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Abstract. This paper describes a novel feature selection algorithm em-
bedded into logistic regression. It specifically addresses high dimensional
data with few observations, which are commonly found in the biomedi-
cal domain such as microarray data. The overall objective is to optimize
the predictive performance of a classifier while favoring also sparse and
stable models.

Feature relevance is first estimated according to a simple t-test rank-
ing. This initial feature relevance is treated as a feature sampling prob-
ability and a multivariate logistic regression is iteratively reestimated
on subsets of randomly and non-uniformly sampled features. At each
iteration, the feature sampling probability is adapted according to the
predictive performance and the weights of the logistic regression. Glob-
ally, the proposed selection method can be seen as an ensemble of logistic
regression models voting jointly for the final relevance of features.

Practical experiments reported on several microarray datasets show
that the proposed method offers a comparable or better stability and sig-
nificantly better predictive performances than logistic regression regular-
ized with Elastic Net. It also outperforms a selection based on Random
Forests, another popular embedded feature selection from an ensemble
of classifiers.

Keywords: stability of gene selection, microarray data classification,
logistic regression.

1 Introduction

Logistic regression is a standard statistical technique addressing binary clas-
sification problems [5]. However logistic regression models tend to over-fit the
learning sample when the number p of features, or input variables, largely ex-
ceeds the number n of samples. This is referred to as the small n large p
setting, commonly found in biomedical problems such as gene selection from
microarray data.

A typical solution to prevent over-fitting considers an l2 norm penalty on the
regression weight values, as in ridge regression [10], or an l1 norm penalty for
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the (Generalized) LASSO [20,16], possibly a combination of both, as in Elastic
Net [22]. The l1 penalty has the additional advantage of forcing the solution to be
sparse, hence performing feature selection jointly with the classifier estimation.

Feature selection aims at improving the interpretability of the classifiers, tends
to reduce the computational complexity when predicting the class of new ob-
servations and may sometimes improve the predictive performances [8,17]. The
feature selection obtained with a LASSO type penalty is however typically un-
stable in the sense that it can be largely affected by slight modifications of the
learning sample (e.g. by adding or removing a few observations). The stability of
feature selection has received a recent attention [12,1] and the interested reader
is referred to a comparative study of various selection methods over a number
of high-dimensional datasets [11].

In this paper, we propose a novel approach to perform feature (e.g. gene)
selection jointly with the estimation of a binary classifier. The overall objective
is to optimize the predictive performance of the classifier while favoring at the
same time sparse and stable models. The proposed technique is essentially an
embedded approach [8] relying on logistic regression. This classifier is chosen
because, if well regularized, it tends to offer good predictive performances and
its probabilistic output helps assigning a confidence level to the predicted class.

The proposed approach nonetheless starts from a t-test ranking method as a
first guess on feature relevance. Such a simple univariate selection ignores the de-
pendence between features [17] but generally offers a stable selection. This initial
feature relevance is treated as a feature sampling probability and a multivari-
ate logistic regression model is iteratively reestimated on subsets of randomly,
and non-uniformly, sampled features. The number of features sampled at each
iteration is constrained to be equal to the number of samples. Such a constraint
enforces the desired sparsity of the model without resorting on a l1 penalty. At
each iteration, the sampling probability of any feature used is adapted according
to the predictive performance of the current logistic regression. Such a procedure
follows the spirit of wrapper methods, where the classifier performance drives
the search of selected features. However it is used here in a smoother fashion by
increasing or decreasing the probability of sampling a feature in subsequent iter-
ations. The amplitude of the update of the sampling probability of a feature also
depends on its absolute weight in the logistic regression. Globally, this feature
selection approach can be seen as an ensemble learning made of a committee of
logistic regression models voting jointly for the final relevance of each feature.

Regularized logistic regression methods are briefly reviewed in section 2.1.
Section 2.2 further details our proposed method for feature selection. Practical
experiments of gene selection from various microarrays datasets, described in
section 3, illustrate the benefits of the proposed approach. In particular, our
method offers significantly better predictive performances than logistic regression
models regularized with Elastic Net. It also outperforms a selection with Random
Forests, another popular ensemble learning approach, both in terms of predictive
performance and stability. We conclude and present our future work in section 4.
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2 Feature Selection Methods

Ensemble learning has been initially proposed to combine learner decisions,
which aggregation produces a single regression value or class label [7]. The
idea of ensemble learning has also been extended to feature selection [8]. Ap-
proaches along those lines include the definition of a feature relevance from
Random Forests [3] or the aggregation of various feature rankings obtained from
a SVM-based classifier [1]. Those approaches rely on various resamplings of the
learning sample. Hence, the diversity of the ensemble is obtained by consider-
ing various subsets of training instances. We opt here for an alternative way of
producing diversity, namely by sampling the feature space according to a prob-
ability distribution, which is iteratively refined to better model the relevance of
each feature.

In section 2.1, we briefly review logistic regression, which serves here as the
base classifier. Section 2.2 further details the proposed approach of ensemble
logistic regression with feature resampling.

2.1 Regularized Logistic Regression

Let x ∈ Rp denote an observation made of p feature values and let y ∈ {−1, +1}
denote the corresponding binary output or class label. A logistic regression mod-
els the conditional probability distribution of the class label y, given a feature
vector x as follows.

Prob(y|x) =
1

1 + exp (−y(wTx + v))
, (1)

where the weight vector w ∈ Rp and intercept v ∈ R are the parameters of the
logistic regression model. The equation wT x+v = 0 defines an hyperplane in fea-
ture space, which is the decision boundary on which the conditional probability
of each possible output value is equal to 1

2 .
We consider a supervised learning task where we have n i.i.d. training in-

stances {(xi, yi), i = 1, . . . , n}. The likelihood function associated with the learn-
ing sample is

∏n
i=1Prob(yi|xi), and the negative of the log-likelihood function

divided by n, sometimes called the average logistic loss, is given by

lavg(w, v) =
1
n

n∑
i=1

f
(
yi(wT xi + v)

)
, (2)

where f(z) = log (1 + exp(−z)) is the logistic loss function.
A maximum likelihood estimation of the model parameters w and v would

be obtained by minimizing (2) with respect to the variables w ∈ Rp and v ∈
R. This minimization is called the logistic regression (LR) problem. When the
number n of observations is small compared to the number p of features, a
logistic regression model tends to over-fit the learning sample. When over-fitting
occurs many features have large absolute weight values, and small changes of
those values have a significant impact on the predicted output.
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The most common way to reduce over-fitting is to add a penalty term to the
loss function in order to prevent large weights. Such a penalization, also known
as regularization, gives rise to the l2-regularized LR problem:

min
w,v

lavg(w, v) + λ‖w‖2
2 = min

w,v

1
n

n∑
i=1

f
(
yi(wT xi + v)

)
+ λ

p∑
j=1

w2
j . (3)

Here λ > 0 is a regularization parameter which controls the trade-off between
the loss function minimization and the size of the weight vector, measured by
its l2-norm.

As discussed in [15], the l2-regularized LR worst case sample complexity grows
at least linearly in the number of (possibly irrelevant) features. This result means
that, to get good predictive performance, adding a feature to the model requires
the inclusion of an additional learning example. For small n, large p problems
the l1-regularized LR is thus usually considered instead by replacing the l2-norm
‖ · ‖2

2 in (3) by the l1-norm ‖ · ‖1. This is a natural extension to the LASSO [20]
for binary classification problems.

The benefit of the l1-regularized LR is its logarithmic rather than linear sam-
ple complexity. It also produces sparse models, for which most weights are equal
to 0, hence performing an implicit feature selection. However l1-regularized LR
is sometimes too sparse and tends to produce a highly unstable feature selec-
tion. A trade-off is to consider a mixed regularization relying on the Elastic Net
penalty [22]:

min
w,v

lavg(w, v) + λ

p∑
j=1

[
1
2
(1 − α)w2

j + α|wj |
]

, (4)

where α ∈ [0, 1] is a meta-parameter controlling the influence of each norm.
For high-dimensional datasets the key control parameter is usually still the l1
penalty, with the l2 norm offering an additional smoothing.

We argue in this paper that there is an alternative way of obtaining sparse
and stable logistic regression models. Rather than relying on a regularization
including an l1 penalty, the sparsity is obtained by constraining the model to be
built on a number of features of the same order as the number of available sam-
ples. This constraint is implemented by sampling feature subsets of a prescribed
size. The key ingredient of such an approach, further detailed in section 2.2, is
a non-uniform sampling probability of each feature where such a probability is
proportional to the estimated feature relevance.

2.2 Ensemble Logistic Regression with Feature Resampling

The proposed feature selection is essentially an embedded method relying on
regularized logistic regression models. Those models are built on small subsets
of the full feature space by sampling at random this space. The sampling prob-
ability is directly proportional to the estimated feature relevance. The initial
relevance of each feature is estimated according to a t-test ranking. Such a sim-
ple univariate ranking does not consider the dependence between features but
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is observed to be stable with respect to variations of the learning sample. This
initial relevance index is iteratively refined as a function of the predictive per-
formance of regularized logistic regression models built on resampled features.
This procedure iterates until convergence of the classifier performance.

Our method relies on the l2-regularized LR as estimated by the optimization
problem (3). The sparsity is not enforced here with an l1 penalty but rather by
explicitly limiting the number of features on which such a model is estimated.
The sample complexity result from [15] gives us a reasonable default number
of features to be equal to the number of training examples n. Those n features
could be drawn uniformly from the full set of p features (with p � n) but we will
show the benefits of using a non-uniform sampling probability. We propose here
to relate the sampling probability of a given feature to its estimated relevance.

Since our primary application of interest is the classification of microarray
data, a t-test relevance index looks to be a reasonable choice as a first guess [21,8].
This method ranks features by their normalized difference between mean expres-
sion values across classes:

tj =
μj+ − μj−√

σ2
j+/m+ + σ2

j−/m−
, (5)

where μj+ (respectively μj−) is the mean expression value of the feature j for
the m+ positively (respectively m− negatively) labeled examples, and σj+, σj−
are the associated standard deviations. The score vector t over the p features is
normalized to produce a valid probability distribution vector prob. We note that
there is no need here to correct for multiple testing since the t-test is not used
to directly select features but to define an initial feature sampling probability.

At each iteration the learning sample is split into training (80%) and validation
(20%) sets. Next, a subset of n features is drawn according to prob and a
l2-regularized LR model is estimated on the training data restricted to those
features. The resulting classifier is evaluated on the validation set according to
its balanced classification rate BCR, which is the average between specificity
and sensitivity (see section 3.2).

The BCR performance of the current model is compared to the average BCR
(initially set to 0.5) obtained for all models built at previous iterations. The
current model quality is estimated by log(1+BCR−BCR). The relative quality
of the current model is thus considered positive (resp. negative) if its performance
is above (resp. below) average.

Finally, the probability vector prob controlling the sampling of features at
the next iteration is updated according to the relative model quality and its
respective weight vector w. The objective is to favor the further sampling of
important features (large weight values) whenever the current model looks good
and disfavor the sampling of non-important features (small weight values) when
the current model looks poor. This process is iterated until convergence of the
classification performance. The net result of this algorithm summarized below is
the vector prob which is interpreted as the final feature relevance vector.
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Algorithm 1. Ensemble Logistic Regression with Feature Resampling

Algorithm elr
Input: A learning sample X ∈ Rn×p and class labels y ∈ {−1, 1}n

Input: A regularization parameter λ for estimating a l2-LR model (3)

Output: A vector prob ∈ [0, 1]p of feature relevance

Initialize prob according to a t-test ranking
BCR← 0.5 // Default initialization of the average BCR

repeat
Randomly split X into training (80%) and validation (20%)
Draw n out of p features at random according to prob
(w, v) ← a l2-LR model M learned on training restricted to n features
Compute BCR of M on validation
quality ← log(1 + BCR− BCR)
// Update the feature relevance vector
foreach j among the n sampled features do

probj ← 1
Z

(
probj + quality ·wj

2·sign(quality)
)

// Z is the normalization constant to define a distribution

Update average BCR

until no significant change of BCR between consecutive iterations;

return prob

3 Experiments

3.1 Microarray Datasets

We report here practical experiments of gene selection from 4 microarray
datasets. Table 1 summarizes the main characteristics of those datasets: the
number of samples, the number of features (genes) and the class ratios.

The classification task in DLBCL (diffuse large B-cells) is the prediction of the
tissue type [18]. Chandran [4] and Singh [19] are two datasets related to prostate
cancer and the task is to discriminate between tumor or normal samples. The
Transbig dataset is part of a large breast cancer study [6]. The original data
measures the time to metastasis after treatment. We approximate this task here
(for the sake of considering an additional dataset) by considering a time threshold
of 5 years after treatment. Such a threshold is commonly used as a critical value
in breast cancer studies. The question of interest is to discriminate between
patients with or without metastasis at this term, and hence reduces to a binary
classification problem. We focus in particular on ER-positive/HER2-negative
patients, which form the most significant sub-population as reported in [13].

Table 1. Characteristics of the microarray datasets

Dataset Samples (n) Features (p) Class Priors

DLBCL 77 7129 25%/75%
Singh 102 12625 49%/51%

Chandran 104 12625 17%/83%
Transbig 116 22283 87%/13%
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3.2 Evaluation Metrics

The main objective is to assess the predictive performance of a classifier built
on the selected genes. The performance metric is estimated according to the
Balanced Classification Rate:

BCR =
1
2

(
TP

P
+

TN

N

)
, (6)

where TP (TN) is the number of correctly predicted positive (negative) test
examples among the P positive (N negative) test examples. BCR is preferred
to the classification accuracy because microarray datasets often have unequal
class prior, as illustrated in Table 1. BCR is the average between specificity
and sensitivity and can be generalized to multi-class problems more easily than
ROC analysis.

To further assess the quality of feature (= gene) selection methods, we evaluate
the stability of the selection on k resamplings of the data. The Kuncheva index [12]
measures to which extent k sets of s selected features share common features.

K ({S1, . . . ,Sk}) =
2

k (k − 1)

k−1∑
i=1

k∑
j=i+1

| Si ∩ Sj | − s2

p

s − s2

p

, (7)

where p is the total number of features, and Si, Sj are two gene lists built from
different resamplings of the data. The s2/p term corrects a bias due to chance
of selecting common features among two sets chosen at random. The Kuncheva
index ranges within (-1,1] and the greater its value the larger the number of
common features across the k gene lists.

3.3 Experimental Methodology

We report experimental performances of the gene selection approach introduced
in section 2.2 and referred to as elr. A simple variant, denoted by elr wott,
uses a uniform distribution over the p genes to initialize the sampling proba-
bility distribution prob, instead of the t-test values. We also consider, as an
additional baseline denoted ttest, a direct ranking of the genes according to
the t-test statistics without any further refinement (hence reducing elr to its
initialization).

A further competing approach is enet: a gene selection based on the absolute
values of the feature weights estimated from a logistic regression regularized with
Elastic Net. In such an approach, the sparsity is controlled by the regularization
constants λ and α (see equation (4)). We choose α = 0.2 as in the original
work on microarray classification from the authors [22], and let λ vary in the
range [10−6, 10] to get more or fewer selected features. In contrast, in the elr
method, which uses a l2-regularized logistic loss, λ is fixed to a default value
equal to 1. In this case, the sparsity results from the limited number of sampled
features and the final result is a ranking of the full set of features according to the
prob vector.
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In contrast to the elr method, which relies on various resamplings from the
set of features, alternative methods use several bootstrap samples from the set
of training examples. We report comparative results with BoRFE a bootstrap
extension to RFE [1]. This method is similar to BoLASSO [2] but tailored to
classification problems. Following [1], we rely on 40 bootstrap samples while
discarding 20 % of features at each iteration of RFE.

Random Forests (rf) are another competing approach to define a relevance
measure on genes [3]. Here, a key control parameter is the number of trees consid-
ered in the forest. Preliminary experiments (not reported here) have shown that
the predictive performance obtained with rf is well stabilized with 1,000 trees.
The stability of the gene selection itself can be improved by considering a larger
number of trees (≈ 5, 000) however resulting sometimes in a lower BCR. Hence
we stick to ≈ 1, 200 trees on DLBCL, ≈ 2, 000 trees on Singh and Chandran, and
≈ 2,500 trees on Transbig. Those numbers also happen to be of a similar order
of magnitude as the number of iterations used by the elr method to converge.
We thus compare two different selection methods from approximately the same
number of individual models. The second rf meta-parameter is the number of
features selected at random when growing each node of the trees in the forest.
To be consistent with the elr method, we choose to sample n features at each
node. We note that, given the characteristics of the datasets under study (see
table 1), the n value tends to be close to

√
p, which is a common choice while

estimating a RF [8].
All methods mentioned above produce ranked gene lists from expression values

as measured by microarrays. Specific gene lists are obtained by thresholding such
lists at a prescribed size. We report performances for various list sizes from 512
genes down to 4 genes. We consider 200 independent sub-samplings without
replacement forming binary splits of each dataset into 90% training and 10%
tests. The stability of the gene selection is evaluated according to the Kuncheva
index over the 200 training sets. The predictive performance of classifiers built
on the training sets from those genes is evaluated and averaged over the 200
test sets. To compare predictive results only influenced by the gene selection,
we report the average BCR of l2-regularized LR classifiers, no matter which
selection method is used.

3.4 Results

Figures 1 and 2 report the BCR and stability performances of the various meth-
ods tested on the 4 datasets described in table 1. The gene selection stability
of the elr method is clearly improved when using a t-test to initialize the fea-
ture sampling probability rather than a uniform distribution (elr wott). This
result illustrates that a non-uniform feature sampling related to the estimated
feature relevance is beneficial for the selection stability with no significant influ-
ence on the predictive performance. elr is also more stable than rf on 3 out of
4 datasets while it offers results comparable to enet and BoRFE in this regard.
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Fig. 1. Classification performance (BCR) and signature stability (Kuncheva index) of
the competing methods on the DLBCL and Singh datasets

The elr method outperforms, generally significantly, its competitors in terms
of predictive performance. To support this claim, we assess the statistical sig-
nificance of the differences of average BCR obtained with the elr method and
each of its competitors. We resort on the corrected resampled t-test proposed
in [14] to take into account the fact that the various test folds do overlap. The
significance is evaluated on the smallest signature size which show the highest
BCR value: 24 genes for DLBCL, 16 genes for Singh, 28 genes for Chandran
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and 160 genes for Transbig. Table 2 reports the p-values of the pairwise compar-
isons between elr and its competitors. Significant results (p-value < 0.05) are
reported in bold in this table. elr clearly outperforms enet on all datasets and
rf on 3 out of 4 datasets. It offers better performances than BoRFE and ttest
on all datasets, and significantly on DLBCL and Transbig respectively.

Fig. 2. Classification performance (BCR) and signature stability (Kuncheva index) of
the competing methods on the Chandran and Transbig datasets
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Table 2. Pairwise comparison of the average BCR obtained of ELR and its com-
petitors. Reported results are p-values computed according to the corrected resampled
t-test proposed in [14].

ELR vs. DLBCL Singh Chandran Transbig

Elastic Net 0.039 0.001 0.043 0.033
Random Forests 0.023 0.007 0.086 0.005

Boost. RFE 0.042 0.116 0.091 0.056
t-test 0.089 0.135 0.092 0.046

# genes 24 16 28 160

4 Conclusion and Future Work

We propose a novel feature selection method tailored to high dimensional
datasets. The selection is embedded into logistic regression (LR) with non-
uniform feature sampling. The sampling distribution of features is directly pro-
portional to the estimated feature relevance. Such relevance is initialized with
a standard t-test and further refined according to the predictive performance
and weight values of LR models built on the sampled features. Experiments con-
ducted on 4 microarray datasets related to the classification of tumor samples
illustrate the benefits of the proposed approach in terms of predictive perfor-
mance and stability of the gene selection.

Our future work includes a more formal analysis of the sampling probability
update rule. On a practical viewpoint, the initial feature relevance could also be
adapted according to some prior knowledge on some genes a priori believed to
be more relevant. Such an approach would be an interesting alternative to the
partially supervised gene selection method proposed in [9].
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