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1 Introduction

Hidden Markov Models (HMMs) are widely used in many pattern recog-
nition areas, including biological sequence modeling [Durbin et al., 1998],
speech recognition [Rabiner and Juang, 1993], optical character recognition
[Levin and Pieraccini, 1993] and information extraction [Freitag and McCal-
lum, 1999], [Freitag and McCallum, 2000], to name a few. In most cases, the
model structure, also referred to as topology, is defined according to some
prior knowledge of the application domain. Automatic techniques for induc-
ing the HMM topology are interesting as the structures are sometimes hard
to define a priori or need to be tuned after some task adaptation. The work
described here presents a new approach towards this objective.

Probabilistic automata (PA) form an alternative representation class to
model distributions over strings, for which several induction algorithms have
been proposed. PA and HMMs actually form two families of equivalent
models, according to whether or not final (or termination) probabilities are
included. In the former case, the models generate distributions over words of
finite length, while, in the later case, distributions are defined over complete
finite prefix-free sets [Dupont et al., 2005].

The equivalences between PA and HMMs can be used to apply induction
algorithms in either formalism to model the same classes of string distri-
butions. Nevertheless, previous works with HMMs mainly focused either
on hand-built models (e.g. [Freitag and McCallum, 1999]) or heuristics to
refine predefined structures [Freitag and McCallum, 2000]. More principled
approaches are the Bayesian merging technique due to Stolcke [Stolcke, 1994]
and the maximum likelihood state-splitting method of Ostendorf and Singer
[Ostendorf and Singer, 1997]. The former approach however has not been
shown to clearly outperform alternative approaches while the latter is spe-
cific to the subclass of left-to-right HMMs modeling speech signals.

In contrast, PA induction techniques are often formulated in theoreti-
cal learning frameworks. These frameworks typically include adapted ver-
sions of the PAC model [Ron et al., 1994], Identification with probability 1
[Carrasco and Oncina, 1999, Denis and Esposito, 2004] or Bayesian learn-
ing [Thollard et al., 2000]. Other approaches use error-correcting techniques
[Rulot and Vidal, 1988] or statistical tests as a model fit induction bias
[Kermorvant and Dupont, 2002].

All the above approaches, while being interesting, are still somehow lim-
ited. From the theoretical viewpoint, PAC learnability is only feasible for
restricted subclasses of PAs (see [Dupont et al., 2005], for a review). The gen-
eral PA class is identifiable with probability one [Denis and Esposito, 2004]
but this learning framework is weaker than the PAC model. In particular, it
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guarantees asymptotic convergence to a target model but does not bound the
overall computational complexity of the learning process. From a practical
viewpoint, several induction algorithms have been applied, typically to some
language modeling tasks [Dupont and Chase, 1998, Thollard et al., 2000]
[Dupont and Amengual, 2000, Llorens et al., 2002]. Experimental results in
these works show that automatically induced PA hardly outperform well
smoothed discrete Markov chains (MC), also known as N-grams in this con-
text. Hence even though HMMs and PA are more powerful than simple
Markov chains, it is still unclear whether these models should be considered
when no strong prior knowledge can help to define their structure.

The present contribution describes a novel approach to the structural in-
duction of HMMs. The general objective is to induce the structure and to
estimate the parameters of a HMM from a sample assumed to have been
drawn from an unknown target HMM. The goal however is not the identi-
fication of the target model but the induction of a model sharing with the
target the main features of the distribution it generates. We restrict here our
attention to features that can be deduced from the sample. These features
are closely related to fundamental quantities of a Markov process, namely
the stationary distribution and mean first passage times (MFPT). In other
words, the induced model is built to fit the dynamics of the target machine
observed in the sample, not necessarily to match its structure.

We show in section 2 that any HMM can be converted into an equivalent
Partially Observable Markov Model (POMM) [Callut and Dupont, 2004]. Any
state of a POMM emits a single letter with probability 1, but several states
can emit the same letter. Several properties of standard Markov chains are
reviewed in section 3. The relation between a POMM and a lumped process
in a Markov chain is detailed in section 4. This relation forms the first basis
of the induction algorithm presented in section 6.

HMMs are able to model a broader class of distributions than finite or-
der Markov chains. In particular, section 5 describes why HMMs, with an
appropriate topology, are well suited to represent long term probabilistic de-
pendencies in a compact way. We also argue why accurate modeling of these
dependencies cannot be achieved through the classical approach of Baum-
Welch estimation of a fully connected model. These observations motivate
the use of MFPT to guide the search of an appropriate model. The resulting
induction algorithm is presented in section 6. Comparative results given in
section 7 illustrate the superiority of POMM induction over variable order
Markov chains (equivalent to back-off smoothed Ngrams) and EM estimation
of a fully connected HMM.
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Figure 1: A HMM example.

2 Hidden Markov Models and Partially Ob-

servable Markov Models

We recall in this section the classical definition of a HMM and we show that
any HMM can be represented by an equivalent partially observable model.

Definition 1 (HMM) A discrete Hidden Markov Model (HMM) (with state
emission) is a 5-tuple M = 〈Σ, Q, A, B, ι〉 where Σ is an alphabet, Q is
a set of states, A : Q × Q → [0, 1] is a mapping defining the probability
of each transition, B : Q × Σ → [0, 1] is a mapping defining the emis-
sion probability of each letter on each state, and ι : Q → [0, 1] is a map-
ping defining the initial probability of each state. The following stochasticity
(or properness) constraints must be satisfied: ∀q ∈ Q,

∑
q′∈Q A(q, q′) = 1;

∀q ∈ Q,
∑

a∈Σ B(q, a) = 1;
∑

q∈Q ι(q) = 1.

Figure 1 presents a HMM defined as follows:
Σ = {a, b}, Q = {1, 2}, ι(1) = 0.4; ι(2) = 0.6;
A(1, 1) = 0.1; A(1, 2) = 0.9; A(2, 1) = 0.7; A(2, 2) = 0.3;
B(1, a) = 0.2; B(1, b) = 0.8; B(2, a) = 0.9; B(2, b) = 0.1

Definition 2 (HMM path) Let M = 〈Σ, Q, A,B, ι〉 be a HMM. A path in
M is a word defined on Q∗. For any path ν, νi denotes the i-th state of ν,
and |ν| denotes the path length. For any word u ∈ Σ∗ and any path ν ∈ Q∗,
the probabilities PM(u, ν) and PM(u) are defined as follows:

PM(u, ν) =

 ι(ν1)
∏l−1

i=1[B(νi, ui)A(νi, νi+1)]B(νl, ul) if l = |u| = |ν| > 0,
1 if |u| = |ν| = 0 and
0 otherwise.

PM(u) =
∑
ν∈Q∗

P (u, ν).

PM(u, ν) is the probability to emit word u while following path ν. Along any
path, the emission process is Markovian since the probability of emitting a
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letter on a given state only depends on that state. HMMs are used to model
processes for which the existence of such a path (or state sequence) can be
assumed while the actual states are not observed. PM(u) can be interpreted
as the probability of observing a finite word u as part of a random walk
through the model. For instance, the probability of the word ab in the HMM
of Fig. 1 is given by: PM(ab) = PM(ab, 11) + PM(ab, 12) + PM(ab, 21) +
PM(ab, 22) = 0.0064 + 0.0072 + 0.3024 + 0.0162 = 0.3322.

Definition 3 (POMM) A Partially Observable Markov Model (POMM)
is a HMM M = 〈Σ, Q, A,B, ι〉 with emission probabilities satisfying: ∀q ∈
Q, ∃a ∈ Σ such that B(q, a) = 1.

In other words, any state in a POMM emits a specific letter with probability
1. Hence we can consider that POMM states only emit a single letter. This
model is called partially observable since, in general, several distinct states
can emit the same letter. As for a HMM, the observation of a word emit-
ted during a random walk does not allow to identify the states from which
each letter was emitted. However, the observations define state subsets from
which each letter may have been emitted. Theorem 1 shows that the class of
POMMs is equivalent to the class of HMMs, as any distribution generated by
a HMM with |Q| states over an alphabet Σ can be represented by a POMM
with O(|Q|.|Σ|) states.

Theorem 1 (Equivalence between HMMs and POMMs)
Let M = 〈Σ, Q, A, B, ι〉 be a HMM, there exists an equivalent POMM M ′ =
〈Σ, Q′, A′, B′, ι′〉.

Proof 1 Let M ′ be defined as follows.

• Q′ = Q× Σ,

• B′((q, a), x) = 1 if x = a, and 0 otherwise,

• A′((q, a), (q′, b)) = B(q, b)A(q, q′),

• ι′((q, a)) =
∑

q′∈Q ι(q′)B(q′, a)A(q′, q).

It is easily shown that M ′ satisfies the stochasticity constraints. Let u =
u1 . . . ul be a word of Σ∗ and let ν = ((q1, u1) . . . (ql, ul)) be a path in M ′. We
have:

PM ′(u, ν)

= ι′((q1, u1))
∏l−1

i=1[B
′((qi, ui), ui)A

′((qi, ui), (qi+1, ui+1))]B
′((ql, ul), ul)

=
∑

q′∈Q ι(q′)B(q′, u1)A(q′, q1)
∏l−1

i=1[B(qi, ui+1)A(qi, qi+1)]

=
∑

q′∈Q PM(u, q′q1 . . . ql−1)A(ql−1, ql)
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Figure 2: Transformation of a HMM into an equivalent POMM.

Summing up over all possible paths of length l = |u| in M ′, we obtain:

PM ′(u) =
∑

ν∈Q′l PM ′(u, ν)

=
∑

ν1∈Ql−1

∑
q′∈Q PM(u, q′ν1)

∑
q∈Q A(q|ν1|, q)

=
∑

ν2∈Ql PM(u, ν2) = PM(u)

Hence, M and M ′ generate the same distribution. �

The proof of theorem 1 is adapted from [Dupont et al., 2005] showing
the similar equivalence between PA without final probabilities and HMMs.
An immediate corollary of this theorem is the equivalence between PA and
POMMs. Hence we call regular string distribution, any distribution generated
by these models1. Figure 2 shows an HMM and its equivalent POMM. It
should be stressed that all transition probabilities of the form A′((q, ), (q′, b))
are necessarily equal as the value of A′((q, a), (q′, b)) does not depend on a
in a POMM constructed in this way. A state (q, a) in this model represents
the state q reached during a random walk in the original HMM after having
emitted the letter a on any state.

3 Markov Chains, Stationary Distribution and

Mean First Passage Times

The notion of POMM introduced in section 2 is closely related to a standard
Markov Chain (MC). Indeed, in the particular case where all states emit a
different letter, the process of a POMM is fully observable and the Markov

1More precisely, these models generate distributions over complete finite prefix-free
sets. A typical case is a distribution defined over Σn, for some positive integer n.
See [Dupont et al., 2005] for further details.
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property is satisfied as, by definition, the probability of any transition only
depends on the current state. Some fundamental properties of a Markov
chain are recalled in this section. The links between a POMM and a MC are
further detailed in section 4.

Definition 4 (Discrete Time Markov Chain) A discrete time Markov
Chain (MC) is a stochastic process {Xt | t ∈ N} where the random variable
X takes its value at any discrete time t in a countable set Q and such that:

P [Xt = q |Xt−1, Xt−2, . . . , X0] = P [Xt = q |Xt−1, . . . , Xt−p].

This condition states that the probability of the next outcome only depends on
the last p values of the process (Markov property). When the set Q is finite,
the process forms a p order finite state MC.

In the rest of this paper, a MC refers to an order 1 model unless stated
otherwise. A MC can be represented by a 3-tuple T = 〈Q,A, ι〉 where Q
is a finite set of states, A is a |Q| × |Q| transition probability matrix and ι
is a |Q|−dimensional vector representing the initial probability distribution.
The following stochasticity constraints must be satisfied:

∑
q∈Q ι(q) = 1;

∀q ∈ Q,
∑

q′∈Q A(q, q′) = 1.
A finite MC can also be constructed from a HMM by ignoring the emission

probabilities and the alphabet. We call this model the underlying MC of a
HMM.

Definition 5 (Underlying MC of a HMM) Given a HMM M = 〈Σ, Q,
A, B, ι〉, the underlying Markov chain T is the 3-tuple 〈Q,A, ι〉.

Definition 6 (Random walk string) Given a MC, T = 〈Q,A, ι〉, a ran-
dom walk string s can be defined on Q∗ as follows. A random walker is
positioned on a state q according to the initial distribution ι. The random
walker next moves to some state q′ according to the probability A(q, q′). Re-
peating this operation n times results in a n-steps random walk. The string
s is the sequence of states visited during this walk.

In the present work, we focus on regular Markov chains. For such chains,
there is a strictly positive probability to be in any state after n steps, no
matter the starting state.

Definition 7 (Regular MC) A MC with transition matrix A is regular if
and only if for some n ∈ N, the power matrix A(n) has no zero entries.
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In other words, the transition graph of a regular MC is strongly connected2

and all states are aperiodic3. The stationary distribution and mean first pas-
sage times are fundamental quantities characterizing the dynamics of random
walks in a regular MC. These quantities form the basis of the induction al-
gorithm presented in section 6.

Definition 8 (Stationary distribution) Given a regular MC, T = 〈Q,A,
ι〉, the stationary distribution is a |Q|−dimensional stochastic vector π such
that πT A = πT .

This vector is also known as the equilibrium vector or steady-state vector.
A regular MC is started in steady-state when the initial distribution ι is
set to the stationary distribution π. The q-th entry of the vector π can be
interpreted as the expected proportion of the time the Markov process in
steady-state reaches state q.

Definition 9 (Mean First Passage Time) Given a regular MC, T = 〈Q,A, ι〉,
the first passage time is a function f = Q×Q→ N such that f(q, q′) is the
number of steps before reaching state q′ for the first time, leaving initially
from state q.

f(q, q′) = inf{t ≥ 1 |Xt = q′and X0 = q}

The Mean First Passage Time (MFPT) denotes the expectation of this func-
tion. It can be represented by the MFPT matrix M , with Mqq′ = E[f(q, q′)].

For a regular MC, the MFPT values can be obtained by solving the following
linear system [Kemeny and Snell, 1983]:

∀q, q′ ∈ Q,Mqq′ =


1 +

∑
q′′ 6=q′

Aqq′′Mq′′q′ , if q 6= q′

1

πq

, otherwise.

The values Mqq are usually called recurrence times4.

2The chain is said to be irreducible.
3A state i is aperiodic if A

(n)
ii > 0 for all sufficiently large n.

4An alternative definition, Mqq = 0, is possible when it is not required to leave the
initial state before reaching the destination state for the first time [Norris, 1997].
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Figure 3: A regular Markov chain T1 and the partition κ = {{1, 3}, {2}, {4}}.

4 Relation between Partially Observable Markov

Models and Markov Chains

Given a MC, a partition can be defined on its state set and the resulting
process is said to be lumped.

Definition 10 (Lumped process) Given a regular MC, T = 〈Q,A, ι〉, let
q(t) be the state reached at time t during a random walk in T . The set
κ = {κ1, κ2, . . . , κr} denotes a partition of the set of states Q. The function
Kκ = Q→ κ maps the state q to the block of κ that contains q. The lumped
process T//κ outcomes Kκ(q

(t)) at time t.

Consider for example the regular MC T1 illustrated5 in Fig. 3. A partition
κ is defined on its states set, with κ1 = {1, 3}, κ2 = {2} and κ3 = {4}. The
random walk 312443 in T1 corresponds to the following observations in the
lumped process T1//κ: κ1κ1κ2κ3κ3κ1.

While the states are fully observable during a random walk in a MC, a
lumped process is associated with random walks where only state subsets are
observed. In this sense, the lumped process makes the MC only partially
observable as it is the case for a POMM. Conversely, a random walk in a
POMM can be considered as a lumped process of its underlying MC with
respect to an observable partition of its state set. Each block of the observable
partition corresponds to the state(s) emitting a specific letter.

5For the sake of clarity, the initial probability of each state is not depicted. Moreover,
as we are mostly interested in MC being in steady-state mode, the initial distribution is
assumed to be equal to the stationary distribution deriving from the transition matrix (see
Def. 8).
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Figure 4: A non markovian lumped process.

Definition 11 (Observable partition) Given a POMM M = 〈Σ, Q, A, B,
ι〉, the observable partition κ is defined as follows:

∀q, q′ ∈ Q,Kκ(q) = Kκ(q
′)⇔ ∃a ∈ Σ, B(q, a) = B(q′, a) = 1

The underlying MC T of a POMM M has the same state set as M . Thus
the observable partition κ of M is also defined for the state set of T . If each
block of this partition is labeled by the associated letter, M and T//κ define
the same string distribution.

It is important to notice that the Markov property is not necessarily sat-
isfied for a lumped process. For example, the lumped MC in Fig. 3 satisfies
P [Xt = κ2 |Xt−1 = κ1, Xt−2 = κ2] = 0.2 and P [Xt = κ2 |Xt−1 = κ1, Xt−2 =
κ3] = 0.4, which clearly violates the first-order Markov property. In gen-
eral, the Markov property is not satisfied when, for a fixed length history,
it is impossible to decide unequivocally which state the process has reached
in a given block while the next step probability differs for several states in
this block. This can be the case no matter the length of the history con-
sidered. This is illustrated by the MC depicted in Fig. 4 and the partition
κ = {{1, 2}, {3}}. Even if the complete history of the lumped process is
given, there is no way to know the state reached in κ1. Thus, the probability
P [Xt = κ2 | Xt−1 = κ1, Xt−2, . . . , X0] cannot be unequivocally determined
and the lumped process is not markovian for any order. Hence the definition
of lumpability.

Definition 12 (Lumpability) A MC T is lumpable with respect to a par-
tition κ if the lumped process T//κ satisfies the first-order Markov property
for any initial distribution.

When a MC T is lumpable with respect to a partition κ, the lumped process
T//κ defines itself a Markov chain.
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Figure 5: The MC T1 lumped with respect to the partition κ′ =
{{1, 2}, {3, 4}}.

Theorem 2 (Necessary and sufficient conditions for lumpability)
A MC is lumpable with respect to a partition κ if and only if for every pair
of blocks κi and κj the probability Aij//κ to reach some state of κj is equal
from every state in κi:

∀κi, κj ∈ κ,∀q, q′ ∈ κi, Aij//κ ,
∑

q′′∈κj

Aqq′′ =
∑

q′′∈κj

Aq′q′′

The proof of this result is given in [Kemeny and Snell, 1983].

The values Aij//κ form the transition matrix of the lumped chain. For ex-
ample, the MC T1 given in Fig. 3 is not lumpable with respect to the parti-
tion κ = {{1, 3}, {2}, {4}} while it is lumpable with respect to the partition
κ′ = {{1, 3}, {2, 4}}. The lumped chain T1//κ

′ is illustrated in Fig. 5.
Even though a lumped process is not necessarily markovian, it is useful for

the induction algorithm presented in section 6 to define the mean first passage
times between the blocks of a lumped process. To do so, it is convenient to
introduce some notions from absorbing Markov chains. In a MC, a state q
is said to be absorbing if there is a probability 1 to go from q to itself. In
other words, once an absorbing state has been reached in a random walk, the
process will stay on this state forever. A MC for which there is a probability
1 to end up in an absorbing state is called an absorbing MC. In such a
model, the state set can be divided into the absorbing state set QA and its
complementary set, the transient state set QT . The transition submatrix
between transient states is denoted by AT . A related notion is the mean
time to absorption.

Definition 13 (Mean Time to Absorption)
Given an absorbing MC, T = 〈{QA, QT}, A, ι〉, the time to absorption is a
function g = QT → N such that g(q) is the number of steps before absorption,
leaving initially from a transient state q.

g(q) = inf{t ≥ 1 |Xt ∈ QA, X0 = q}
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The Mean Time to Absorption (MTA) denotes the expectation of this func-
tion. It can be represented by the vector w = N.1,where N = (I − AT )−1

and 1 is a |QT |−dimensional vector with each component being equal to 1.

The q-th entry of w represents the mean time to absorption, leaving initially
from the transient state q. The N matrix used in the computation of w is
often referred to as the fundamental matrix.

Definition 14 (MFPT for a lumped process) Given a regular MC T =
〈Q,A, ι〉, κ a partition of Q and κi, κj two blocks of κ, an absorbing MC
T κj is created from T by transforming every state of κj to be absorbing.
Furthermore, let wκj be the MTA vector of T κj . The mean first passage time
Mij//κ from κi to κj in the lumped process T//κ is defined as follows:

Mij//κ =
∑
q∈κi

πq

πκi

wκj
q if κi 6= κj and Mii//κ =

1

πκi

,

where πq is the stationary distribution of state q in T and πκi
=
∑

q∈κi
πq is

the stationary distribution of the block κi in the lumped process T//κ.

In a lumped process, states subsets are observed instead of the original
states of the Markov chain. A related, but possibly different, process is
obtained when the states of the original MC are merged to form a quotient
Markov chain.

Definition 15 (Quotient MC) Given a MC T = 〈Q,A, ι〉 and a partition
κ = {κ1, κ2, . . . , κr} on Q, the quotient T/κ is a r-states MC with transition
matrix A/κ and initial vector I/κ defined as follows:

Aij/κ =
∑
q∈κi

∑
q′∈κj

πq

πκi

Aqq′ , Ii/κ =
∑
q∈κi

ι(q)

where π is the stationary distribution of T and πκi
=
∑

q∈κi
πq.

Figure 6 presents the quotient model of T1 (shown in Fig. 3) with re-
spect to κ = {{1, 3}, {2}, {4}}. The stationary distribution of T1 is π =
[0.29 0.11 0.14 0.46]T .

Note that for any regular MC T , the quotient T/κ has always the Markov
property while, as mentioned before, this is not necessarily the case for the
lumped process T//κ. The following theorem specifies under which condition
the distributions generated by T/κ and T//κ are identical.

Theorem 3 If a MC T is lumpable with respect to a partition κ then T/κ
and T//κ generate the same distribution in steady-state.
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Figure 6: The quotient of T1 with respect to the partition κ =
{{1, 3}, {2}, {4}}.

Proof 2 When T is lumpable with respect to κ, the transition probabilities
between any pair of blocks κi, κj are the same in both models:

Ai,j/κ =
∑
q∈κi

πq

πκi

∑
q′∈κj

Aqq′ = Aij//κ
∑
q∈κi

πq

πκi

= Aij//κ.

�

5 Modeling long-term probabilistic dependen-

cies

We argue in this section why Markov chains are not well suited to model
exactly, or even to approximate well, long term dependencies. This motivates
the use of more general models like HMMs or POMMs, provided they are
defined with an appropriate topology.

A stochastic process {Xt | t ∈ N} contains long-term dependencies if
an outcome at time t significantly depends on an outcome that occurred
at a much earlier time t′: P (Xt | Xt−1, . . . , Xt′) 6= P (Xt | H) when H =
{Xt−1, . . . , Xt−p} and p < t − t′. Hence, the relevant history size for such a
process is defined as the minimal size of H such that P (Xt |Xt−1, . . . , Xt′) =
P (Xt |H), ∀t, t′ ∈ N, t′ < t. When the size of the relevant history is bounded,
Markov chains of a sufficient order can model the long-term dependencies.
On the other hand, if a conditioning event Xt′ can be arbitrarily far in the
past, more powerful models such as HMMs or POMMs are required.

This phenomenon is further studied in section 5.1. Section 5.2 stresses the
importance of the model topology in order to learn long-term dependencies
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with HMMs. Section 5.3 provides a link between long-term dependencies
and MFPT.

5.1 Modeling long-term dependencies with finite order
MC

Let us consider the parametric POMM Tθ displayed on the top of Figure 7.
Emission of e or f in this model depends on whether b or c was emitted right
before the last consecutive d’s. Depending on the number of consecutive d’s,
the b or c outcomes can be arbitrarily far in the past. In other words,
the size of the relevant history (i.e. the number of consecutive d’s + 1) is
unbounded. The expected number of consecutive d’s is however finite and
given by

∑∞
i=0 θi = 1

1−θ
. Consequently, the expected size of the relevant

history is 1
1−θ

+ 1. It should be noted that when θ = 0, Tθ can be modeled
accurately by an order 2 MC6 since the relevant history size equals 2.

A model would badly fit the distribution defined by Tθ if it would first
emit f rather than e after having emitted b. The probability of such an event
is Perror = P (tf < te | Xt = b) where tf and te denote the respective times
of the first f or e after the outcome b. In the target model Tθ, Perror = 0.
If the same process is modeled by an order 1 MC (middle of Figure 7),
Perror = 0.5. Indeed, when the process reaches state d, there is an equal
probability to reach states e or f. In particular, these probabilities do not
depend on previous emissions of b or c. An order 2 MC, as depicted on the
bottom of Figure 7, would have Perror = 0.475 when θ = 0.95. In general,
the error of an order p MC is given by Perror = θp−1

2
. For instance, when

θ = 0.95, the expected size of the relevant history is 21 and Perror for such
a model is still 0.17. Bounding the probability of error to 0.1, would require
to estimate a MC of order p = dlog0.95(0.2) + 1e = 33. An accurate estimate
of such a model requires a huge amount of training data, very unlikely to be
available in practice. Hence, POMMs and HMMs can better model long-term
dependencies when the relevant history size is unbounded.

5.2 Topology matters to fit long-term dependencies
with HMMs

Bengio has shown that the use of a good HMM topology is crucial in order
to model long term dependencies [Bengio and Frasconi, 1995]. Indeed, the

6A state label b|a in an order 2 MC means that the process emits b after having emitted
a. The probability of the transition from state b|a to state d|b encodes the second order
dependence P (Xt = d|Xt−1 = b, Xt−2 = a).
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or an order 2 MC (bottom).
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classical Baum-Welch algorithm applied to a fully connected graph is hin-
dered by a phenomenon of diffusion of credit: the probability of being in a
state at time t becomes gradually independent of the states reached at a pre-
vious time t′ � t. In other words, the dependencies on the past outcomes of
the process ends up vanishing. This phenomenon is related to the powers of
the transition matrix A used in the forward and backward recursions of the
Baum-Welch algorithm. Let ιt be a row vector representing the distribution
of being in each state at time t. This distribution d steps further is given
by ιt+d = ιtA

d. If the successive powers of A converges quickly to a rank
1 matrix7 then ιt+d becomes independent of ιt. In such case, the estima-
tion algorithm is likely to be stuck in an inappropriate local minimum of the
likelihood.

For a primitive matrix8 A, the rate of convergence to the rank 1 can be
characterized using the Perron-Frobenius theorem [Meyer, 2000, Senata, 1981].
It implies that a primitive stochastic matrix has a unique eigenvalue equal
to 1 and that all other eigenvalues are strictly smaller than 1 (in absolute
value). If the rank of A is r, then the spectral decomposition of A is given
by

A = λ1U 1V
T
1 + λ2U 2V

T
2 + . . . + λrU rV

T
r ,

where λi is the i-th largest eigenvalue, in absolute terms, and U i, V i are
respectively the right-hand and left-hand eigenvectors associated with λi.
Furthermore, the spectral decomposition of Ad is given by

Ad = λd
1U 1V

T
1 + λd

2U 2V
T
2 + . . . + λd

rU rV
T
r

that is, taking A to the power d amounts to take its eigenvalues to the power
d. Consequently, while taking the successive powers of A, λ1 = 1 remains
unchanged and all other eigenvalues are decreasing until cancellation. The
rate of convergence to rank 1 follows a geometric progression with a ratio
that can be approximated by the second9 largest eigenvalue λ2, in absolute
terms.

Classically, the Baum-Welch algorithm is initialized with a uniform ran-
dom matrix10. Such a matrix typically has a very low λ2. The Baum-Welch
algorithm is thus badly conditioned to learn long-term dependencies when
initialized in this way. On the other hand, initializing this algorithm with a
matrix having λ2 close to 1 requires prior knowledge of the model topology.

7All rows of a rank 1 stochastic matrix are equal.
8The transition matrix of a regular MC is primitive.
9In the case of the POMM Tθ of Figure 7, λ2 = θ.

10Each entry is uniformly drawn in [0, 1] and rows are normalized to sum up to 1.
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Table 1: MFPT in T0.95 (left), modeled by an order 1 MC (center) or an
order 2 MC (right).

T//κ e f

b 21.0 67.0
c 67.0 21.0

MC1 e f

b 44.0 44.0
c 44.0 44.0

MC2 e f

b 42.85 45.15
c 45.15 42.85

5.3 Long-term dependencies and MFPT

The MFPT in a lumped process T//κ contains information about the long-
term dynamics of the process. Indeed, the MFPT from the block κb to the
block κe is an expectation of the length of random walks starting with b

before emitting e for the first time:

Mbe//κ =
∞∑

t=1

t

(∑
w∈(Σ\e)t−1 P (bwe)∑
w∈(Σ\e)∗ P (bwe)

)
Let us assume that the emission of e is conditioned by the fact that the
process has first emitted b. The MFPT from b to e is equal to the expected
length of the relevant history to predict e from b. Table 1 shows some
interesting MFPT in the example Tθ of Figure 7 with θ = 0.95. In the target
Tθ, Mbe = Mcf is equal to the expected size of the relevant history (21, see
section 5.1). Furthermore, there is a rather long expected time between the
outcomes b and f (equivalently between c and e). When Tθ is approximated
by an order 1 MC, Mbe = Mbf = Mce = Mcf = 44. This means that
independently of whether (b or c) were emitted, the outcomes e and f are
expected to occur 44 steps later. An order 2 MC only slightly improves the
fit to the correct MFPT with respect to an order 1 model.

6 POMM induction to model long-term de-

pendencies

A random walk in a POMM can be seen as its underlying MC lumped with
respect to the observable partition, as detailed in section 4. We present here
an induction algorithm making use of this relation. Given a data sample,
assumed to have been drawn from a target POMM TP , our induction al-
gorithm estimates a model EP fitting the dynamics of the MC related to
TP . The estimation relies on the stationary distribution and the mean first
passage times which can be derived from the sample.
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In the present work, we focus on distributions that can be represented by
POMMs without final (or termination) probabilities and with regular under-
lying MC. Since the target process TP never stops, the sample is assumed
to have been observed in steady-state. Furthermore, as the transition graph
of TP is strongly connected, it is not restrictive to assume that the data is
a unique finite string s resulting from a random walk through TP observed
during a finite time11. Under these assumptions, all transitions of the target
POMM and all letters of its alphabet will tend to be observed in the sample.
Such a sample can be called structurally complete.

As the target process TP can be considered as a lumped process, each
letter of the sample s is associated with a unique state subset of the observable
partition κ. All estimates introduced here are related to the state subsets of
the target lumped process. The starting point of the induction algorithm is
an order 1 MC estimated from the sample. For any pair of letters a, b the
transition probability Âab is estimated by maximum likelihood by counting
how many times a letter a is immediately followed by b in the sample. The
stationary distribution of this order 1 MC fits the letter distribution observed
in the sample. The letter distribution is however not sufficient to reproduce
the dynamics of the target machine. In particular, any random permutation
of the letters in the sample would define the same stationary distribution. In
order to better fit the target dynamics, the induced model is further required
to comply with the MFPT between the blocks of TP//κ, that is between the
letters observed in the sample. Given a string s defined on an alphabet Σ,
let M̂ denote a |Σ|× |Σ| matrix where M̂ab is the average number of symbols
after an occurrence of a in s to observe the first occurrence of b.

11The sample statistics could equivalently be computed from repeated finite samples
observed in steady-state.
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Algorithm POMMStateSplit
Input: A string s assumed to have been generated from a target POMM

A precision parameter ε

Output: A POMM EPcur

EP ← initialize(s);
M̂ ← sampleMFPT(s);
Lik ← logLikelihood(EP, s);
repeat

Likcur ← Lik;
EPcur ← EP ;
foreach state q in EPcur do

EPnew ← optimizeMFPT(EPcur, q, M̂);
Liknew ← logLikelihood(EPnew, s);
if Liknew > Lik then

EP ← EPnew;
Lik ← Liknew;

until Lik−Likcur
Likcur

< ε;
return EPcur

Algorithm 1: POMM Induction by iterative state splitting.

Algorithm 1 describes the induction algorithm. Iterative state splitting
in the current model allows one to increase the fit to the MFPT as well as
the likelihood of the model with respect to s, while preserving the stationary
distribution. After the construction of the initial order 1 MC, M̂ is esti-
mated from s and the log-likelihood of the initial model is computed. At
each iteration, every state q of the current model is considered as a candi-
date for splitting. During the call to optimizeMFPT, the considered state
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q is split into two new states q1 and q2 as depicted in Fig. 8. The input
states i1, . . . , ik and output states o1, . . . , ol are those directly connected to
q in the current model12, in which all transition probabilities A are known.
The topology after splitting provides additional degrees of freedom in the
transition probabilities. The new transition probabilities x, y, z form the
variables of an optimization problem, which can be represented by the ma-
trices X (k × 2), Y (2 × l) and Z (2 × 2). The objective function to be
minimized measures a least squares error with respect to the target MFPT:
W (X, Y, Z) =

∑|Σ|
i,j=1, i6=j(M̂ij −Mij//κ)2, where Mij//κ is computed accord-

ing to definition 14. The best model according to the log-likelihood value
is selected and the process is iterated till convergence of the log-likelihood
function.

Solving the optimization problem

The following constraints are used during the optimization of MFPT in a
new candidate model. The first set of constraints ensures that the model
remains a proper POMM: all transition probabilities must remain between 0
and 1 (C.1) and the outgoing probability mass from any state must sum up
to 1 (C.2).

0 ≤ xj1, xj2 ≤ 1 j = 1, . . . , k
0 ≤ y1i, y2i ≤ 1 i = 1, . . . , l
0 ≤ z11, z12, z21, z22 ≤ 1

(C.1)

∑l
j=1 y1j + z11 + z12 = 1∑l
j=1 y2j + z21 + z22 = 1

xj1 + xj2 = Aijq j = 1, . . . , k

(C.2)

The second set of constraints guarantees that the stationary distribution
of the blocks is preserved. The input stream to a state q is defined as ISq =∑

q′∈Q πq′Aq′q and the stationary distribution can be formulated as πq =
ISq

1−Aqq
. If the input stream to an output state oj is preserved then πoj

remains

unchanged since Aojoj
is constant. By induction, if the input stream to each

output state is preserved, the stationary distribution of every state different
from q1 and q2 is unchanged. Consequently, the stationary distribution of
every block but κq (the block containing q1 and q2) remains unchanged. As
the stationary distribution of the blocks sums up to 1, πκq is then necessarily
preserved and πq1 + πq2 = πq. Preserving the input streams to output states
is formulated as follows:

12Input and output states are not necessarily distinct.
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πq1y1i + πq2y2i = πqAqoi
, ∀i = 1, . . . , l

where the stationary distribution vector π is obtained by solving the linear
system given in definition 8.

The optimization problem is non-linear both in the objective function
and the constraints (as πq1 and πq2 depend on the problem variables). This
problem can be solved using a Sequential Quadratic Programming (SQP)
method [Fletcher, 1987]. In our experiments, we used the SQP solver pro-
vided in the Matlab optimization toolbox. This method requires the deriva-
tion of the objective function with respect to the problem variables. The
objective function is derived hereafter with respect to a generic variable γ
which can be instantiated to any x, y or z:

∂W (X, Y, Z)

∂γ
= −2

|Σ|∑
i,j=1, i 6=j

(M̂ij −Mij//κ)
∂Mij//κ

∂γ

According to definition 14, the derivative of Mij//κ is given by

∂Mij//κ

∂γ
=

1

πκj

(∑
q∈κi

∂πq

∂γ
wκj

q + πq
∂w

κj
q

∂γ

)
The linear system related to the stationary distribution introduced in defi-
nition 8 can be rewritten as (AT − I)π = 0. Therefore, the derivative of the
stationary distribution can be obtained by solving the following system:

(AT − I)
∂π

∂γ
= −∂AT

∂γ
π

This derivation is straightforward as the only matrix to differentiate symbol-
ically is AT . According to definition 13, the derivative of the MTA vector is

given by ∂wκj

∂γ
=

∂Nκj

∂γ
1. It depends on the derivative13 of the fundamental

matrix Nκj
= (I − Aκj

)−1 where κj = Q \ κj:

∂Nκj

∂γ
= Nκj

∂Aκj

∂γ
Nκj

Finally, the symbolic differentiation of the transition matrix A (or a sub-

matrix of A) is made component-wise:
∂Aij

∂γ
= 1 if Aij = γ and 0 otherwise.

Two possible numerical difficulties might be encountered during the opti-
mization procedure. When all the input (output) transitions to (from) a state

13The derivative of an inverse matrix B−1 is given by: ∂B−1

∂γ = −B−1 ∂B
∂γ B−1.
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are close to 0, the matrices (I −Aκj
) are nearly singular as the model nearly

becomes unconnected. In order to avoid this problem, variable updates must
be kept small enough. In addition, the inabililty of numerical solvers to set
variables exactly to their bounds is an important issue for structural induc-
tion. Indeed, if the solver cannot set transition probabilities to 0, each split
results in the full topology displayed in figure 8. While it is possible to cut
transitions that are below a given threshold, we propose to use the Lagrange
multiplier in order to detect the active box constraints (C.1). According to
the solver precision, a Lagrange multipliers is different from 0 when the cor-
responding constraint is active, i.e. the current solution is on the constraint.
At the end of the optimization procedure, the variables with an active box
constraint are set to their corresponding bound value (0 or 1).

7 Experiments

In order to report comparative performances of the proposed approach in a
controlled setting, a set of target models including long term dependencies
were randomly generated. The target POMM on the left of Figure 7 is
a typical example. Some states include a self loop transition with a high
probability (θ > 0.5) such as the states labeled d in this example. These
states are called short-term as the prediction of the next symbol d given
previous d’s depends on a short history. Other states, called long-term, emit
a specific letter not found elsewhere in the model (such as the states labeled
e and f in this example) based on an unbounded history. A target model
is initially generated so as to alternate short-term and long-term states in a
cyclic fashion. The self-loop transition probability was fixed to θ = 0.65 in
our experiments. This random generation gives rise to a transition matrix
A1. In order to deal with a sufficiently general class of target models, this
transition matrix is interpolated with a random primitive stochastic matrix:
A ← 0.9A1 + 0.1Arand. The resulting models are thus fully connected with
a tendency to include long term dependencies. As pairs of short term states
were chosen to emit the same letter, the relation between the alphabet size
and the number of states is here |Σ| = 3

4
|Q|.

Test samples contain 100 sequences of length 1,000 which were randomly
generated from each target model. The test perplexity of each induced model
is reported below as a relative increase with respect to the target model
perplexity on the same test samples. Perplexity (PP) is related to the per
symbol log-likelihood and formally defined as:

PP = 2−
1

||S||
P

x∈S log2 P (x|T )
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where ||S|| denotes the total number of letters in the sample S and P (x|T )
denotes the probability of generating the string x from the model T . Perplex-
ity can be interpreted as a measure of the average uncertainty for predicting
the next symbol at any given position in the test strings. An uninformed
model would predict any symbol of the alphabet Σ with the same probabil-
ity 1/|Σ|. Such a model would have PP = |Σ|. The better a model fits a
target distribution, the lower the perplexity.

Figure 9 reports the learning curves obtained on average over 4 different
target model sizes. For each target model, results are averaged over 10 learn-
ing sequences of growing length and independently drawn from each target
model. We compare here the proposed POMM induction algorithm with EM
estimation (i.e. Baum-Welch) of fully connected HMMs and trigram mod-
els. EM estimation is repeated with 3 different random initializations of the
parameter values and the performance is reported only for the best model,
which offers the highest likelihood of the training sample. Moreover Baum-
Welch is iterated with fully connected HMMs of growing number of states as
long as the training sample likelihood significantly increases. Only the best
performances of this approach are reported here. Both POMMs and HMMs
are smoothed by defining a 10−6 minimal probability for any letter in any
context and renormalizing the model accordingly. Trigrams are smoothed
with a much more sophisticated technique known as the modified back-off
scheme [Kneser and Ney, 1995]. This model is equivalent to a variable order
Markov chain due to the back-off to lower order estimates.

POMM induction via state splitting always performs better than compet-
ing techniques. In particular, good performances are obtained typically with
learning sequences of size 2,000 while Trigrams and EM estimation generally
require more data. With such a sample size the test perplexity increase rel-
ative to the target model falls between 3 and 10 % depending on the model
size. This perplexity increase goes up to 35 % for EM trained models. Tri-
grams offer intermediate performances. Note that the Trigram quality is
most likely due to its specific smoothing technique which compensates for
the short-term model structure. In our current implementation, induction
from a sequence of length 1,000, generated from a target model containing 16
states, takes a few seconds for Trigrams, about 36 minutes for EM estimation
and 50 minutes for POMMStateSplit on a standard PC.

8 Conclusion

We propose in this paper a novel approach to the induction of the structure of
Hidden Markov Models. The notion of partially observable Markov models
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Figure 9: Test perplexity increase (relative to the target model perplexity)
with respect to the size of the learning sequence. The plots include 1 standard
deviation intervals computed over 10 learning sequences in each case.

(POMMs) is introduced. POMMs form a particular case of HMMs where
any state emits a single letter with probability one, but several states can
emit the same letter. It is shown that any HMM can be represented by an
equivalent POMM. The induced model is constructed to fit the dynamics of
the target machine, that is to best approximate the stationary distribution
and the mean first passage times (MFPT) observed in the sample. HMMs are
able to model a broader class of distributions than finite order Markov chains.
They are well suited to represent in a compact way long term probabilistic
dependencies. Accurate modeling of these dependencies cannot be achieved
however through the classical approach of Baum-Welch estimation of a fully
connected model. These observations motivate the use of MFPT to guide the
search of an appropriate model topology. The proposed induction algorithm
relies on non-linear optimization and iterative state splitting from an initial
order one Markov chain. Experimental results illustrate the advantages of
the proposed approach as compared to Baum-Welch HMM estimation or
back-off smoothed Ngrams.

Our future work includes extension of the proposed approach to other
classes of models, such as lumped processes of periodic or absorbing Markov
chains. The current implementation of our induction algorithm considers all
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states of the current model as candidates for splitting. More efficient ways
of selecting the best state to split at any given step are under study. Appli-
cations of the proposed approach to larger datasets will also be considered,
typically in the context of language or biological sequence modeling.

Acknowledgment

The authors wish to thank Philippe Delsarte for many fruitful discussions
about this work. This work is partially supported by the Fonds pour la
formation à la Recherche dans l’Industrie et dans l’Agriculture (F.R.I.A.)
under grant reference F3/5/5-MCF/FC-19271.

References

[Bengio and Frasconi, 1995] Bengio, Y. and Frasconi, P. (1995). Diffusion of
context and credit information in markovian models. Journal of Artificial
Intelligence Research, 3:223–244.

[Callut and Dupont, 2004] Callut, J. and Dupont, P. (2004). A Markovian
approach to the induction of regular string distributions. In Grammatical
Inference: Algorithms and Applications, number 3264 in Lecture Notes in
Artificial Intelligence, pages 77–90, Athens, Greece. Springer Verlag.

[Carrasco and Oncina, 1999] Carrasco, R. and Oncina, J. (1999). Learning
deterministic regular gramars from stochastic samples in polynomial time.
Theoretical Informatics and Applications, 33(1):1–19.

[Denis and Esposito, 2004] Denis, F. and Esposito, Y. (2004). Learning
classes of probabilistic automata. In Proc. of 17th Annual Conference
on Learning Theory (COLT), number 3120 in Lecture Notes in Computer
Science, pages 124–139, Banff, Canada. Springer Verlag.

[Dupont and Amengual, 2000] Dupont, P. and Amengual, J. (2000).
Smoothing probabilistic automata: an error-correcting approach. In
Oliveira, A., editor, Grammatical Inference: Algorithms and Applications,
number 1891 in Lecture Notes in Artificial Intelligence, pages 51–64, Lis-
bon, Portugal. Springer Verlag.

[Dupont and Chase, 1998] Dupont, P. and Chase, L. (1998). Using symbol
clustering to improve probabilistic automaton inference. In Grammatical
Inference, ICGI’98, number 1433 in Lecture Notes in Artificial Intelligence,
pages 232–243, Ames, Iowa. Springer Verlag.



Learning Hidden Markov Models to Fit Long-Term Dependencies 25

[Dupont et al., 2005] Dupont, P., Denis, F., and Esposito, Y. (2005). Links
between Probabilistic Automata and Hidden Markov Models: probability
distributions, learning models and induction algorithms. Pattern Recogni-
tion, 38(9):1349–1371.

[Durbin et al., 1998] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G.
(1998). Biological sequence analysis. Cambridge University Press.

[Fletcher, 1987] Fletcher, R. (1987). Practical Methods of Optimization,
chapter 8.7 : Polynomial time algorithms, pages 183–188. John Wi-
ley & Sons, New York, second edition.

[Freitag and McCallum, 1999] Freitag, D. and McCallum, A. (1999). Infor-
mation extraction with HMMs and shrinkage. In Proc. of the AAAI-99
Workshop on Machine Learning for Information Extraction.

[Freitag and McCallum, 2000] Freitag, D. and McCallum, A. (2000). Infor-
mation extraction with HMM structures learned by stochastic optimiza-
tion. In Proc. of the Seventeenth National Conference on Artificial Intel-
ligence, AAAI, pages 584–589.

[Kemeny and Snell, 1983] Kemeny, J. and Snell, J. (1983). Finite Markov
Chains. Springer-Verlag.

[Kermorvant and Dupont, 2002] Kermorvant, C. and Dupont, P. (2002).
Stochastic grammatical inference with multinomial tests. In Adriaans,
P., Fernau, H., and van Zaanen, M., editors, Proceedings of the 6th In-
ternational Colloquium on Grammatical Inference: Algorithms and Ap-
plications, number 2484 in Lecture Notes in Artificial Intelligence, pages
149–160, Amsterdam, the Netherlands. Springer Verlag.

[Kneser and Ney, 1995] Kneser, R. and Ney, H. (1995). Improved backing-off
for m-gram language modeling. In International Conference on Acoustic,
Speech and Signal Processing, pages 181–184, Detroit, Michigan.

[Levin and Pieraccini, 1993] Levin, E. and Pieraccini, R. (1993). Planar Hid-
den Markov modeling: from speech to optical character recognition. In
Giles, C., Hanton, S., and Cowan, J., editors, Advances in Neural Infor-
mation Processing Systems, volume 5, pages 731–738. Morgan Kauffman.

[Llorens et al., 2002] Llorens, D., Vilar, J.-M., and Casacuberta, F. (2002).
Finite state language models smoothed using n-grams. International Jour-
nal of Pattern Recognition and Artificial Intelligence, 16(3):275–289.



26 INGI Research Report No. 2005-09

[Meyer, 2000] Meyer, C. D. (2000). Matrix analysis and applied linear alge-
bra. Society for Industrial and Applied Mathematics.

[Norris, 1997] Norris, J. R. (1997). Markov Chains. Cambridge University
Press, United Kingdom.

[Ostendorf and Singer, 1997] Ostendorf, M. and Singer, H. (1997). HMM
topology design using maximum likelihood successive state splitting. Com-
puter Speech and Language, 11:17–41.

[Rabiner and Juang, 1993] Rabiner, L. and Juang, B.-H. (1993). Fundamen-
tals of Speech Recognition. Prentice-Hall.

[Ron et al., 1994] Ron, D., Singer, Y., and Tishby, N. (1994). Learning
probabilistic automata with variable memory length. In Proceedings of
the Seventh Annual Conference on Computational Learning Theory, New
Brunswick, NJ. ACM Press.

[Rulot and Vidal, 1988] Rulot, H. and Vidal, E. (1988). An efficient algo-
rithm for the inference of circuit-free automata. In Ferratè, G., Pavlidis,
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