the FPT distribu-
tion from a to b in an order 1 MC estimated from sequences drawn from H. The
FPT dynamics from a to b in the MC poorly approximates the FPT dynamics
from k, to Ky in H as there is only a single mode. POMMSTRUCT iteratively
adds states to the estimated model and reestimate its probabilistic parameters
in order to best match the observed FPT dynamics.

4 The Induction Algorithm: POMMStruct

This section presents the POMMSTRUCT algorithm which learns the structure
and the parameters of a POMM from a set of training sequences Si,qin. The
objective is to induce a model that best reproduces the FPT dynamics extracted

3 The length of a path is defined here in terms of number of steps.
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from Sirqin. Section Il presents the general structure of the induction algorithm.
Reestimation formulas for fitting FPT distributions are detailed in section

4.1 POMM Induction

The pseudo-code of POMMSTRUCT is presented in Algorithm [

Algorithm POMMSTRUCT

Input: e A training sample Sirain

The order r of the initial model

The number p of pairs

A precision parameter € Pred(K;3) Kj Succ(k;)
Output: A collection of POMMSs

EPRy — initialize(Strain,T); @ @ @

FPTyrqin < extractFPT(Strain);

F «— selectDivPairs(E Py, FPTirain, D);
EPy — POMMPHIT(E Py, F PTtrain, F);
Liktrain < FPTLikelihood(E Py, FPTirain); @ 0 @
i —0
repeat ‘
Liklast — Liktrain;
Kj «— probeBlocks(EP;, F PTirain); Pred(k3) kj Succ(k;)

EP;;, <+« addStateInBlock(EP;,k;);

EP;y1 «— POMMPHIT(EP;+1, FPTirain, F)
Likiraqin < FPTLikelihOOd(EPiJrl, FPTtrm‘n);
i —i+1

H ‘Liktrain_Liklastl .
until Likrael <€

return {EFy,..., EP;}

Algorithm 1. POMM Induction by fitting FPT  Fig. 2. Adding a new state ¢ in
dynamics the block k5

An initial order » MC is estimated first from Sy,4i, by the function initialize.
Next, the function extractFPT extracts the FPT in the sample for each pair of
symbols according to definition [[l Using the Jensen-Shannon (JS) divergence,
selectDivPairs compares the FPT distributions of the initial MC with the em-
pirical FPT distributions of the sample. The p most diverging pairs F are selected
to be fit during induction process, where p is an input parameter. In addition, the
selected pairs can be weighted according to their JS divergence in order to give
more importance to the poorly fitted pairs. This is achieved by multiplying the
parameters w; in F'PT(a,b) (see definition [ by the JS divergence obtained for
this pair. The JS divergence is particularly well-suited for this feature weighting
as it is positive and upper bounded by one. The parameters of the initial model
are reestimated using the POMMPHIT algorithm presented in section 2l This
EM-based method computes the model parameters that maximize the likelihood
of the selected FPT pairs.
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States are iteratively added to the model in order to improve the fit to the ob-
served dynamics. At the beginning of each iteration, the procedure probeBlocks
determines the block x; of the model in which a new state is added. This block
is selected as the one leading to the larger FPT likelihood improvement. To
do so, probeBlocks tries successively to add a state in each block using the
addStateInBlock procedure detailed hereafter. For each candidate block, a few
iterations of POMMPHIT is applied to reestimate the model parameters. The
block x; offering the largest improvement is returned. The addStateInBlock
function (illustrated in Figure [2)) inserts a new state ¢ in x; such that ¢ is con-
nected to all the predecessors (i.e. states having at least one outgoing transition
to a state in ;) and successors (i.e. states having at least one incoming transi-
tion from a state in x;) of k. These two sets need not to be disjoint and may
include states in ; (if they are connected to some state(s) in ;).

The probabilistic parameters of the augmented model are estimated using
POMMPHIT until convergence. An interesting byproduct of POMMPHIT are
the expected transition passage times (see section [£2). It provides the average
number of times the transitions are triggered when observing the FPT in the
sample. According to this criterion, the less frequently used transitions are suc-
cessively trimmed off from the model. Whenever a transition is removed, the
parameters of the model are reestimated using POMMPHIT. In general, the
convergence is attained after a few iterations as the parameters not affected
by the trimming are already well estimated. Transitions are trimmed until the
likelihood function no longer increases. This procedure has several benefits: (i)
it can move POMMPHIT away from a local minimum of the FPT likelihood
function (ii) it makes the model sparser and therefore reduces the computa-
tional resources needed in the forward-backward computations (see section [£2)
and (iii) the obtained model is more interpretable. POMMSTRUCT is iterated
until convergence of the FPT likelihood up to a precision parameter €. A vali-
dation procedure is used to select the best model from the collection of models
{EP,,...,EP;} returned by POMMSTRUCT. Each model is evaluated on an
independent validation set of sequences and the model offering the highest FPT
likelihood is chosen. At each iteration, the computational complexity is domi-
nated by the complexity of POMMPHIT (see section EL.2]).

POMMSTRUCT does not maximize the likelihood of the training sequences
in the model but the likelihood of the FPT extracted from these sequences. We
argued in section Blthat maximizing this criterion is relevant to learn an adequate
model topology. If one wants to perform sequence prediction, i.e. predicting
the next outcomes of a process given its past history, the parameters of the
model may be adjusted towards this objective. This can be achieved by applying
the standard Baum-Welch procedure initialized with the model resulting from
POMMSTRUCT.

4.2 Fitting the FPT: POMMPHit

In this section, we introduce the POMMPHIT algorithm for fitting the FPT dis-
tributions between blocks in POMMs from the FPT observed in the sequences.
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POMMPHIT is based on the Expectation-Maximization (EM) algorithm and ex-
tends the PHIT algorithm presented in [I] for fitting a single PH distribution.
For each pair of symbol (a,b), the observations consist of the FPT {(z1,w1), ...,
(21, w;) } extracted from the sequences according to definition[Il The observations
for a given pair (a, b) are assumed to be independent from the observations for the
other pairs. While this assumption is generally not satisfied, it drastically sim-
plifies the reestimation formula and consequently offers an important computa-
tional speed-up. Moreover, good results are obtained in practice. A passage time
z; is considered here as an incomplete observation of the pair (z;, h;) where h; is
the sequence of states reached by the process to go from block k, to block ky in z;
steps. In the sequel, H*P? denotes the set of hidden paths from block #, to block .
Before presenting the expectation and maximization steps in POMMPHIT, let us
introduce auxiliary hidden variables which provide sufficient statistics to compute
the complete FPT likelihood function P[Z,H | A] conditioned to the model
parameters \:

— 52P(q): the number of observations in H*® starting in state q € K,
— N*®(q,q'): the number of times state ¢’ immediately follows state ¢ in H*P.

The complete FPT likelihood function is defined as follows:

PIZ,H| ] = H H Fa) 5%(q) H A;V(Jj"’<q,q’) (5)

a,bEF q€Ka q,9'€Q
where ¢ is the initial distribution over k, for the FPT starting in x,.

Expectation step

The expectation of the variables S*°(q) and N®P®(q,q’) are conveniently com-
puted using the forward and backward variables respectively introduced in equa-
tions (0 and (). These reccurences are efficiently computed using a |Q| x L*>®
lattice structure where L®® is the longest observed FPT from a to b. The con-
ditional expectation of the auxiliary variables given the observations S2°(q) =
E[S*"(q) | FPT(a,b)] and N2*(q,q') = E[N*"(q,¢') | FPT(a,b)] are:

tq*B™ (g, 2)

Sar(q) = > w Ka e (6)
(2,w)EFPT(a,b) Lgena ta* (¢, 2)
B 2=t 1)
SURGEND IR DRl G (7)
(z,w)EFPT(a,b) t=0 quﬁa Lq *pre(q:2)

The previous computations assume that a # b. In the other case, the states in x4
have to be preliminary duplicated as described in section Bl The obtained condi-
tional expectations are used in the maximization step of POMMPHIT but also
in the trimming procedure of POMMSTRUCT. In particular, Z(a,b)ef N2(q,q")
provides the average number of times the transition ¢ — ¢’ is triggered while
observing the sample FPT.
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Maximization step
Given the conditional expectations, S*?(q) and N2?(q,¢’), the maximum likeli-
hood estimates of the POMM parameters are the following for all q,q¢" € Q:

Za,be]—' Na’b(qy l]/)

g Yoaver N**(¢:4)
(8)

2 ve ol 5**(q)
e = be {b|(a,p)EF} where ¢ € ka, Auq =

2 qena Zbe{b| (@apyer) O*° (9)

The computational complexity per iteration is ©(pL?m) where p is the number of
selected pairs, L is the longest observed FPT and m is the number of transitions
in the current model. An equivalent bound for this computation is O(pL?|Q|?),
but this upper bound is tight only if the transition matrix A is dense.

5 Experiments

This section presents experiments conducted with POMMSTRUCT on artifi-
cially generated data and on DNA sequences. In order to report comparative
results, experiments were also performed with the Baum-Welch algorithm and
the Bayesian state merging algorithm due to Stolcke [I0]. The Baum-Welch al-
gorithm is applied on fully connected graphs of increasing sizes. For each consid-
ered model size, three different random seeds are used and the model having the
largest likelihood is kept. Additionally, a transition trimming procedure, based
on the transition probabilities, has been used. The optimal model size is se-
lected on a validation set obtained by holding out 25% of the training data. The
Bayesian state merging technique of Stolcke has been reimplemented according
to the setting described in the section 3.6.1.6 of [I0]. The effective sample size
parameter, defining the weight of the prior versus the likelihood, has been tune
in the set {1,2,5,10,20}. The POMMSTRUCT algorithm is initialized with an
order r € {1,2} MC. All observed FPT pairs are considered (i.e. p = |X|?)
without feature weighting. Whenever applied, the POMMPHIT algorithm is
initialized with three different random seeds and the parameters leading to the
largest FPT likelihood are kept. The optimal model size is selected similarly as
for the Baum-Welch algorithm.

Artificially generated sequences were drawn from target POMMSs having a
complex FPT dynamics and with a tendency to include long-term dependen-
cies [T]. From each target model, 500 training sequences and 250 test sequences
of length 100 were generated. The evaluation criterion considered here is the
Jensen-Shannon (JS) divergence between the FPT distributions of the model
and the empirical FPT distributions extracted from the test sequences. This is a
good measure to assess whether the model structure represents well the dynam-
ics in the test sample. The JS divergence is averaged over all pairs of symbols.
The left part of Figure Bl shows learning curves for the 3 considered techniques
on test sequences drawn from an artificial target model with 32 states and an

4 The fixed value of 50 recommended in [10] performed poorly in our experiments.
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Fig. 3. Left: Results obtained on test sequences generated by an artificial target model
with 32 states. Right: Results obtained on the Splice test sequences.

alphabet size equal to 24. For each training size, results are averaged over 10 sam-
ples of sequencesﬁ. POMMSTRUCT outperforms its competitors for all training
set sizes. Knowledge of the target machine size is not provided to our induc-
tion algorithm. However, if one would stop the iterative state adding using this
target state number, the resulting number of transitions very often matches the
target. The algorithm of Stolcke performed well for small amounts of data but
the performance does not improve much when more training data are available.
The Baum-Welch technique poorly fits the FPT dynamics when a small amount
data is used. However, when more data are available (> 70%), it provides slightly
better results than the Stolcke’s approach. Performances in sequence prediction
(which is not the main objective of the proposed approach) can be assessed with
test perplexity. The relative perplexity increases with respect to the target model,
used to generate the sequences, for POMMSTRUCTH, the approach of Stolcke
and the Baum-Welch algorithm are respectively 2%, 18% and 21%. When all
the training data are used, the computational run-times are the following: about
3.45 hours for POMMSTRUCT, 2 hours for Baum-Welch and 35 minutes for Stol-
cke’s approach . Experiments were also conducted on DNA sequences containing
exon-intron boundaries from the Spliceﬁ dataset. The training and the test sets
contain respectively 500 and 235 sequences of length 60. The FPT dynamics
in these sequences is less complex than in the generated sequences, leading to
smaller absolute JS divergences for all techniques. The right part of Figure Bl
shows learning curves for the 3 induction techniques. Again, POMMSTRUCT,
initialized here with an order 2 MC, exhibits the best overall performance. When
more than 50% of the training data are used, the Baum-Welch algorithm per-
forms slightly better than the technique of Stolcke. The perplexity obtained
with POMMSTRUCT and Baum-Welch are comparable while the approach of

5 The errorbars in the plot represent standard deviations.

5 Emissions and transitions probabilities of the model learned by POMMStruct have
been reestimated here with the Baum-Welch algorithm without adapting the model
structure.

" Splice is available from the UCI repository.
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Stolcke performs slightly worse (4% of relative perplexity increase). When all
the training data are used, the computational run-times are the following: 25
minutes for Baum-Welch and 17 minutes for Stolcke’s approach and 6 minutes
for POMMSTRUCT.

6 Conclusion

We propose in this paper a novel approach to the induction of the structure
of Partially Observable Markov models (POMMSs) which are graphical models
equivalent to Hidden Markov Models. A POMM is constructed to best fit the
First Passage Times (FPT) dynamics between symbols observed in the learning
sample. Unlike N-grams, these features are not local as there is no fixed max-
imum time (4.e. number of steps) between two events. Furthermore, the FPT
distributions contain relevant informations, such as the presence of dominant
path lengths or long-term dependencies, about the structure of the model to be
learned. The proposed algorithm, POMMSTRUCT, induces the structure and
the parameters of a POMM that best fit the FPT observed in the training sam-
ple. Additionally, the less frequently used transitions in the FPT are trimmed
off from the model. POMMSTRUCT is iterated until the convergence of the FPT
likelihood function. Experimental results illustrate that the proposed technique
is better suited to fit a process with a complex FPT dynamics than the Baum-
Welch algorithm applied with a fully connected graph with transition trimming
or the Bayesian state merging approach of Stolcke.

Our future work includes extension of the proposed approach to model FPT
between substrings rather than between individual symbols. An efficient way to
take into account the dependencies between the FPT in the reestimation pro-
cedure of POMMPHIT will also be investigated. Applications of the proposed
approach to other datasets will also be considered, typically in the context of
novelty detection where the FPT might be very relevant features.
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