
Pattern Recognition 38 (2005) 1349–1371
www.elsevier.com/locate/patcog

Links betweenprobabilistic automata andhiddenMarkovmodels:
probability distributions, learningmodels and inductionalgorithms

P. Duponta,∗, F. Denisb,Y. Espositob
aINGI, Université catholique de Louvain, Place Sainte-Barbe 2, B-1348 Louvain-la-Neuve, Belgium

bLIF-CMI, UMR 6166, 39, Rue F. Joliot Curie, 13453 Marseille Cedex 13, France

Received 17 March 2004; accepted 17 March 2004

Abstract

This article presents an overview of Probabilistic Automata (PA) and discrete Hidden Markov Models (HMMs), and aims
at clarifying the links between them. The first part of this work concentrates on probability distributions generated by these
models. Necessary and sufficient conditions for an automaton to define a probabilistic language are detailed. It is proved
that probabilistic deterministic automata (PDFA) form a proper subclass of probabilistic non-deterministic automata (PNFA).
Two families of equivalent models are described next. On one hand, HMMs and PNFA with no final probabilities generate
distributions over complete finite prefix-free sets. On the other hand, HMMs with final probabilities and probabilistic automata
generate distributions over strings of finite length. The second part of this article presents several learning models, which
formalize the problem of PA induction or, equivalently, the problem of HMM topology induction and parameter estimation.
These learning models include the PAC and identification with probability 1 frameworks. Links with Bayesian learning are
also discussed. The last part of this article presents an overview of induction algorithms for PA or HMMs using state merging,
state splitting, parameter pruning and error-correcting techniques.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

HiddenMarkovModels (HMMs) are widely used in many
pattern recognition areas, including applications to speech
recognition[1–4], biological sequence modeling[5,6], in-
formation extraction[7] and optical character recognition
[8], to name a few. In many of these cases, the model struc-
ture, also referred to as topology, is defined according to
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some prior knowledge of the application domain. In some
cases however, attempts are made to induce automatically
the model structure from training data. The learning prob-
lem combines then structural induction and parameter esti-
mation.
Grammar Induction, also known as Grammatical Infer-

ence, is a collection of techniques for learning grammars
from training data[9–12]. Early works on grammar induc-
tion already covered learning techniques for probabilistic
(or stochastic1) grammars[13–16]. Probabilistic regular
grammars form a particular class of interest. These models

1We consider that the termstochasticqualifies a process,
while the termprobabilisticqualifies a model of such process. We
use therefore the term probabilistic grammars (or probabilistic au-
tomata) since we consider them as models.
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are equivalent to certain types of probabilistic automata
(PA), for which several induction techniques have been pro-
posed[17–22].
This article presents an overview of probabilistic automata

and discrete HMMs, and aims at clarifying the links between
them. These links allow to apply induction techniques and
learnability results developed in one formalism to the other.
The first part of this work (Sections 2 and 3) concentrates

on probability distributions generated by PA and HMMs.
Necessary and sufficient conditions for an automaton to de-
fine a probabilistic language are detailed. The distinction
between probabilistic deterministic automata (PDFA) and
probabilistic non-deterministic automata (PNFA) is intro-
duced. This distinction matters for the learning problem as
it is proved in Section 3 that PDFA form a proper subclass
of PNFA. Two families of equivalent models are described
next. On one hand, HMMs and PNFA with no final probabil-
ities generate distributions over complete finite prefix-free
sets. On the other hand, HMMs with final probabilities and
probabilistic automata generate distributions over strings of
finite length.
The second part of this article (Sections 4 and 5) presents

several learning models. Learning a probabilistic automaton
aims, in a broad sense, at inducing an automaton generating
a distributionP̂ from a sample drawn according to some
unknown target distributionP. The distributionP̂ forms the
learned hypothesis that approximates the target. The pur-
pose of a learning model is to formalize the notion of learn-
ing when a specific quality measure defines the distance be-
tweenP andP̂ . We discuss adaptations of the PAC learning
and identification in the limit frameworks to the learning
of probabilistic automata. Links with Bayesian learning are
also discussed. A learning model includes a learning proto-
col specifying the prior knowledge given to the learner, the
required quality of the proposed hypothesis, and, possibly,
some bounds on the computational complexity of the learn-
ing process. Once a learning model has been defined, the
question of what can be learned by any algorithm follow-
ing the learning protocol, can be addressed. Several learning
results are presented in this context in Section 5.
The last part of this article (Section 6) presents an

overview of induction algorithms for PA or HMMs. State
merging is a generalization technique starting from an
initial model fitting perfectly a given learning sample. An
opposite approach is state splitting where a very general
model is progressively specialized to best fit the training
data. Structural induction can also be embedded into param-
eter estimation combined with parameter pruning. Finally,
error-correcting techniques greedily adapt an initial struc-
ture by minimizing some edition costs to best incorporate
new samples.

2. Probabilistic languages, automata and HMMs

Probabilistic languages are defined in Section 2.1.We dis-
cuss in Section 2.2 various equivalent definitions of semi-

probabilistic automata. The main result of Section 2.3 is the
Proposition 2 which establishes the necessary and sufficient
conditions for a semi-probabilistic automaton to be proba-
bilistic, that is, to define a distribution on words (or strings).
Probabilistic automata considered in the present work can
be considered as a representation of probabilistic regular
grammars (see e.g.[16]). The notions of probabilistic non-
deterministic versus deterministic automata are introduced
next. This distinction matters, as demonstrated in Section 3,
for the class of distributions generated by the latter form a
proper subclass of the class of distributions generated by the
former. Section 2.4 concentrates on probabilistic automata
with no final probabilities and details the type of distribu-
tions they generate. Hidden Markov Models are described
in Section 2.5.

2.1. Probabilistic languages

2.1.1. Notations
� denotes a finitealphabet, �∗ (respectively�∞) de-

notes the set of words of finite (respectively infinite) length
over �. For any wordu ∈ �∗, u�∗ (respectivelyu�∞)
denotes the set of finite (respectively infinite) words with
prefix u. ε denotes theempty wordand |u| the length of
a word u. For any n ∈ N, �n (respectively��n) de-
notes the set of words of lengthn (respectively less or
equal ton).

Definition 1. Let � be a finite alphabet, asemi-distribution
over �∗ is a function � : �∗ → [0,1] satisfying∑

u∈�∗ �(u)�1.

Definition 2. ThesupportL� ⊆ �∗ of the semi-distribution
� is the languageL� = {u ∈ �∗|�(u) >0}.

Definition 3. A distribution or probabilistic language�
over�∗ is a semi-distribution such that

∑
u∈�∗ �(u) = 1.

2.2. Semi-probabilistic automata

Definition 4. A semi-probabilistic automaton2 (semi-PA)
is a 5-tuple〈�, Q, �, �, �〉 where� is a finite alphabet,Q
is a finite set of states,� : Q × � × Q → [0,1] is a map-
ping defining the transition probability function,� : Q →
[0,1] is a mapping defining the initial probability of each
state, and� : Q → [0,1] is a mapping defining the final
probability of each state. The following constraints must

2 Such an automaton is called a semi-PA and not a PA as it
defines a semi-distribution (see Corollary 1). The supplementary
conditions to be satisfied to define a distribution are detailed in
Definition 9.
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be satisfied:∑
q∈Q

�(q) = 1 and ∀q ∈ Q,

�(q) +
∑
a∈�

∑
q ′∈Q

�(q, a, q ′) = 1.

A stateq is said to beinitial if �(q) >0 andfinal if �(q) >0.

Aq denotes the automaton〈�, Q, �, �q , �〉 whereq ∈ Q

and�q(q ′) = 1 if q = q ′, and 0 otherwise.

Definition 5. The symbol� also denotes two extensions of
the transition function, respectively defined onQ×�∗ ×Q:

�(q, ε, q ′) =
{
1 if q = q ′,
0 otherwise,

∀u ∈ �∗, ∀a ∈ �,

�(q, ua, q ′) =
∑

q ′′∈Q

�(q, u, q ′′)�(q ′′, a, q ′)

and onQ × 2�
∗ × 2Q:

�(q, U, Q′) =
∑
u∈U

∑
q ′∈Q′

�(q, u, q ′).

�(q, u, q ′) can be interpreted as the probability of reach-
ing stateq ′ from stateq while generating the wordu.

Definition 6. Let A = 〈�, Q, �, �, �〉 be a semi-PA.
The functionsPA : �∗ → [0,1] andP A : �∗ → [0,1]

are defined as follows:

PA(u) =
∑

q,q ′∈Q

�(q)�(q, u, q ′)�(q ′)

and

P A(u) =
∑

q,q ′∈Q

�(q)�(q, u, q ′).

PA(u) can be interpreted as the probability of generating
wordu. P A(u) can be interpreted as the probability of gen-
erating a (possibly infinite) word with prefixu. For all word
u, P Aq

(u) = �(q, u, Q). The functionsPA andP A can be
extended to subsetsU of �∗:

PA(U) =
∑
u∈U

PA(u) and

P A(U) =
∑
u∈U

P A(u), ∀U ⊆ �∗. (1)

For any wordu, the following equality is satisfied:

P A(u) = PA(u) + P A(u�). (2)

Lemma 1. Let A be a semi-PA. For any integer n, we have

PA(��n) + P A(�n+1) = 1.

Proof. According to Eq. (2), for any integerk we have

P A(�k) = PA(�k) + P A(�k+1).

Lemma 1 follows from adding up the preceding equali-
tiesfor k varying between 0 andn, and from noting that
P A(ε) = 1. �

Corollary 1. Let A be a semi-PA, PA : �∗ → [0,1] defines
a semi-distribution over�∗.

Proof. According to Lemma 1,P A(�n) is a decreasing
series for increasing values ofn. It follows that

PA(�∗) = 1− lim
n→∞ P A(�n)�1. �

Definition 7. Two semi-probabilistic automata areequiva-
lent if they define the same semi-distribution.

Proposition 1. Any semi-PA is equivalent to a semi-PA with
a single initial state.

Proof. Let A = 〈�, Q, �, �, �〉 be a semi-PA.A′ =
〈�, Q′, �′, �′, �′〉 is defined as follows:

Q′ = Q ∪ {q0} whereq0 is a new state

∀a ∈ �, �′(q, a, q ′)

=




�(q, a, q ′) if q, q ′ ∈ Q,

0 if q ′ = q0,∑
q ′′∈Q

�(q ′′)�(q ′′, a, q ′) if q = q0, q ′ ∈ Q.

�′(q) =
{
1 if q = q0,

0 otherwise.

�′(q) =
{ ∑

q ′∈Q

�(q ′)�(q ′) if q = q0,

�(q) otherwise.

It follows that

�′(q0) +
∑
a∈�

∑
q ′∈Q′

�′(q0, a, q ′)

=
∑
q∈Q

�(q)�(q) +
∑
a∈�

∑
q ′∈Q

∑
q∈Q

�(q)�(q, a, q ′)

=
∑
q∈Q

�(q)


�(q) +

∑
a∈�

∑
q ′∈Q

�(q, a, q ′)




=
∑
q∈Q

�(q) = 1.
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Fig. 1. A PNFA example.
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Fig. 2. A PNFA with a single initial state.

One can easily check thatA′ is a semi-PA. Moreover we
have

PA(ε) =
∑
q∈Q

�(q)�(q) = �′(q0)�′(q0) = PA′(ε),

and, for any wordu and any lettera, we have

PA(au) =
∑

q,q ′∈Q

�(q)�(q, au, q ′)�(q ′)

=
∑

q,q ′,q ′′∈Q

�(q)�(q, a, q ′′)�(q ′′, u, q ′)�(q ′)

=
∑

q ′,q ′′∈Q


∑

q∈Q

�(q)�(q, a, q ′′)




× �(q ′′, u, q ′)�(q ′)

=
∑

q ′,q ′′∈Q

�′(q0, a, q ′′)�(q ′′, u, q ′)�(q ′)

=
∑

q ′,q ′′∈Q

�′(q0)�′(q0, a, q ′′)�′(q ′′, u, q ′)�′(q ′)

= PA′(au).

A andA′ define therefore the same semi-distribution.�

The construction above is illustrated by the examples pre-
sented inFigs. 1 and 2. Given the constraints on� and
�, the function � is redundant as∀q ∈ Q, �(q) = 1 −∑

a∈�
∑

q ′∈Q �(q, a, q ′). Thus a semi-PA can be equiva-
lently defined as a 4-tupleA = 〈�, Q, �, q0〉 with the con-

straint
∑

a∈�
∑

q ′∈Q �(q, a, q ′)�1. Following a similar
construction, it can be shown that any semi-PA is equiva-
lent to a semi-PA with a single initial state and a single final
state, provided one considers a specialend-of-wordsym-
bol for reaching the final state (see for example Ref.[20]).
Since all these definitions are equivalent, we use in the se-
quel Definition 4.

2.3. Probabilistic automata

In this section we characterize which semi-probabilistic
automata are defining distributions on words.

Definition 8. A state q of a semi-PAA is accessible if
�(QI , �∗, q) >0, whereQI is the set of initial states ofA.
Otherwise,q is unaccessible.

The set of accessible states can be obtained in linear time.
The semi-distribution associated to a semi-PA remains un-
changed if all unaccessible states are removed.
A probabilistic automatonA is a semi-PA such that the

probability of reaching a final state from any accessible state
is strictly positive.

Definition 9. A semi-PA A is a probabilistic automaton
(PA) if for any accessible stateq,

PAq
(�∗) =

∑
q ′

�(q, �∗, q ′)�(q ′) >0.

Definition 10. A PA is trimmed if all of its states are ac-
cessible.

Given any PA, an equivalent trimmed PA may be con-
structed in linear time.

Lemma 2. LetA = 〈�, Q, �, �, �〉 be a PA with n states. If
state q is accessible then

�(q, �n, Q) <1.

Proof. By definition of a PA havingn states, there exists a
final stateq ′ accessible fromqby a worduof length�n−1.
In other words,PAq

(�<n) >0. It follows that

�(q, �n, Q) = P Aq
(�n) = 1− PAq

(�<n) <1. �

Proposition 2. Let A be a semi-PA, A is a PA if and only if
PA is a distribution.

Proof. Let A be a PA withn states. Without loss of gen-
erality, we can assumeA to be trimmed. Let� be defined
as� = max{�(q, �n, Q)|q ∈ Q}. According to Lemma 2,
� <1. We show by recurrence onk that, for any stateq,
�(q, �kn, Q)��k .
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�(q, �kn, Q) =
∑

q ′∈Q

�(q, �n, q ′)�(q ′, �(k−1)n, Q)

��k−1
∑

q ′∈Q

�(q, �n, q ′)

= �k−1�(q, �n, Q)

��k .

It follows that

lim
k→∞ P A(�kn)� lim

k→∞ �k = 0.

Hence, according to Corollary 1,PA is a distribution.
Let A be a semi-PA such thatPA is a distribution.QI

denotes the set of initial states ofA. Let q be an accessible
state ofA, and let v, with |v| = l, be a word such that
�(QI , v, q) >0. For anyn ∈ N, we have

P A(�n+l )�P A(v�n)

��(QI , v, q)P Aq
(�n)

��(QI , v, q)(1− PAq
(�<n))�0.

AsP A(�n+l ) tends to 0 whenn tends to infinity,PAq
(�<n)

tends to 1. Thus according to Definition 9,A is a PA. �

Definition 11. The support automatonof a PA A =
〈�, Q, �, �, �〉 is a non-deterministic finite automaton
(NFA) A = 〈�, Q, �, I, F 〉 where I (respectivelyF) de-
notes the set of initial (respectively final) states ofA, and
� ⊆ Q × � × Q denotes the transition function defined as
follows: (q, a, q ′) ∈ � ⇔ �(q, a, q ′) >0.

A direct consequence of this definition is that the lan-
guageL generated by the support automaton of a PAA is
the support of the distributionPA. In the sequel, we call
PNFA (respectively PDFA) a PA the support of which is
a non-deterministic finite automaton (NFA) (respectively a
deterministic finite automaton (DFA)).
Fig. 1 presents a PNFA defined as follows:

• � = {a, b},
• Q = {1,2},
• �(1,a,1)=0.2; �(1,b,1)=0; �(1,a,2)=0.5; �(1,b,2)=
0.2,
�(2, a,1)=0.4; �(2, b,1)=0; �(2, a,2)=0; �(2, b,2)=
0.1,

• �(1) = 0.4; �(2) = 0.6,
• �(1) = 0.1; �(2) = 0.5.

For instance the probability of wordb is given by

PA(b) = �(1)�(1, b,1)�(1) + �(1)�(1, b,2)�(2)

+ �(2)�(2, b,1)�(1) + �(2)�(2, b,2)�(2)

= 0.07.

Here the support language is(a + b)∗.

Fig. 2 presents an equivalent PNFA with a single initial
state.

Definition 12. A probabilistic language isregular if it can
be generated by a PNFA. The classPNFA denotes the class
of probabilistic regular languages.

As the support of a probabilistic regular language (PRL)
must be a regular language, it is clear that there exist prob-
abilistic languages that are not regular.3 There exist also
probabilistic languages, with regular support languages, that
are not PRL.4

Definition 13. A probabilistic regular language isdetermin-
istic if it can be generated by a PDFA. The classPDFA

denotes the class of probabilistic deterministic regular lan-
guages (PDRL).

PDFA is a proper subclass ofPNFA (see Proposition
5), which is an important result for the learning of proba-
bilistic automata. Another interesting subclass of PDRL are
the probabilistic finite support languages.

Proposition 3. Every probabilistic language having a finite
support is inPDFA.

Proof. Let� be a probabilistic language over� with a finite
support. We define the automatonA = 〈�, Q, �, �, �〉 where
Q is the set of prefixes of words in the support of�, the
unique initial state isε, and for any wordsu andv of Q and
any lettera, �(u) = �(u)/�(u�∗) and

�(u, a, v) =
{

�(v�∗)/�(u�∗) if v = ua,

0 otherwise.

It is easy to show thatA generates the language�. �

The PDFA defined in Proposition 3 is the probabilistic
prefix tree acceptor used for state merging induction tech-
niques (see Section 6.2.1).
Probabilistic automata used in the present work can be

seen as probabilistic generators. They are equivalent to prob-
abilistic regular grammars[25,14,26]. These automata differ
from probabilistic acceptors (see for example Refs.[27,28])
and are not equivalent[26]. In the case of a probabilistic
acceptor (or recognizer), there is an input alphabet� and an
output alphabetY. A probabilistic acceptor5 defines acon-
ditional probabilityP(Y = y|u), for a given wordu of �∗.

3 Consider for instance the class of probabilistic context-free
languages[23,24].

4 Consider for instance the regular support languageL = {a∗},
and the distribution�(an) = 1/e.n!, ∀n�0.

5 The output alphabet is usually binaryY ={0,1}, and the value
Y = 1 (respectivelyY = 0) is then associated to final (respectively
non-final) states. In this case, the stringu is said to beacceptedif
P(Y = 1|u) >0.
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We focus on probabilistic generators, which defineun-
conditional distributions over�∗, and study their links
with HMMs (see Section 3). Some interesting links be-
tween HMMs and probabilistic acceptors are described
in Ref. [29], but the notion of distribution equivalence
is distinct from ours. In particular an HMMM and a
probabilistic acceptorA are considered equivalent if the
probabilities of generating words byM are the same as ac-
cepting them byA. In our case we ask for equal generation
probabilities.

2.4. Probabilistic automata with no final probabilities

A particular type of probabilistic automata do not include
final probabilities (see for instance Refs.[30,31]). They can
be defined in our formalism as follows.

Definition 14. A probabilistic automaton with no final
probabilities (NFPA) is a semi-PA where the set of final
states is empty.

LetA=〈�, Q, �, �, �〉 be aNFPA.According to Definition
14, we have:∀q ∈ Q, �(q) = 0. Thus, for any wordu,
PA(u) = 0 andP A(u) can be interpreted as the probability
of generating an infinite word starting with the prefixu. A
NFPA defines therefore a probability on the (continuous)
space of infinite words�∞.
According to Lemma 1, we haveP A(�n)=1 and a NFPA

defines one distribution for each value ofn. More generally,
we obtain a probabilistic language for any restriction ofP A

to a complete finite prefix-free set.

Definition 15. A set of wordsU ⊆ �∗ is prefix-freeif no
word ofU is a prefix of another word inU. More formally,
we have

∀u, v ∈ U, ∃w ∈ �∗, v = uw ⇒ w = ε.

A prefix-free setU is completeif all word u ∈ �∗ has a
prefix inU or is a prefix of a word inU.

A complete prefix-free set is maximal with respect to
inclusion among the family of prefix-free sets. For ex-
ample, the set{anb | n ∈ N} is complete prefix-free if
� = {a, b}, as it is the case for each set{�n}, for any
value ofn.

Proposition 4. If A is a NFPA and U is a prefix-free set
thenP A defines a semi-distribution on U. If U is moreover
complete finite thenP A defines a distribution on U.

Proof. Let A = 〈�, QA, �, �, �〉 be a NFPA and letU be a
prefix-free set.
For any wordu ∈ �∗, we haveP A(u) =∑

a∈�P A(ua).
This implies thatP A(u) = P A(u�k) for any integerk.

For any integern, we have

P A(U ∩ ��n) =
∑

v∈U∩�� n

P A(v�n−|v|)

�P A(�n) = 1.

In the limit whenn tends to∞, we obtainP A(U)�1.
Moreover ifU is finite, we can considern� max{|u|, u ∈

U}. It follows that
P A(U) = P A(U ∩ ��n) =

∑
v∈U

P A(v�n−|v|)

Now, if U is complete, for any wordu in �n, there exists
necessarily a word ofU that is a prefix ofu. We obtain

P A(U) = P A(�n) = 1. �

Note that the previous proposition does not hold ifU is
infinite. Consider for instance a NFPAA such thatP A(an)=
1 for any integern and the setU = {anb | n ∈ N}.

2.5. Hidden Markov Models

Definition 16. A discreteHMM (with state emission) is a
5-tupleM = 〈�, Q, A, B, �〉 where� is an alphabet,Q is
a set of states,A : Q × Q → [0,1] is a mapping defining
the probability of each transition,B : Q × � → [0,1] is
a mapping defining the emission probability of each letter
on each state, and� : Q → [0,1] is a mapping defining the
initial probability of each state. The following constraints
must be satisfied:

∀q ∈ Q,
∑

q ′∈Q

A(q, q ′) = 1,

∀q ∈ Q,
∑
a∈�

B(q, a) = 1,

∑
q∈Q

�(q) = 1.

Definition 17. Let M = 〈�, Q, A, B, �〉 be a HMM. Apath
inM is a word defined onQ∗. For any path�, �i denotes the
ith state of�, and|�| denotes the path length. For any word
u ∈ �∗ and any path� ∈ Q∗, the probabilitiesPM(u, �)
andPM(u) are defined as follows:

PM(u, �)

=




�(�1)
∏l−1

i=1[B(�i , ui)

×A(�i , �i+1)]B(�l , ul) if l = |u| = |�| >0,

1 if |u| = |�| = 0 and

0 otherwise.

PM(u) =
∑

�∈Q∗
P(u, �).
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Fig. 3. An example of HMM (with emission on states).

PM(u, �) is the probability to emit worduwhile following
path�. Along any path, the emission process is Markovian
since the probability of emitting a letter on a given state only
depends on that state. HMMs are used to model processes
for which the existence of such a path (or state sequence)
can be assumed while the actual states are not observed.
PM(u) can be interpreted as the probability of observing a
finite prefixu of some infinite word.
Alternative definitions of HMMs (see for example Refs.

[28,5]) include a single non-emitting initial stateq0, also
called asilent state, and transitions ofq0 to the other states,
as well as a non-emitting final stateqf and transitions from
the other states toqf . The use of a single initial stateq0,
with initial probability�(q0)=1, results in models equivalent
to HMMs described here (the proof is analogous to the
one used to demonstrate Proposition 1). On the other hand,
the introduction of a non-emitting final state modifies the
associated distributions. Proposition 9 in Section 3 explains
this result.
Fig. 3 presents a HMM defined as follows.

• � = {a, b},
• Q = {1,2},
• A(1,1)=0.1; A(1,2)=0.9; A(2,1)=0.7; A(2,2)=0.3,
• B(1, a)=0.2; B(1, b)=0.8; B(2, a)=0.9; B(2, b)=0.1,
• �(1) = 0.4; �(2) = 0.6.

For instance, the probability of the wordab is given by

PM(ab) = PM(ab,11) + PM(ab,12) + PM(ab,21)

+ PM(ab,22)

= 0.0064+ 0.0072+ 0.3024+ 0.0162

= 0.3322.

HMMs can also be defined with emissions on transitions
[32,28] instead of states.

Definition 18. A discreteHMM with transition emission
(HMMT) is a 5-tupleM =〈�, Q, A, B, �〉, where� is an al-
phabet,Q is a set of states,A : Q×Q → [0,1] is a mapping
defining the probability of each transition,B : Q×�×Q →
[0,1] is a mapping defining the emission probability of each
letter on each transition, and� : Q → [0,1] is a mapping
defining the initial probability of each state. The following
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1 2

Fig. 4. An example of HMMT (with emission on transitions).

constraints must be satisfied:

∀q ∈ Q,
∑

q ′∈Q

A(q, q ′) = 1,

∀q, q ′ ∈ Q,
∑
a∈�

B(q, a, q ′) =
{
1 if A(q, q ′) >0,
0 otherwise,

∑
q∈Q

�(q) = 1.

Definition 19. LetM=〈�, Q, A, B, �〉 be a HMMT.Apath
in M is a word defined onQ∗. For any wordu ∈ �∗ and
any path� ∈ Q∗, the probabilitiesPM(u, �) andPM(u) are
defined as follows:

PM(u, �) =



�(�1)
∏|u|

i=1 [B(�i , ui , �i+1) if |�|=|u|+1,
×A(�i , �i+1)] and

0 otherwise,

PM(u) =
∑

�∈Q∗
P(u, �).

Fig. 4 presents a HMMT defined as follows.

• � = {a, b},
• Q = {1,2},
• A(1,1) = 0.1; A(1,2)=0.9; A(2,1)=0.7; A(2,2)=0.3,
• B(1, a,1) = 0.2; B(1, b,1) = 0.8; B(1, a,2) = 0.3; B(1,

b,2)=0.7; B(2, a,1)=0.8; B(2, b,1)=0.2; B(2, a,2)=
0.9; B(2, b,2) = 0.1,

• �(1) = 0.4; �(2) = 0.6.

For instance, the probability of the wordb is given by

PM(b) = �(1)B(1, b,1)A(1,1) + �(1)B(1, b,2)A(1,2)

+ �(2)B(2, b,1)A(2,1) + �(2)B(2, b,2)A(2,2)

= 0.386.

Definitions 16 and 18 are similar to the definitions of proba-
bilistic automata. We clarify the links between these models
in Section 3. Note that we consider here HMMs defined on
a discrete alphabet. Many variants can be found in the liter-
ature, including models with a continuous emission density,
typically defined by a Gaussian or a multi-Gaussian instead
of a discrete (multinomial) distribution (see, for example,
Refs.[33,34,3,4]).
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Fig. 5. A PNFA generating a language that cannot be generated by
a PDFA.

3. Links between PDFA, PNFA and HMMs

We study in this section the relations between the dis-
tributions generated by PDFA, PNFA and HMMs. Propo-
sition 5 shows that the class of probabilistic deterministic
regular languages, which are generated by PDFA, forms
a proper subclass of the class of probabilistic regular lan-
guages, which are generated by PNFA. Propositions 8 and 9
show the equivalence between PNFA, HMMTs and HMMs.
The constructive proofs given here illustrate how to trans-
form any such model into any of both others.

Proposition 5. PDFA�PNFA.

Proof. Let A be a probabilistic automaton and let define
	(u) as follows:

∀u ∈ �∗, 	(u) =
{ PA(u)

P A(u)
if P A(u) >0,

0 otherwise.

If A is a PDFA, the set{	(u), u ∈ �∗} is necessarily finite.
Consider now the PNFA described inFig. 5. We have

	(an) = 0.6+ 0.2/(1+ 2n), which is a strictly decreasing
series for strictly increasing values ofn. Hence{	(u), u ∈
�∗} cannot be finite. �

The proof of Proposition 5 uses an ambiguous6 PNFA
which cannot be reduced to a PDFA. Proposition 6 shows
that the same result hold even if one considers the class of
non-ambiguous PNFA(naPNFA) and Proposition 7 shows
that this class is a proper subclass ofPNFA. Hence, Propo-
sition 5 is thus also directly implied by Propositions 6 and 7.

Proposition 6. PDFA�naPNFA.

Proof. Consider the non-ambiguous PNFA described inFig.
6. In this case,	(a2n)=0.6−0.6/(1+2n) which is a strictly
decreasing series for strictly increasing values ofn. �

Proposition 7. naPNFA�PNFA.

Proof. Let � be the probabilistic language defined on� =
{a} by

�(an) = 0.6(0.4)n + 0.8(0.2)n

2
.

6A PNFA is ambiguous if there exists at least one word that
can be generated by several state sequences.

0.5 0.5

0.0

a 0.2

0.8

a 1.0 a 1.0 a 0.4
0.6

0.0

1

2

3

4

Fig. 6. A non-ambiguous PNFA generating a language that cannot
be generated by a PDFA.

This language is generated by the ambiguous PNFA de-
scribed inFig. 5. Suppose that there exists a non-ambiguous
PNFAA = 〈�, Q, 
, �, �〉 such that� = PA and lets be the
number of states ofA. Let q0, . . . , qs be the unique state
sequence generatingas and let i < j be two indexes such
thatqi = qj . Let

� = �(q0)


i−1∏

k=0


(qk, a, qk+1)




×

s−1∏

k=j


(qk, a, qk+1)


 �(qs)

and let�=∏j−1
k=i


(qk, a, qk+1). SinceA is non-ambiguous,

we must have�(as+m(j−i)) = ��m for all integermwhich
is clearly impossible. �

Next we show the equivalence between probabilistic au-
tomata with no final probabilities and HMMs.

Lemma 3. Let A = 〈�, Q, �, �, �〉 be a PNFA with no fi-
nal probabilities. There exists an equivalent HMMTM =
〈�, Q, A, B, �〉.

Proof. �, Q and� are identical forA andM. The transition
functions forM are defined as follows.

• ∀q, q ′ ∈ Q, A(q, q ′) =∑
a∈� �(q, a, q ′),

• ∀q, q ′ ∈ Q, ∀a ∈ �, B(q, a, q ′)

=
{ �(q, a, q ′)∑

a∈� �(q, a, q ′) if
∑

a∈� �(q, a, q ′) >0,

0 otherwise.

It is easily shown thatM satisfies the constraints of a
HMMT and thatM andA generate the same distribution.

�
Fig. 7 illustrates the transformation of a PNFA into an

equivalent HMM.

Lemma 4. LetM=〈�, Q, A, B, �〉 be a HMMT, there exists
an equivalent HMMM ′ = 〈�, Q′, A′, B ′, �′〉.
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Fig. 7. Transformation of a PNFA into an equivalent HMMT.

Proof. The construction of a HMM equivalent to a HMMT
is given in Ref.[28]. In this case, the number of states|Q′|
is less or equal to|Q|2. M ′ is defined as follows.

• Q′ = {(q, q ′) ∈ Q × Q|A(q, q ′) >0}. The states ofQ′
represents pairs of states inQ that are connected by a
strictly positive transition probability.

• ∀(q, q ′), (q ′′, q ′′′) ∈ Q′, A((q, q ′), (q ′′, q ′′′)) ={
A(q ′′, q ′′′) if q ′ = q ′′,
0 otherwise.

• ∀(q, q ′) ∈ Q′, ∀a ∈ �, B((q, q ′), a) = B(q, a, q ′),
• ∀(q, q ′) ∈ Q′, �′((q, q ′)) = �(q)A(q, q ′).

It is easily shown thatM ′ satisfies the constraints of a
HMM and thatM andM ′ generate the same distribution.
We give below an alternative construction for which the

number of states|Q|′ is less or equal to|Q| × |�|. Let M ′
be defined as follows.

• Q′ = Q × �,
• �′((q, a)) =∑

q ′∈Q�(q ′)A(q ′, q)B(q ′, a, q),
• B ′((q, a), x) = 1 if x = a, and 0 otherwise,
• A′((q, a), (q ′, b)) = A(q, q ′)B(q, b, q ′).

It is easily shown thatM ′ satisfies the constraints of a
HMM.
Let u = u1 . . . ul be a word of �∗ and let � =

((q1, u1) . . . (ql, ul)) be a path inM ′. We have

PM ′(u, �) = �′((q1, u1))

l−1∏
i=1

[B ′((qi , ui), ui)

× A′((qi , ui), (qi+1, ui+1))]B ′((ql, ul), ul)

=
∑

q ′∈Q

�(q ′)A(q ′, q1)B(q ′, u1, q1)

×
l−1∏
i=1

[A((qi , qi+1)B(qi , ui+1, qi+1)]

=
∑

q ′∈Q

PM(u, q ′q1 . . . ql).

Summing up over all possible paths inM ′, we obtain
PM ′(u) = PM(u). Hence,M and M ′ generate the same
distribution. �

Figs. 8and9 show typical examples of the transforma-
tions of a HMMT into equivalent HMMs. The number of

degrees of freedom (parameters) of a HMM (respectively a
HMMT) with n states over an alphabet ofm letters isn−1+
n(m−1)+n(n−1)=n2+nm−n−1 ∈ O(n×max(n, m))

(respectivelyn − 1+ n(n − 1) + n2(m − 1) = n2m − 1 ∈
O(n2m)). Hence the transformation of a HMMT into an
equivalent HMM cannot be performed in general without
changing the number of states.

Lemma 5. Let M = 〈�, Q, A, B, �〉 be a HMM. There ex-
ists an equivalent PNFA with no final probabilitiesA =
〈�, Q, �, �, �〉.
Proof. A is defined as follows.

• ∀q, q ′ ∈ Q, ∀a ∈ �, �(q, a, q ′) = B(q, a)A(q, q ′),
• ∀q ∈ Q, �(q) = 0.

It is easily shown thatAsatisfies the constraints of a PNFA
and thatA andM generates the same distribution.�
Fig. 10 illustrates the transformation of HMM into an

equivalent PNFA.

Proposition 8. HMMs are equivalent to probabilistic au-
tomata with no final probabilities.

Proof. This is a direct consequence of Lemmas 3–5.�

The equivalence between these models is demonstrated
using constructive proofs to transform a PNFA into a HMMT
(Lemma 3), a HMMT into a HMM (Lemma 4), and a HMM
into a PNFA (Lemma 5). Note that the PNFA ofFig. 10is not
isomorphic to the PNFA ofFig. 7, even though they generate
the same distribution. The possibility to simulate a HMM
with n states by a PNFA withn states was already proved in
Ref. [30]. Proposition 8 guarantees that one can simulate a
PNFA by a HMM but not, in general, with the same number
of states. However the sizes of all these equivalent models
are always polynomially related (see alsoFigs. 7–10).

Corollary 2. If M is a HMM or a HMMT, then ∀n ∈
N,
∑

u∈�n PM(u) = 1.

Proof. This result, mentioned in Ref.[30], is a direct con-
sequence of Propositions 4 and 8.�

Definitions 16 and 18 correspond to HMMs with no fi-
nal probabilities. Variants of these models, including a final
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Fig. 8. Transformation of an HMMT into an equivalent HMM (first construction).
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Fig. 9. Transformation of an HMMT into an equivalent HMM (second construction).
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Fig. 10. Transformation of an HMM into an equivalent PNFA.

non-emitting stateqf , correspond to models where a final
probability�(q) is defined for each state. Hence the Propo-
sition 9 follows.

Proposition 9. HMMs with final probabilities are equiva-
lent to semi-probabilistic automata.

Proof. The demonstration of this result is completely anal-
ogous to the proof of Proposition 8.�

Corollary 3. HMMs with final probabilities, and such that
the probability of reaching a final state from any accessible
state is strictly positive, generate distributions over�∗.
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Proof. This is a direct consequence of Propositions 2
and 9. �

To sum up, there are two families of equivalent models.
On one hand, HMMs and probabilistic automata with no fi-
nal probabilities, which generate distributions over�n, ∀n ∈
N, or, more generally, over any complete finite prefix-free
set. On the other hand, HMMs with final probabilities and
probabilistic automata, which generate distributions over�∗.

4. Learning models

Learning a probabilistic automaton aims, in a broad sense,
at inducing an automaton generating a distributionP̂ from
a sample drawn according to some unknown target distribu-
tion P. The distributionP̂ forms the learned hypothesis that
approximates the target. The purpose of alearning modelis
to formalize the notion of learning when a specific quality
measure defines the distance betweenP andP̂ .
A learning model includes alearning protocolspecifying

the prior knowledge given to the learner, the required quality
of the proposed hypothesis, and, possibly, some bounds on
the computational complexity of the learning process. Given
a learning model, the question of what can be learned by any
algorithm following the learning protocol, can be addressed.
In the context of probabilistic automaton learning, an im-

portant particular case occurs when the prior knowledge in-
cludes the support automaton of the target distribution (see
Definition 11). Prior knowledge, generally coming from the
application domain, enables to fix a priori the structure of
the target automaton or an equivalent HMM topology. In this
case, the set of free parameters is fixed and learning is then
reduced to the problem of estimating probabilities given a
known structure. The more general case, studied as well in
the sequel, occurs when probability estimation is combined
with structural induction.
Several models for learning probabilistic automata are

presented in this section. Learning results obtained in these
models are presented in Section 5.

4.1. A PAC learning model for probabilistic automata

The PAC7 learning model was introduced by Valiant
[35]. We focus here on various adaptations of this model
when the concepts to be learned are probabilistic automata
[31,19,20].

Definition 20. Let P be a target distribution and let̂P be
a hypothesis produced by a learning algorithm. LetD be a
measure of the distance8 betweenP andP̂ .

7 PAC learning stands forProbably Approximately Correct
learning.

8 This distance is not necessarily a metric.

P̂ is an�-good hypothesiswith respect toP, for ��0, if

D(P, P̂ )��.

Kearns et al. use the Kullback–Leibler divergenceDKL

as distance measure betweenP andP̂ :

DKL(P, P̂ ) =
∑
u

P (u) log2
P(u)

P̂ (u)
, (3)

where the summation is over all words belonging to the
domain ofP, assumed to be identical to the domain ofP̂ . The
divergence can be interpreted as the number of additional
bits needed to encode a message when an optimal code is
chosen according to distribution̂P while the message was
produced according to distributionP. This measure bounds
theL1 distance9 and the Hellinger distanceDH .10

Let P(.) denote a distribution class. Each distributionP
of the classP(.) represents a concept, the size of which, de-
noted by|P |, depends polynomially on a set of parameters.
For example,PDFA|�|,|Q| is the class of distributions that
can be generated by PDFA defined on an alphabet of size
|�| and having|Q| states.|�| and |Q| are the parameters
characterizing the size of each concept in the class. These
automata form therepresentation classof the corresponding
distributions.

Definition 21. A distribution classP(.) is efficiently learn-
able if there exists a learning algorithm satisfying the fol-
lowing conditions. For any target distributionP ∈ P(.),
the algorithm receives an independent and identically dis-
tributed (iid) sampleSP fromP, a precision parameter� >0
and a confidence parameter�, 0< ��1. The algorithm out-
puts, with probability at least 1− �, an �-good hypothesis
P̂ with respect toP. The time complexity of the learning
algorithm has to be a polynomial function of1� , 1� and|P |.

Definition 21 specifies the learning protocol of a distri-
bution learning algorithm. It should be remarked that the
representation classes of the target distributionP and the hy-
pothesisP̂ need not be the same. The representation class
issue is further studied below.

4.2. A trainability model for probabilistic automata

Abe and Warmuth studied the problem of approximat-
ing an unknown target distributionP by a probabilistic

9 [36]:

2 ln 2
√

DKL(P, P̂ )�L1(P, P̂ ) =
∑
u

|P(u) − P̂ (u)|.

10 [37]:

DKL(P, P̂ )�DH (P, P̂ ) =
∑
u

|√P(u) −
√

P̂ (u)|2.
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automaton[30]. The representation class of the hypotheses
is the class of probabilistic automata or HMMs. More pre-
cisely, hypotheses are represented by PNFA with no final
probabilities and the target distributions are defined on�n.
In this learning model anautomaton constraintis also given
to the learning algorithm.

Definition 22. An automaton constraint is a 4-tupleC =
〈�, Q, I, T 〉 where� is an alphabet,Q is a state set,I ⊆ Q

is a set of potentially initial states, andT ⊆ Q × � × Q is a
set of potential transitions. A PNFA satisfies the constraint
C if its alphabet is�, its state set isQ, any initial state of
its support automaton belongs toI, and any transition of
its support automaton belongs toT. The constraint sizeis
defined as|C| = |I | + |T |. It corresponds to the number of
probabilities to estimate. The constraint isnull if I = Q and
T = Q × � × Q.

Given an automaton constraint the learning problem can
be formulated as follows.

Definition 23. An automaton constraint classC is trainable
if there exists a learning algorithm satisfying the following
conditions. For any constraintC ∈ C, the algorithm receives
C, an iid sampleSP drawn from an unknown distribution
P defined on�n, a precision parameter� >0, and a confi-
dence parameter�, 0< ��1. The algorithm outputs, with
probability at least 1− �, a hypothesisP̂ satisfying

DKL(P, P̂ ) − DKL(P, Pmin(C))��,

providedDKL(P, Pmin(C)) is finite and provided the sam-
ple sizem is greater than a minimal sizemmin. Pmin(C)

denotes the distribution generated by a probabilistic automa-
ton satisfying the constraintC and presenting the minimal
divergence with respect to the targetP.
The classC is polynomially trainableif any constraint

C ∈ C is trainable with a minimal sample sizemmin being
a polynomial function of 1/�,1/�, n, |C|, and if the time
complexity of the learning algorithm is a polynomial func-
tion of the sample size.

Note that if the target distributionP can be gen-
erated by a probabilistic automaton satisfyingC then
DKL(P, Pmin(C)) =0, and the condition to be satisfied by
P̂ is to be an�-good hypothesis with respect toP.
Learning a probabilistic automaton under a null constraint

is equivalent to the problem of estimating probabilities when
the alphabet and the number of states of the hypothesis are
given. Determining whether a class of automaton constraints
is polynomially trainable is therefore equivalent to deter-
mining whether there exists a polynomial algorithm to best
estimate the probabilities of an automaton belonging to the
constraint class. Given a sampleSP = {u1, . . . , um} made
of mwords of�n drawn independently according to the tar-
get distributionP, and given a hypothesiŝP , the likelihood

L
P̂

(SP ) of the sample is defined as

L
P̂

(SP ) =
m∏

i=1

P̂ (ui). (4)

If the hypothesisP̂ is considered as a model̂M belonging
to a model classM, the sample likelihoodL

P̂
(SP ) can be

seen asP(SP |M̂), which is the probability of the sample
given the modelM̂.

Definition 24. The maximum likelihood problem is�-
approximable if there exists a learning algorithm that, when
given a constraintC and a sampleSP , outputs, with proba-
bility at least 12, a hypothesisP̂ respectingC and satisfying

LPmax(C)(SP )

L
P̂

(SP )
�1+ �, (5)

where Pmax(C) denotes the distribution generated by a
probabilistic automaton respectingCand assigning the max-
imal likelihood to the sampleSP .

The links between learning under a known constraint and
estimating model parameters according to maximum likeli-
hood are presented in Section 5.4.

4.3. Identification in the limit with probability 1

Identification in the limit was introduced by Gold as
a learning model in a non-probabilistic setting[38]. An
adapted version of this model for language identification
from stochastic examples was proposed by Angluin[39].
Identification of the support of probabilistic automata is de-
scribed hereafter.

Definition 25. A probabilistic automaton classA is identi-
fiable in the limit with probability1 if there exists a learning
algorithm satisfying the following conditions. For any au-
tomatonA ∈ A, the algorithm receives an infinite sequence
of samplesS1 ⊆ S2 ⊆ . . . , each sample being drawn ac-
cording to the same distributionPA. The algorithm produces
a sequence of hypothesesP̂1, P̂2, . . . such that, with proba-
bility 1, there is a finite indexk∗ from which, for anyk�k∗,
the support automaton̂Pk is the support automaton ofA.

This learning model concentrates on the exact identifi-
cation, in finite time, of a support automaton. There is no
required bound on the error before identification nor on
the time complexity of the learning process. This observa-
tion might explain why the PAC model described in Section
4.1 is generally preferred. Nevertheless the ALERGIA algo-
rithm described in Section 6.2.2, and several of its variants,
have been proved to converge according to Definition 25
[18,21,40].
In the identification in the limit framework, a sampleSc is

calledcharacteristicif the convergence is guaranteed for any
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sampleSincludingSc. Once the support has been identified,
learning is reduced to correct estimation of the probabilities
as defined, for instance, in Section 4.2.

4.4. Bayesian learning and MDL principle

We present in this section the Bayesian learning frame-
work, which does not constitute a learning model as de-
scribed before. Yet this framework is frequently used in the
literature, in particular in the context of HMM induction.
The algorithms presented in Sections 6.2.4, 6.2.5 and 6.4
are Bayesian learning techniques.
Let a probabilistic automaton̂A be a particular model be-

longing to an automaton classA. P(Â) denotes the prior
probability11 of the modelÂ in the classA. P(S|Â) de-
notes the likelihood of the sampleSgiven an automaton̂A.
Themaximuma posteriori (MAP) learning principle consists
in choosing the hypothesiŝAMAP that maximizesP(Â|S),
which is the posterior probability of the modelÂ given the
sampleS:

ÂMAP = argmax
Â∈A

P(Â|S) = argmax
Â∈A

P(S|Â)P (Â), (6)

where the second equality results from applying Bayes rule.
Bayesian learning aims at selecting the model that maxi-
mizes a trade-off between sample likelihood and prior prob-
ability. When all models in the class are considered equally
likely, Bayesian learning seeks for a maximum likelihood
model. The link between trainability of an automaton given
a constraint (see Section 4.2) and parameter estimation fol-
lowing maximum likelihood is clarified by Theorem 6 in
Section 5.4. Algorithms for maximum likelihood estimation
are described in Section 6.1.
Under certain hypotheses MAP learning is equivalent to

the minimum description length (MDL) learning principle
[41]. More precisely,ÂMAP can be equivalently defined as
follows:

ÂMAP = argmin
Â∈A

−log2P(S|Â) − log2P(Â). (7)

The term−log2P(S|Â) is the description length of the sam-
pleSwhen an optimal code is chosen for encoding this sam-
ple given the model̂A. The term−log2P(Â) is the descrip-
tion length of the model̂A when an optimal code is chosen
for encoding this model. The MDL principle recommends
to select the hypothesis (the model) that minimizes the sum
of both description lengths. The modelÂMAP is therefore
an MDL solution under optimal encoding schemes.

11There is an implicit assumption that the prior probability of
any model in the classA is well defined.

5. Learning results

We present in this section learning results for several dis-
tribution classes according to the learning models described
in Section 4.

5.1. Non-learnability of PDFA with an evaluator

The classPDFA2,r(n) denotes distributions defined over
�n, with |�| = 2, that can be generated by PDFA without
final probabilities, and having a number of states bounded
by a polynomialr(n). In this casen is the only parameter
defining the size of the concept to be learned.
Kearns et al. introduce the distinction12 betweengener-

atorsandevaluatorsfor a distributionP. A generator for a
distributionP takes as input a sequence of truly random bits
and outputs an observation drawn according toP. An eval-
uator for a distributionP takes as input an observation and
outputs the probability of this observation according toP.
We look generally for learning algorithms producing evalu-
ators since, once an evaluator has been learned, the proba-
bility of any new observation can be computed.

Theorem 1. Under the noisy parity assumption,13 the
classPDFA2,r(n) is not efficiently learnable[31].

This result is independent of the representation class of the
hypothesisP̂ but it is assumed that the learning algorithm
outputs an evaluator for the distribution̂P .

5.2. Learnability of
-distinguishable acyclic automata

Ron et al. study the class of
-distinguishable acyclic
PDFA (APDFA), which forms a particular subclass of PDFA
with final probabilities. The transition graph associated to
the support automaton of an APDFA contains no cycle. The
support language is therefore finite. Thedepthof an APDFA
is the length of the longest path from the initial state to a
final state.

Definition 26. LetA=〈�, Q, �, �, �〉 be a probabilistic au-
tomaton and let
 be a parameter, 0�
�1. A pair of states
q1 andq2 fromQ is 
-distinguishable if there exists a word
u ∈ �∗ such that|PAq1

(u) − PAq2
(u)|�
. The automa-

ton A is 
-distinguishable if any pair of distinct states is

-distinguishable.

12This distinction should not be confused with the distinction
between generators and acceptors introduced at the end of Section
2.3. For instance, a PDFA is both an evaluator and a generator in
the sense defined in the current paragraph.

13There is a constant 0< � < 1
2 such that there is no efficient

algorithm for learning parity functions under the uniform distribu-
tion in the PAC model with classification noise rate�.
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APDFA
,|Q|,|�| denotes the class of acyclic
-
distinguishable PDFA with|Q| states and defined on an
alphabet of size|�|.

Theorem 2. The class APDFA
,|Q|,|�| is efficiently
learnable when the parameter
, 0< 
�1, is known by
the learner. The learning algorithm outputs an�-good
hypothesis in time polynomial in|Q|, |�|, 1


 , 1� , log 1
� [42].

LeveledAPDFA is the hypothesis representation class
chosen in this case. In a leveled APDFA, the level of a state
q is defined as the unique length of any path leading from
the initial state toq. For any APDFA having|Q| states and
depthd, there exists an equivalent leveled APDFA having
O(|Q| × d) states. The learning algorithm for this represen-
tation class is further detailed in Section 6.2.3.

5.3. Learnability of probabilistic automata with variable
memory length

Ron et al. introduced the class of Probabilistic Finite
Suffix Automata of orderL (L-PFSA) [19]. L-PFSA form
a proper subclass of PDFA equivalent to variable order
Markov chains, the maximal order of which is fixed to a
positive integerL. L-PFSA do not include final probabilities
and generate distributions over�n, n >0.
Ron et al. proposed a learning model for PFSA, slightly

adapted from the PAC model described in Section 4.1.
The distance measure between a target distributionP
and a hypothesisP̂ is defined here as theper symbol
Kullback–Leibler divergence

1

n
DKL(P, P̂ ) = 1

n

∑
u∈�n

P (u) log
P(u)

P̂ (u)
. (8)

This normalized distance is independent of the lengthn of
the words on which it is computed.PFSAL,|Q|,|�| denotes
the class ofL-PFSAwith |Q| states and defined on an al-
phabet of size|�|.

Theorem 3. The classPFSAL,|Q|,|�| is efficiently learn-
able when the order L is known by the learner[19].

Prediction Suffix Trees14 (PST) is the hypothesis repre-
sentation class. The learning algorithm described in Section
6.3.2 returns a PST that is an�-good hypothesis the size of
which is inO(L × |Q| × |�|).

5.4. Trainability of probabilistic automata

The problem of approximating an unknown distribution
by a probabilistic automaton is studied by Abe and War-
muth [30]. The learning algorithm receives an automaton

14Prediction Suffix Trees, also referred to asProbabilistic
Suffix Trees, are formally defined in Ref.[19].

constraint the size of which defines the number of param-
eters to be estimated. The main results in this model are
described below.

Theorem 4. The class of PDFA constraints is polynomially
trainable [30].

In other words, finding a probabilistic automaton that best
approximates a target distribution and satisfies a given de-
terministic constraint, is feasible in polynomial time.

Theorem 5. The class of2-states null PNFA constraints is
not polynomially trainable, unlessRP= NP [30].

Note that this result is due to a time complexity being
an exponential function of the constraint size. As in this
case the number of states is fixed, the problem complexity
actually depends exponentially on the alphabet size.

Theorem 6. A constraint class is polynomially trainable if
and only if, for any constraint C in the class and given a
sample containing m words over�n, the maximum likeli-
hood problem is�-approximable by an algorithm running in
random time polynomial in1� , |C|, n, m [30].

Since PNFA are equivalent to HMMs (see Section 3),
Theorems 5 and 6 imply that estimating the parameters of
a HMM so as to maximize the sample likelihood is not fea-
sible in polynomial time. An open question is to determine
particular subclasses of HMMs, more general than those
equivalent to PDFA, for which a better complexity can be
obtained. Note that the EM algorithm15 outputs alocally
optimal solution to the maximum likelihood parameter esti-
mation for HMMs[43,44,3]. Maximum likelihood estima-
tion is further detailed in Section 6.1.

5.5. Identification in the limit of probabilistic automata

Carrasco and Oncina study the problem of identifying the
support of PDFA. The main result in this model is summa-
rized by the following theorem.

Theorem 7. The classPDFA is identifiable in the limit
with probability1 [21].

Let |Q| denote the number of states of the target automa-
ton and letmdenote the size of the sample received at a given
step of the identification process. At each step, the learn-
ing algorithm has a time complexity inO(m × |Q|2 × |�|).
Identification is guaranteed in a finite number of steps.
Carrasco and Oncina give a lower bound on the size of a

characteristic sample[21]. This bound depends on the diffi-
culty of distinguishing pairs of states of the target automaton

15The EM algorithm is also calledForward-Backwardor
Baum–Welchalgorithm in this context.
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by a common suffix of sufficiently different probability. In
other words, the difficulty of learning depends on the dis-
tinguishability of pairs of states (see Definition 26). Once
the support has been learned, the problem of estimating the
probabilities of a PDFA is easily solved16 (see Section 6.1).
Esposito et al. study the identification of probabilistic

residual finite state automata (PRFA). ThePRFA class in-
cludes properly thePDFA class and is strictly included in
thePNFA class[45].

Theorem 8. ThePRFA class is identifiable in the limit
with probability 1 if the learning algorithm has access to
the exact probabilities of the words in the sample[45].

The proposed learning algorithm runs in time polynomial
in the sample size. This result is preliminary however as it
relies on the assumption of knowing the probabilities of the
sample words according to the target distribution. An open
question is how to extend this result when these probabilities
have to be estimated.

5.6. Learnability of probabilistic concepts

The results presented here do not concern the learning of
automata that are probabilisticacceptors(see the discussion
at the end of Section 2.3), as we focus on models directly
related to HMMs. Probabilistic acceptors form a particular
case ofprobabilistic concepts, which randomly map an in-
put setX to an output setY. Probabilistic acceptors define
conditionalprobability distributionsP(Y |X), instead of the
unconditional distributions considered in the present paper.
Learning samples for probabilistic acceptors are made of el-
ements ofX × Y . The data are randomly drawn according
to a fixed distribution overX and probabilistically labeled
according to the distributionP(Y |X). More details on the
learning of probabilistic concepts are given in Refs.[46–49].

6. Induction algorithms

In this section we present various algorithms for learning
probabilistic automata and HMMs. In each case we use the
representation class for which the algorithm was described
originally. A change of representation, in particular from
probabilistic automata to HMMs (or conversely), can be
performed following the results of Section 3.
We recall briefly some well-known techniques to estimate

probabilities for these models when the topology is known.
The topology, also called the structure of the model, can be
seen as an automaton learning constraint (see Definition 22).
Next we concentrate on various induction algorithms for

16Note that the ALERGIA algorithm described in Section
6.2.2 learns the support automaton and estimates the probabilities
simultaneously.

these models, combining the problems of structure induction
and probability estimation.

6.1. Maximum likelihood probability estimation

Given an HMMM = 〈�, Q, A, B, �〉 for which a con-
straint 〈�, Q, I, T 〉 is known, the problem is to estimate
its probabilities from a sample. Maximum likelihood is the
most popular estimation criterion in this context (see Sec-
tion 4.4).
Let � = {A, B, �} denote the set of parameters to

be estimated andM� the corresponding model. Let
S = {u1, . . . , um} denote a learning sample. The problem
consists in findinĝ� that maximizes the sample likelihood:

�̂ = argmax
�

P(S|M�) = argmax
�

m∏
i=1

P(ui |M�). (9)

Baum–Welch algorithm uses an iterative procedure produc-
ing a solution corresponding to a local maximum[50,43].
This algorithm can be seen as a particular case of the EM
algorithm[44]. At each step the expected likelihood of the
sample is computed given current parameter estimates (Ex-
pectation step). The parameter estimates are then updated
while increasing the sample likelihood (Maximization step).
The probability of generating the wordui by the model

can be formulated as follows:

P(ui |M�) =
∑

�∈Q∗
P(ui, �|M�)

=
∑

�∈Q∗
P(ui |�, M�)P (�|M�), (10)

whereQ∗ denotes the set of possible state sequences, that
is the set of possible paths through the underlying structure,
generatingui . Direct computation of this probability has a
time complexity inO(|ui ||Q||ui |). The Baum–Welch algo-
rithm uses the so-called Forward and Backward recurrences
in order to reduce this complexity toO(|ui ||Q|2).
TheViterbi algorithm[51,52]computes an approximation

of the generation probability based on a single path17 of
maximal probabilityP(ui |M�) ≈ P(ui, �max |M�) with

�max = argmax
�∈Q∗

P(ui, �|M�) (11)

∀a ∈ �, ∀q ∈ Q, the estimateB̂(q, a) of the emission
probability of the lettera on stateq is given by

B̂(q, a) =
{ C(q, a)

C(q)
if C(q) >0,

0 otherwise,
(12)

whereC(q, a) denotes the number of times the lettera
was emitted on stateq along the path�max for each word

17There is no guarantee that the maximal probability state
sequence is generally unique. The Viterbi algorithm returns one
such state sequence.
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of the sampleS, and C(q) = ∑
a∈� C(q, a). The other

parameters are estimated in a similar way. More details
about Baum–Welch and Viterbi algorithms are presented in
[34,53,3–5].
Note that once the HMM parameters are known, the For-

ward recurrence can be used to compute efficiently the prob-
ability of generating any new wordu by the HMM. Simi-
larly the Viterbi algorithm returns the path�max , which is a
maximal probability state sequence generating this word. In
other words, this algorithm provides a maximal probability
alignment between each letter of the wordu and the model
states.
All the results presented here can be applied to PNFA

as they are equivalent to HMMs (see Section 3). In the
particular case of PDFA, the estimation problem is simplified
as there is at most one generating path for each word of
the learning sample. This unique generating path is also the
Viterbi path. In this case, the maximum likelihood estimate
of a transition probability18 is given by

�̂(q, a) =
{ C(q, a)

C(q)
if C(q) >0,

0 otherwise,
(13)

whereC(q, a) denotes the number of times the transition
(q, a) was used while generatingS.
WhenM is a PDFA, the time complexity of the exact

computation ofP(ui |M�) is inO(|ui |). A similar simplified
computation can be derived for the more general class of
non ambiguous probabilistic context-free grammars[54].
The general case of estimating the parameters of ambiguous
probabilistic context-free grammars can be solved by the
Inside-Outside algorithm[55–57].

6.2. State merging induction algorithms

In this section we describe several induction algorithms
that generalizes the learning sample by merging states of
a trivial PDFA built on this sample. This initial PDFA, of-
ten called theProbabilistic Prefix Tree Acceptor(PPTA), is
presented in Section 6.2.1. Several state merging algorithms
are described next.

6.2.1. PPTA and quotient automaton
Given a learning sampleS, the prefix tree acceptor19

is a DFA that only generatesS. Its state set is the set of
prefixes of words belonging toS, resulting in a tree-shaped
automaton.PPT A(S) denotes the probabilistic prefix tree

18We adopt a simplified notation for PDFA as, for any pair
(q, a), there is at most one stateq ′ such that�(q, a, q ′) >0. In
the sequel, this probability is simply denoted by�(q, a).

19 In a non-probabilistic setting, the same automaton can be
seen as an acceptor or a generator of words belonging to some
regular language. The probabilistic version we consider here is a
PDFA seen as a probabilisticgenerator. Probabilistic Prefix Tree
Generator would therefore be a better name but it is not commonly
used in the literature.

acceptor. It is a PDFA with finite supportS as defined in
Proposition 3, where the distribution� considered is the
sample distribution: ifC(u) denotes the count of the word
u in the learning sampleS, which is a multi-set, the sample
distribution is defined as�(u) = C(u)∑

uC(u)
.

LetA denote a PNFA the state set of which isQ. Assume
the support language ofA includes a sampleS. Let A�
denote a PNFA derived fromAwith respect to the partition�
of Q. A� is called aquotient automatonof A. It is obtained
by merging states ofA belonging to the same subset in�.
When a stateq (resp.q ′) fromA� results from the merging
of the states{q1, . . . , qk} (resp. {q ′

1, . . . , q ′
l
}) from A the

following equalities must hold:

∀a ∈ �, C(q, a, q ′) =
k∑

i=1

l∑
j=1

C(qi, a, q ′
j ). (14)

In the particular case ofA� being a PDFA, the previous
equalities are simply written as

∀a ∈ �, C(q, a) =
k∑

i=1

C(qi, a). (15)

Fig. 11presents an example ofPPT A(S) builton the sample
S={a, aa, b, b, b} and its quotient automaton obtained from
the partition� = {{ε, a}, {aa}, {b}}.
State merging is a generalization operation since the

relation between support languages isL(A) ⊆ L(A�).
The associated probability distributions differ whenever
L(A)�L(A�). The set of all probabilistic automata that
can be derived fromPPT A(S) by merging some states,
which is the set of quotient automata ofPPT A(S), de-
fines a search space of automata generalizing the learning
sample. This search space includes in particular all PDFA
that can be derived fromPPT A(S). Properties of the same
search space considered in a non-probabilistic setting are
described in[58,59].
Fig. 12 depicts a generic learning algorithm using state

merging. A state pair is first selected fromPPT A(S)

and this pair is a candidate for merging. The function
SelectStates defines the order in which candidate
state pairs are considered. The functionCompatible
tests whether two states should be merged according to
some statistical criterion and a precision parameter
. If the
candidate state pair is compatible, the current automaton is
updated by mergingq andq ′, and, possibly, some additional
states. Candidate state pairs are considered for merging till
some stopping criterion is met. The merging algorithms
described in the next sections can be formulated according
to specific definitions of the functionsSelectStates ,
Compatible , Update , and the stopping criterion.

6.2.2. The ALERGIA algorithm
The ALERGIA algorithm [18] induces a PDFA from

a learning sample. The states ofPPT A(S) are associ-
ated to prefixes which may be sorted according to the
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Fig. 11. A probabilistic prefix tree automaton and a quotient automaton given the sampleS = {a, aa, b, b, b} and the partition
� = {{ε, a}{aa}, {b}}.

Fig. 12. A generic induction algorithm using state merging.

standard order on strings.20 Candidate states for merg-
ing are considered in this order.SelectStates returns
state pairs made of a given state and each of its pre-
decessors following the same order. For example, the
first candidate state pairs on a two letter alphabet can
be21 (a, ε), (b, ε), (b, a), (aa, ε), (aa, a), (aa, b), . . . .
The stopping criterion is defined as the end of the enu-

meration of prefix pairs actually present inPPT A(S).
O(n2) candidate state pairs are therefore checked for merg-
ing compatibility, wheren denotes the number of states of
PPT A(S).
The functionCompatible implements a compatibility

measure derived from the Hoeffding bound[60]. Formally,
two statesq andq ′ are
-compatible (0< 
�1) if the two
following conditions hold:∣∣∣∣C(q, a)

C(q)
− C(q ′, a)

C(q ′)

∣∣∣∣
<

√
1

2
ln

2




(
1√

C(q)
+ 1√

C(q ′)

)
∀a ∈ �, (16.1)

�(q, a) and�(q ′, a) are
-compatible, ∀a ∈ �. (16.2)

20According to the standard order denoted<, the first strings
on the alphabet� = {a, b} are ε < a < b < aa < ab < ba < bb <

aaa < · · · .
21The candidate state pairs actually considered are only those

present inPPT A(S).

Condition (16.1) defines the compatibility between each pair
of transitions outgoing respectively from stateq and q ′.
The same condition must hold for final probability estimates
obtained by replacingC(q, a) with C(q,#) (resp.C(q ′, a)

with C(q ′,#)), where # is a specialend-of-wordsymbol.
Condition 16.2 requires the compatibility to be recursively
satisfied for every pair of successors of these states.22

TheUpdate functionmerges two compatible statesqand
q ′, and, recursively, all their respective successors in order to
eliminate non-determinism in the underlying structure.Fig.
13 depicts an execution example of theUpdate function.
The temporary solution is represented at the top and proba-
bilities are left out here for clarity. The state pair(ba, b) is
assumed to satisfy the compatibility measure. These states
are merged resulting in a new quotient automaton, which in
this case is structurally non-deterministic. Subsequent merg-
ing steps are then performed to eliminate non-determinism.
This results in the automaton, depicted at the bottom of the
figure, which is guaranteed to be a PDFA. This recursive
merging operation is sometimes calleddeterminization by
merging.
The classPDFA can be identified in the limit with prob-

ability one using the ALERGIA algorithm. A slightly mod-
ified algorithm, called RLIPS, was proposed later with a

22 If one successor state, sayq ′, is undefined for the transition
function� is partial, condition (16.1) can be rewritten for the other

successorq as follows:
∣∣∣C(q,a)

C(q)

∣∣∣<√
1
2 ln

2



(
1√

C(q)

)
, ∀a ∈ �.



1366 P. Dupont et al. / Pattern Recognition 38 (2005) 1349–1371

b
ba

aa

a

aa
a

b

b
b

b

a

a

a

a
aa

b

b

b
b

a

a

aaa
b

b
bb

a

a

a
aa b

b
b

a

aaa

b

b
b

 

a

aaa

bb

⇓

⇓

⇓

⇓

⇓

⇓

a

aa

bb

Fig. 13. An Update example including determinization by
merging.

reformulated proof of convergence[21]. Finally note that,
in the case of small finite samples, state pairs with very low
counts can be wrongly considered compatible. This was ob-
served experimentally by Young-Lai and Tompa who intro-
duced some refinements to the compatibility measure[61].

6.2.3. Learning acyclic PDFA
Ron et al. proposed an algorithm for learning acyclic

PDFA [20]. It is similar to ALERGIA but for the defini-
tions off SelectStates andCompatible . Candidate
state pairs are restricted to states sharing the same level in
PPT A(S). These states are associated with prefixes of the
same length. Thus the quotient automata are acyclic. State
pairs are considered in increasing level order, and, for a
given level, in arbitrary order. In addition, a given state can
be selected only if its count is greater or equal to a prede-
fined threshold. All low count states belonging to the same

level are eventually merged in a single state, irrespective of
their compatibility. On the other hand, two statesq andq ′
are
-compatible if∣∣∣∣C(q, a�∗)

C(q)
− C(q ′, a�∗)

C(q ′)

∣∣∣∣ � 


2
∀a ∈ �, (17)

whereC(q, a�∗) denotes the count of the suffixes of stateq
starting with lettera in the current solution. These counts can
be computed efficiently inPPT A(S) and updated when-
ever states are merged. Transition probabilities are finally
smoothed by correcting the maximum likelihood estimates
as follows

�̂(q, a) = C(q, a)

C(q)
(1− (|�| + 1)�min) + �min, (18)

where�min denotes the minimal probability assigned to any
transition.
The class of
-distinguishable APDFA is PAC learnable

using the proposed algorithm (see Section 5.2). This inter-
esting result is limited however by the fact that the induced
support languages are necessarily finite.

6.2.4. The MDI algorithm
The MDI algorithm[22] differs from ALERGIA in the

definition of theCompatible function. This algorithm
aims at inducing PDFAwhile trading off minimal divergence
from the training sample distribution and minimal size. It
can be considered as a Bayesian learning method (see Sec-
tion 4.4). Indeed a possible solution with null divergence
is PPT A(S). It is also a maximum likelihood model built
from the learning sample. On the other hand, favoring small
automata, or equivalently automata derived fromPPT A(S)

with a large number of merging operations, corresponds to
an increased prior probability associated to a reduced au-
tomaton size. Trading off both effects is thus equivalent to
maximizing the posterior probability of the model given the
training data.
AssumeA0=PPT A(S), A1 is a temporary solution and

A2 is a tentative new solution that can be derived fromA1.
In other words,A2 can be obtained fromA1 by merging
some candidate state pairq andq ′, and, possibly, some ad-
ditional states according to the determinization by merging
operation. Statesq andq ′ are
-compatible if

D(A0‖A2) − D(A0‖A1)

|A1| − |A2| < 
. (19)

In other words,A2 is the new temporary solution if the
divergence increment relative to the size reduction, that is,
the reduction of the number of states, is less than
. Note
that, when the prior probability ofAi is defined asP(Ai)=
2−|Ai |, the denominator of expression (19) is equivalent
to the log ratio of thepriors: log2

P(A2)
P (A1)

. The divergence
increment can be efficiently computed as explained below.
Let PPT A(S) = A0 = 〈�, Q0, �0, �0, �0) and let

A0/�01= A1 = (�, Q1, �1, �1, �1) be a deterministic quo-
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tient automaton ofA0. By definition of a quotient automa-
ton, each stateqi in A0 exactly corresponds to one state
qi�B�01(qi) in A1. In other words,B�01(qi) denotes the
subset of the partition�01 to which the stateqi belongs. Let
ci denote the probability of reachingqi from the tree root.
The divergence betweenA0 andA1 can be computed as

D(A0‖A1) =
∑

qi∈Q0

∑
a∈�∪{#}

ci�0(qi , a) log
�0(qi , a)

�1(qi , a)

= −
∑

qi∈Q0

∑
a∈�∪{#}

ci�0(qi , a) log�1(qi , a)

− H(A0), (20)

whereH(A0) denotes the entropy ofA0. The divergence
D(A0‖A1) is always finite in this case as�1(qi , a) "= 0 if
�0(qi , a) "= 0. LetA2=A1/�12 be a deterministic quotient
automaton ofA1. By construction,A2 is also a quotient
automaton ofA0 for some partition�02. Thus the divergence
increment can be computed as follows:

D(A0‖A2) − D(A0‖A1)

=
∑

qi∈Q012

∑
a∈�∪{#}

ci�0(qi , a) log
�1(qi , a)

�2(qi , a)
, (21)

whereQ012 = {qi ∈ Q0 | B�01(qi) "= B�02(qi)} denotes
the set of states inA0 that have been merged to deriveA2
from A1.
There is no existing proof of convergence of MDI with

respect to learning models described in Section 4. Empirical
results in the domain of language model construction for the
ATIS travel information task[62] show however that MDI
outperforms ALERGIA[22].

6.2.5. Bayesian HMM induction by state merging
Stolcke and Omohundro proposed an induction algorithm

by Bayesian model merging[63,64]. This algorithm differs
from the generic merging algorithm described atFig. 12,
since HMMs are chosen here as representation class, but
several similarities can be observed.
The initial solution is a trivial HMMM0 generating ex-

actly the learning sampleS. Each wordu of S is associated
to a specific path inM0. The initial probability of the first
state of each path is given by the relative frequency ofu in S.
Each path is made of|u| states and the emission probability
of each state is 1 for the corresponding letter. Each state is
therefore initially assigned to a unique output symbol. Note
thatM0 is a maximum likelihood model.23

The prior probability of a modelM� with parameters� is
defined asP(M�)=P(Ms)P (�|Ms), whereP(Ms) denotes
the prior probability of the HMM structure andP(�|Ms)

denotes the prior probability of the parameter values given

23The definition of the trivial model given in Ref.[64] slightly
differs from our definition as it uses a distinct path associated to
each repetition of a given word inS. However, equivalent states in
this model can be merged to getM0 without likelihood loss.

the structureMs . The structural prior is defined asP(Ms) ∝
e−|M|, where|M| is the number of states of the HMM, pro-
ducing a bias towards small models as for the MDI algo-
rithm. Since transition and emission probabilities in a HMM
can be seen as multinomial distributions, the parameter pri-
ors are assigned using a Dirichlet distribution. The effect of
this prior is equivalent to having a number of additional vir-
tual counts associated to each of the possible emissions and
transitions. For example, the MAP estimate of the emission
probability of lettera on stateq is given by

B̂(q, a) = C(q, a) + �e − 1∑
a∈�[C(q, a) + �e − 1] , (22)

where�e is the virtual count associated to an emission. The
virtual counts chosen in this case are making equal use of
all potential emissions and transitions, adding bias towards
uniform transition and emission probabilities.
Starting from the initial model, all state pairs are consid-

ered for merging and the resulting model that maximizes the
posterior probability of the model structure is chosen. This
probability incorporates a global prior weighting� >0. The
quantity to be maximized is defined as

� logP(M) + logP(S|M). (23)

The merging step is iterated till a local maximum of the
weighted posterior is found.
The time complexity of this algorithm is significantly

larger than those of the algorithms described above. In par-
ticular, the number of state pairs consideredat each stepis
in O(n2), wheren denotes the number of states ofM0. The
total number of candidate state pairs is therefore inO(n3).
Moreover there is no analogue to the determinization by
merging operation, which would reduce significantly the ac-
tual number of state pairs considered in practice.
Several heuristics are used here to decrease the number of

candidate state pairs. For instance, early merging steps re-
strict candidates to state pairs having the same output sym-
bol, while general merging is allowed in later stages. The
evaluation of the posterior probabilities also includes several
approximations. In particular, the model likelihood is com-
puted using the Viterbi approximation described in Section
6.1. It is also assumed that merging preserves the Viterbi
paths.
One common problem observed in practice is that the

stopping criterion is satisfied too early, as a single merg-
ing step could decrease the posterior model probability even
though additional related steps might increase it. The stop-
ping criterion is therefore modified to trigger only after a
fixed number of steps have produced no improvement.

6.3. State splitting induction algorithms

State splitting is an induction technique opposite to state
merging. A model with very few states (possibly a single
one) is built initially. The topology of this initial model
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depends on the prior knowledge available. For instance, it
can be a fully connected graph or a left-to-right structure,
as in the case of HMMs used for acoustic modeling. Next,
the model is iteratively specialized by splitting some states
to best fit the training data.
An early approach using splitting is described in Ref.[16],

where a stochastic regular grammar, equivalent to a PNFA,
is iteratively specialized so as to maximize a Bayesian crite-
rion. However, the enumerative search technique proposed
has an exponential time complexity.

6.3.1. Successive state splitting
Successive state splitting was used to learn HMM topolo-

gies for allophone modeling[65]. An improved version of
this technique is described in Ref.[66]. This approach was
developed for continuous HMMs but the basic steps can be
applied in the discrete case. An initial model topology is
defined and parameters are estimated by maximum likeli-
hood using the Baum–Welch algorithm (see Section 6.1).
At each step, a state is selected for splitting so as to maxi-
mize the expected log likelihood on a constrained subset of
the parameters. Two types of splitting operations in a left-
to-right structure are considered here. A contextual split re-
places a given state by a pair of parallel states. A temporal
split replaces a given state by a sequence of two states. Only
those states affected by the splitting operation are consid-
ered while retraining the parameters with the Baum–Welch
algorithm. The process is iterated till the likelihood gain
falls below a given threshold. Note that the splitting opera-
tions considered here do not allow to induce cyclic models,
unless cycles were already included in the initial topology.
Additional criteria for state splitting are described in Ref.
[67], including a�2 goodness-of-fit test, a cross-validation
criterion, and an MDL stopping criterion.

6.3.2. Prediction suffix trees learning
Ron et al. proposed an induction technique for learning

L-PFSA (see Section 5.3), which form a subclass of PDFA
equivalent to variable order Markov chains[19]. The repre-
sentation class used forL-PFSA is the class of Prediction
Suffix Trees (PSTs). Each state in a PST is associated to
a specific suffixv and a conditional probabilityP(a|v) of
generating a lettera given the corresponding suffixv. The
initial tree contains a single state associated to the empty
suffix ε. Next, the tree is grown by considering increasingly
larger suffixes up to a maximal length, which defines the
model order. A state associated to the suffixv is created if
there exists a lettera for which the maximum likelihood
estimateP̂ (a|v) satisfies the following conditions:

P̂ (a|v)�� and
P̂ (a|v)

P̂ (a|v−1)
>1+ �′, (24)

where� and�′ are predefined thresholds, andv−1 denotes
the longest suffix ofv not equal tov. L-PFSA are PAC
learnable using the proposed technique (see Section 5.3).

6.4. Structural induction by parameter estimation

The MAP learning approach described in Ref.[68] folds
HMM structure induction into parameter estimation. It uses
an adapted version of the EM-algorithm where the M-step
is modified so as to maximize the posterior probability of
a model. An entropic posterior probability is obtained by
combining an entropic prior with the sample likelihood. The
entropic prior is adding bias towards sparse structures. The
posterior defines a distribution over all possible model struc-
tures and parameterizations within a class. Starting from
an initial model structure, for instance a fully connected
graph, the MAP estimator drives irrelevant parameters to
zero. Simple tests can then be performed to prune transitions
and states while increasing the posterior probability of the
model. Pruning accelerates training by removing parameters
that would otherwise decay asymptotically to zero. MAP
estimation combined with parameter pruning is therefore a
structural induction technique.
Another approach using transition pruning was described

in Ref.[69]. Starting from a fully connected HMM, the algo-
rithm iteratively prunes transitions, and the resulting model
likelihood is recomputed. The pruning process is iterated till
the model likelihood does not decrease significantly. Note
that this heuristic selection criterion could have been for-
malized in a Bayesian setting using a larger prior probability
for a model with less transitions.

6.5. Error-correcting induction techniques

The ECGI algorithm uses error correcting techniques to
induce an automaton structure[17]. The initial model only
generates the first word of the learning sample. The model
is then greedily adapted to best incorporate the rest of the
sample. At each step, new states and transitions are added
according to a minimal number of editing operations (sub-
stitution, deletion, and insertion) needed to accept the new
words. These optimal editing operations are computed using
dynamic programming. Maximum likelihood estimation of
the model parameters can be computed simultaneously, and
the editing costs can be defined according to updated esti-
mates of probabilistic editing operations. Note that the final
structure depends on the order in which the learning exam-
ples are considered. A very similar technique is described
in Ref. [70].

7. Conclusions and perspectives

We studied the links between probabilistic automata and
HMMs, showing that PDFA form a proper subclass of
PNFA, and that PNFA and HMMs are equivalent. More
precisely, there are two families of equivalent models ac-
cording to whether or not final probabilities are included.
In the former case, the models generate distributions over
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words of finite length, while, in the later case, distribu-
tions are defined over complete finite prefix-free sets. The
equivalence between PNFA and HMMs allows to apply
learnability results and induction algorithms developed in
one formalism to the other.
Learnability results presented in Section 5 illustrate the

difficulty of learning probabilistic automata or HMMs. If the
automaton structure is known then learning is reduced to a
probability estimation problem. Looking for the model that
globally maximizes the sample likelihood cannot be per-
formed in polynomial time for the general classes of PNFA
or HMMs. When the structure is unknown, learning in the
PAC sense is not feasible even for PDFA defined on a 2-
letter alphabet. Proper subclasses of PDFA are learnable: au-
tomata with bounded variablememory and
-distinguishable
acyclic PDFA. On the other hand, the class of PDFA is iden-
tifiable in the limit with probability 1 but this model does
not bound the overall complexity of learning.
An open question is whether other interesting subclasses

of PNFA are PAC learnable. Note also that non-learnability
results mentioned here are related to automata with no
final probabilities, and for which the learning objective is
to minimize the divergence with respect to some target
distribution. It would be worth to investigate learnability
results for general PNFA including final probabilities. Al-
ternatively, one could adopt a distance measure between
distributions which would be easier to satisfy than the di-
vergence. An interesting result along these lines was already
mentioned by Fu[14]. It states that even a probabilistic
context-free language can be approximated by a probabilis-
tic finite support language, when the quadratic distance24

is considered between both languages. Alternative criteria
for approximating the maximum likelihood problem could
be considered. In this context, can we characterize the
locally optimal solution produced by the EM algorithm
with respect to a solution that best approximates the global
optimum?
While positive learnability results are difficult to obtain

for the general class of PNFA or HMMs, several algo-
rithms presented in Section 6 can be used in practice. These
learning algorithms usually restrict the learning to a par-
ticular model subclass, typically the class of PDFA. They
do not always fit in with a learning model as described
before but were generally developed in a Bayesian frame-
work.
Finally, we believe that an important issue for practical

applications with limited amounts of training data is the
design of appropriate smoothing techniques for probabilis-
tic automata. Approaches along these lines include symbol
clustering[71], error-correcting smoothing[72] and back-
off smoothing[73].

24The quadratic distance between distributionsP1 andP2 is
defined as:DQ(P1, P2) =∑

u∈�∗ (P1(u) − P2(u))2.
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